
Complete Bottom-Up Predicate Invention in Meta-Interpretive Learning
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Abstract
Predicate Invention in Meta-Interpretive Learning
(MIL) is generally based on a top-down approach,
and the search for a consistent hypothesis is carried
out starting from the positive examples as goals.
We consider augmenting top-down MIL systems
with a bottom-up step during which the background
knowledge is generalised with an extension of the
immediate consequence operator for second-order
logic programs. This new method provides a way
to perform extensive predicate invention useful for
feature discovery. We demonstrate this method is
complete with respect to a fragment of dyadic dat-
alog. We theoretically prove this method reduces
the number of clauses to be learned for the top-
down learner, which in turn can reduce the sample
complexity. We formalise an equivalence relation
for predicates which is used to eliminate redundant
predicates. Our experimental results suggest pair-
ing the state-of-the-art MIL system Metagol with
an initial bottom-up step can significantly improve
learning performance.

1 Introduction
An optimal strategy in the chess endgame KRK (King-and-
Rook vs King) is to successively restrict the area available to
the opponent’s black king using the white rook. Maintenance
of this rook safety is achieved using the white king. An ex-
ample of a situation in which the white king protects its rook
is represented in Figure 1a. Figure 1b shows a hypothesis
describing such a situation. This hypothesis includes various
invented predicates representing sub-concepts. For instance,
f1/2 defines the existence of a white king in a board.
We introduce a new method for partially delegating the con-
struction of invented predicates and demonstrate it can im-
prove learning performance. The hypothesis is divided be-
tween surface and substrate predicates as in Figure 1b. The
substrate is a set of invented predicates generated in a first
step by a bottom-up learner and from the background knowl-
edge. The surface is a hypothesis built subsequently by a
top-down learner which can reuse these substrate predicates.
The surface hypothesis has fewer clauses owing to the use of
substrate predicates and so is easier to learn.

(a) Example board

Surface f(S):-f1(S,P1),f3(S,P1).
Substrate f1(S,P1):-f2(S,P1),white(P1).

f2(S,P1):-piece(S,P1),king(P1).
f3(S,P1):-f4(S,P2),distance1(P2,P1).
f4(S,P2):-piece(S,P2),rook(P2).

(b) Target Hypothesis: S denotes a board
state, P1 and P2 are pieces

Figure 1: Learning a chess pattern: the white king protects its rook

In MIL [Muggleton and Lin, 2013], predicate invention is
conducted in a top-down fashion by allowing new predicate
symbols in metasubstitutions. We introduce a new bottom-
up method for performing predicate invention based upon an
extension of the immediate consequence operator for second-
order logic programs. For each metarule, if body literals
can be resolved with the current background knowledge, then
Skolem constants are bound to second-order variables in the
head. The resulting head is added to the background knowl-
edge and the resulting metasubstitution is saved as a new
predicate definition. This process is iterated. We demonstrate
our bottom-up method is complete with respect to a fragment
of dyadic datalog. Performing bottom-up iterations reduces
the number of surface clauses to be learned by the top-down
learner which in turn can reduce the sample complexity.
Our contributions are 1) the introduction of a new method
for performing extensive predicate invention, 2) a proof of
the completeness of this method, 3) the formalisation of the
definition of an equivalence relation for predicates which is
used to prune redundant predicates, 4) an implementation of
this method 5) experimental results over two domains demon-
strating this method can significantly improve learning per-
formance.

2 Related Work

2.1 Learning Game Strategies

Early approaches to learning game strategies [Shapiro and
Niblett, 1982; Quinlan, 1983] use the decision tree ID3 to
classify minimax depth-of-win for positions in chess end
game. These approaches use a carefully selected set of board
attributes as features. Conversely, we study the automated
invention of features and relations from low-level primitives.
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2.2 Predicate Invention
Inductive Logic Programming (ILP) systems rely on a lan-
guage bias to restrict the hypothesis space. Predicate inven-
tion is a key challenge in ILP [Muggleton et al., 2012]. It has
been investigated as a bias shift [Stahl, 1995] for overcoming
the limitations of insufficient vocabulary for learning. New
predicates might also allow for the formulation of simpler hy-
potheses within the target language thus reducing the learning
complexity [Stahl, 1993] which we study here for MIL.
Early predicate invention approaches were based on the use of
W operators within the inverting resolution framework [Mug-
gleton and Buntine, 1988]. However, the completeness of
this approach was never demonstrated. Predicate invention
can be performed by adding new predicate symbols to mode
declarations [Corapi et al., 2011; Law et al., 2014], however
their number and arity has to be user-provided. MIL systems
[Muggleton and Lin, 2013] achieve predicate invention in a
top-down fashion from the metarules, by introducing Skolem
constants representing new predicate symbols. Their number
depends on the depth in the iterative deepening search. Con-
versely, we investigate bottom-up predicate invention in MIL
and do not bound the number of invented predicates as such
but only bound the depth of the generation process.
Predicate Invention can be performed as a form of meta-
learning over time. Dependent Learning [Lin et al., 2014]
allows the construction of a series of predicates with increas-
ing levels of abstraction by solving a series of tasks with dif-
ferent complexity. In [Cropper, 2019], predicate invention
is performed in an initial unsupervised stage. In both cases,
learned hypotheses are saved to the background knowledge
as predicate definitions that can be reused when solving sub-
sequent tasks. Both approaches are based on a set of tasks,
user-provided or randomly sampled. Conversely, our method
builds predicate definitions from the background knowledge
related to the examples and does not require additional train-
ing tasks.

2.3 Combining Top-Down and Bottom-up
Bidirectional hypothesis search strategy was originally pre-
sented in the version space algorithm [Mitchell, 1982]. Vari-
ants were implemented in algorithms alternating generalisa-
tion and specialisation steps to search through the lattice of
clauses [Fensel and Wiese, 1993; Zelle et al., 1994]. Pro-
gol [Muggleton, 1995] constructs a most specific clause,
the bottom clause, that entails a positive example. In a
top-down step, it employs a variant of the A* search to
find the best possible consistent definition in the space con-
strained by the bottom clause. However, [Muggleton, 1995;
Fensel and Wiese, 1993] do not support automated predicate
invention which restrict their expressivity. [Zelle et al., 1994]
includes a mechanism for demand driven predicate invention.
Conversely, our system is based upon MIL and fully supports
automated predicate invention.

3 Learning Framework
3.1 Logical Notation
We assume familiarity with standard logic programming no-
tations [Lloyd, 1984]. We consider Datalog programs which

are definite logic programs without proper function symbols.
A variable is second-order if it can be bound to predicate sym-
bols. The Herbrand base BP of a first-order logic program P
is the set of all ground atoms constructed with the predicates
and constants in P . The process of replacing existential vari-
ables by constants in a formula is called Skolemisation. The
unique constants are called Skolem constants.

3.2 Meta-Interpretive Learning
MIL [Muggleton and Lin, 2013; Muggleton et al., 2014] is
a form of ILP [Muggleton, 1991]. The MIL input is a pair
(B,E), where E is a set of ground atoms representing pos-
itive and negative examples E = E+ ∪ E− and B is a
second-order logic programB = Bc∪M composed of a def-
inite first-order background knowledge Bc and metarules M .
Metarules are second-order clauses with existentially quanti-
fied predicate variables and universally quantified first-order
variables (see examples on Figure 2). The MIL problem is
to find a hypothesis H such that B,H |= E. The proof was
originally based upon an adapted Prolog meta-interpreter. It
attempts to prove the examples and saves the resulting meta-
substitutions for any successful proof. Metasubstitutions are
the substitution of second-order variables by predicate sym-
bols. Saved metasubstitutions can be used as background
knowledge by substituting them back onto their correspond-
ing metarules. MIL supports predicate invention, the learning
of recursions and higher-order programs [Cropper and Mug-
gleton, 2016a]. In the following, we use the MIL system
Metagol [Cropper and Muggleton, 2016b].

3.3 Immediate Consequence Operator for
Predicate Invention

We first recall the well-known definition of the immediate
consequence operator [Van Emden and Kowalski, 1976]:
Definition 3.1 (Immediate Consequence Operator of a Defi-
nite First Order Program). Let P be a definite first-order logic
program. The Immediate Consequence Operator TP associ-
ated with P is a mapping from subsets of the Herbrand base
BP to subsets of BP defined as:

∀I ⊆ BP , TP (I) = {α ∈ BP | α← B1, ..., Bm,m ≥ 0 is
a ground instance of a clause in P and{B1, ..., Bm} ⊆ I}

MIL systems use second-order logic programs, therefore
we extend Definition 3.1 to allow for second-order programs:
Definition 3.2 (Immediate Consequence Operator of a Defi-
nite Second Order Program). Let P be a definite second-order
logic program. The Immediate Consequence Operator TP as-
sociated with P is an operator defined over subsets of BP as:

∀I ⊆ BP , TP (I) = {α | α← B1, ..., Bm,m ≥ 0 is a ground
instance of a clause in P and {B1, ..., Bm} ⊆ I and

second order variables in α are bound to Skolem constants}

Applying the TP operator to first order logic programs gen-
erates atoms which are part of the Herbrand base of P . For
second order logic programs, it generates new atoms which
may have Skolem constants as predicate symbols in which
case it extends the Herbrand base of P .
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Example 3.1. Suppose there is a chess board with a rook r1
and a white king k1 located on the same file. We consider a
second-order logic program P containing the metarule post-
con and ground unit clauses. Given I = ∅, we have:

P = {P (X,Y )← Q(X,Y ), R(Y ); rook(r1)←;

king(k1)←;white(k1)←; samefile(r1, k1)←}
TP (I) = {rook(r1), king(k1), white(k1), samefile(r1, k1)}

TP (TP (I)) = {samefileking(r1, k1), samefilewhite(r1, k1)}

Atoms in TP (TP (I)) are generated from the following
ground instances of the postcon metarule, for which body lit-
erals are elements of TP (I). ’samefileking’ and ’samefile-
white’ are Skolem constants.

samefileking(r1, k1)← samefile(r1, k1), king(k1).

samefilewhite(r1, k1)← samefile(r1, k1), white(k1).

3.4 Predicate Invention from the TB Operator
We refer in the following to TB as the immediate conse-
quence operator associated with the second-order program
B = Bc ∪M provided as input to a MIL learner. Predicates
are invented as follows. The TB operator is iteratively applied
to the empty set. For each new fact generated, Skolem con-
stants are saved together with the metasubstitutions. These
metasubstitutions can later be projected onto the correspond-
ing metarules to derive the definitions of invented predicates.
Example 3.1 (Continued). Saved metasubstitutions can be
projected onto the postcon metarule to derive the following
first-order logic program P ′:

P ′ = {samefileking(X,Y )← samefile(X,Y ), king(Y );

samefilewhite(X,Y )← samefile(X,Y ), white(Y )}

3.5 Elimination of Redundant Predicates
Successive applications of the TB operator generate a se-
ries of predicate symbols together with their definitions. The
number of predicate symbols thus monotonically increases
with the number of iterations. To avoid cluttering the back-
ground knowledge, redundant predicates are pruned at the
end of each iteration. We define a notion of equivalence of
predicate based upon an equivalence of logic programs [Ma-
her, 1988]. We recall that the success set SS(P ) of a first-
order logic program P is the set of atoms from the Herbrand
base of P which have a successful SLD-derivation for P .
Definition 3.3 (Success set of a predicate). Given a first-
order program P , the success set SS(p, P ) of a predicate
p is the subset of the success set of P restricted to atoms of p:

SS(p, P ) = {α ∈ SS(P )|α has predicate symbol p}
Definition 3.4 (Equivalence of Predicates). Two predicates
p1 and p2 are equivalent given a first-order program P if they
have the same success set up to renaming of the predicate
symbols p1, p2:

SS(p1, P ) =rename(p1,p2) SS(p2, P )

One can verify reflexivity, symmetry and transitivity for the
relation defined in Definition 3.4 and conclude it is an equiv-
alence relation. For all predicates p1, if there exists a pred-
icate p2 such that p1 and p2 are equivalent, p1 is said to be

Algorithm 1 Bottom-Up Learner
Input: second-order logic program B|E related to training examples
E, number of iterations k, definitions of initial predicate H0

Output: logic program H
1: set H = H0 and I = ∅
2: for i in [1,k] do
3: for all new predicates p from TB(I) do
4: if 6 ∃ p1 ∈ H such that p1 and p are equivalent then
5: add the definition of p to H
6: add atoms from TB(I) with predicate symbol p to I
7: end if
8: end for
9: end for

redundant with respect to p2. Intuitively, predicates covering
exactly the same set of ground atoms are not discriminative
in a learning process, and adding redundant predicates in the
background knowledge is helpless to build a hypothesis.
The success set of P is equivalent to the least fix point
of the immediate consequence operator [Lloyd, 1984]:
SS(P ) = TP ↑ω . This provides a practical way of com-
puting success sets, as the new atoms generated at each itera-
tion are saved together with predicate definitions. Therefore,
evaluating success sets is straightforward in this context.
Example 3.1 (Continued). Invented predicates have the suc-
cess sets below and are equivalent given P ′ ∪ P :

SS(samefileking, P ′ ∪ P ) = {samefileking(r1, k1)}
SS(samefilewhite, P ′ ∪ P ) = {samefilewhite(r1, k1)}

3.6 Algorithm
Our algorithm for bottom-up predicate construction is pre-
sented in Algorithm 1. Given a second-order logic program
B = Bc ∪M , the learner considers B|E , the restriction of
B related to the training examples E, and successively com-
putes the immediate consequence of B|E according to Def-
inition 3.2. Success sets of resulting invented predicates are
evaluated. Predicates which are not equivalent to any current
predicates following Definition 3.4 are saved into the back-
ground knowledge. Their success sets are saved such that
can be used in subsequent iterations. After k iterations, the
top-down learner learns a consistent hypothesis while being
allowed to reuse predicates invented in bottom-up iterations.

4 Theoretical Analysis
4.1 Number of Predicate Symbols Introduced
Assumptions 1: We consider the program class H2

2 which
consists of definite Datalog programs with dyadic predicates
(arity at most 2) and at most 2 atoms in the body of each
clause [Muggleton and Lin, 2013]. We assume the learner is
given m metarules in H2

2 and p initial predicate symbols.
Theorem 4.1 (Number of predicate symbols introduced). We
call y the column vector of powers of p: y = {pj}∞j=0, and e
the row vector e = {δj,1}∞j=0, where δj,k is the Kronecker
delta. For all k ∈ N∗, the number of predicate symbols
available at the iteration k is upper bounded by a function
uk which is polynomial in p and m and defined by: ∀ k ∈
N, uk = eT ky, T verifying ∀ j, l ∈ N : Tj,l =

(
j

l−j
)
ml−j .
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Proof. By induction over k ∈ N.
k = 0: The initial number of predicate symbols p is upper
bounded by u0 = p which is polynomial in p and m.
Let k ∈ N. Suppose the number of predicate symbols avail-
able at the iteration k is bounded by uk which is polynomial
in p and m. The number of different bodies that can be con-
structed from uk predicate symbols and a H2

2 metarule is at
most u2k. The number of different bodies that can be con-
structed from m distinct H2

2 metarules is at most mu2k. The
number of predicate symbols available at the iteration k + 1
is bounded by uk+1 = uk +m.u2k which is polynomial in p
and m. Then, for all k ∈ N, the number of predicate symbols
is bounded by uk, which is a non linear sequence defined by
the recursive formula: u0 = p and uk+1 = uk +m.u2k.
The solution to this nonlinear recursive sequence is, from
[Rabinovich et al., 1996], the expression given above.

For a fixed number of iterations k, Theorem 4.1 provides
an upper bound on the number of predicate symbols intro-
duced polynomial in p and m. This number of invented pred-
icates is in practice limited by the initial background knowl-
edge B. We recall that, given m metarules in H2

2 and p ini-
tial predicate symbols, top-down MIL complexity for a fixed
clause bound n is O((mp3)n) [Lin et al., 2014], which is
also a polynomial function of p and m. Our method thus has
a worst-case complexity no worst than top-down MIL.

4.2 Completeness
Assumption 2: We assume metarules in M are non-recursive.
We define the following iterated TB operator as ∀I ⊆ BP :

T0,B(I) = I

∀i ∈ N∗, Ti,B(I) = TB(Ti−1,B(I)) ∪ Ti−1,B(I)
Algorithm 1 derives a program H containing predicate def-
initions, each having at most k non-recursive clauses from
the hypothesis space. For all clauses in H , there exists a
ground substitution θ of the head belonging to Tk,B(∅). In
other words, H satisfies equation below for k:

∀Head← Body ∈ H, ∃θ :
{
Head θ = A
A ∈ Tk,B(∅) (1)

Theorem 4.2 (Completeness). Given k ∈ N and a theory
H within the hypothesis space defined by the primitives and
metarules provided, H satisties equation 1 with parameter k
only if it is derivable in k iterations of Algorithm 1.

Proof. By induction over k ∈ N. For k = 0, H = ∅.
Let k ∈ N. Assume theories satisfying equation 1 with pa-
rameter k are derivable in k iterations of Algorithm 1. We
consider a theory H satisfying equation 1 with parameter
k + 1. For all Head ← Body ∈ H , there exists a ground
substitution θ such that Head θ = A and A ∈ Tk+1,B(∅).
All literals from Body θ are elements of Tk,B(∅). Then all
literals from Body θ satisfy Equation (1) thus are derivable
in k iterations of Algorithm 1. Performing one more iteration
of Algorithm 1 derives Headθ ∈ Tk+1,B(∅) and the clause
Head ← Body is saved in H . Then, clauses from H are
derivable in k + 1 iterations of Algorithm 1.

If the top-down learner chosen also is complete, the system
combining the bottom-up and top-down learner is complete.

4.3 Sample Complexity
Proposition 4.1 (Sample Complexity gain [Cropper, 2019]).
We assume the target hypothesis expressed in its minimal
form has n clauses with standard MIL. Let n− lk be the min-
imal number of clauses required to express the target theory
after k bottom-up iterations. We call pk the actual number
of predicate symbols available after k bottom-up iterations.
Given p initial predicate symbols, m metarules in H2

2 , an er-
ror level ε and a confidence level δ, the number of examples
required to achieve an error at most ε with confidence δ is
reduced after k bottom-up iterations when:

n ln(p) > (n− lk) ln(pk)

By completeness from Theorem 4.2, it is guaranteed that
the number of clauses required to express a target theory is
reduced by at least lk = k after k bottom-up iterations.

5 Implementation
Sampling of background knowledge facts. In order to be
relevant to the learning task,B|E is the restriction of the back-
ground knowledge B related to the examples E. Bc|E is a
set of ground unit clauses sampled from the examples and
initial predicates. First, the ground terms of each examples
are extracted. Next, input first-order variables in the head of
clauses from the initial background knowledge are instanti-
ated to these ground terms. Every successful resolution of
these instantiated heads is saved as a background fact. This
process is iterated. If a resolution generates an output ground
term, this ground term is saved and can be reused in further
resolutions to build new facts. Examples can be sampled to
ensure the number of initial facts is not too large.

Applying the TB operator. New facts and invented pred-
icate definitions are generated by applying the TB operator
from Definition 3.2 to B. Bodies of metarules in M are re-
solved against the background knowledge. In order to limit
redundancy of the proofs, we ensure that each new proof
reuses at least one fact proved in the last iteration. Hence
a proof executed at the bottom-up iteration i will not be exe-
cuted again at iteration j, with j > i.

Generation of Skolem constants. Skolem constants are
built by concatenating the metarule’s name and the instan-
tiated second-order variables in the metarule’s body. This
process ensures the uniqueness of Skolem constants. If two
predicates are equivalent with respect to Definition 3.4, the
predicate with the shortest number of concatenated names is
saved, since it has a simpler definition by construction.

6 Experiments
6.1 Research Hypotheses
We experimentally test within this section whether the use
of bottom-up iterations can improve learning performance.
Therefore, we investigate the following null hypotheses:
Null Hypothesis 1: Augmenting MIL systems with bottom-
up iterations can not improve predictive accuracies.
Null Hypothesis 2: Augmenting MIL systems with bottom-
up iterations can not reduce the sample complexity.
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Experiment Name Metarule
1 postcon P (A,B)← Q(A,B), R(B).
1 conj P (A)← Q(A), R(A).
1 conj2 P (A)← Q(A,B), R(A,B).

1 and 2 chain P (A,B)← Q(A,C), R(C,B).

Figure 2: Common metarules from the MIL literature: the letters P,
Q, R denote existentially quantified second-order variables and the

letters A, B, C universally quantified first-order variables.

Null Hypothesis 3: Augmenting MIL systems with bottom-up
iterations can not improve learning times.

To test these null hypotheses, we compare the regular ver-
sion of Metagol versus Metagol augmented with bottom-up
iterations. We provide the two systems with the same back-
ground knowledge and metarules in each experiment. There-
fore, the only variable is the learning system1.

6.2 Rook Protected in Chess Endgame KRK
KRK denotes the chess ending with white having a king and
a rook and black having a king. An optimal strategy is known
and its correctness has been demonstrated [Bratko, 1978]. It
involves reducing the area available to the black king with
the white rook whilst constantly protecting the later with the
white king. This experiment considers the task of learning
whether the white rook is protected by its king which is an
essential feature to conduct an optimal strategy.
Material. The state of the board is a list of non-empty cells.
Cells are atoms of the form c(X,Y,Color,Type) and encode the
current position X/Y of the piece of color Color (black or
white) and type Type (king or rook). Primitives are piece/2,
rook/1, king/1, white/1, black/1 and distance1/2 which holds
if the arguments are two pieces separated by a Chebyshev
distance of 1. Metarules provided (Figure 2) belong to H2

2 .
The target theory is shown in Figure 1b.
Methods. Training instances are instances of the form
rook protected(S) where S is a board state. Positive exam-
ples are generated by placing the white rook and the black
king on different squares randomly selected on an empty
board. The white king is placed on a random empty square
at distance 1 from the rook. Negative examples are gener-
ated by altering an attribute (rank, file, color or type) selected
at random of either the white king or the rook in a positive
example such that the target theory does not hold for the re-
sulting state. Training sets are built with half positive, half
negative examples. We perform between 1 and 3 bottom-up
iterations. Initial facts are built from a sample of size 1 of the
positive examples. We measure the number of correct classi-
fications over a set of 300 test instances generated following
the same process as the training set. The default accuracy is
0.5. We compare accuracies and learning times versus the
number of training examples. We measure the standard error
of the mean over 100 repetitions.
Results. Accuracy results are presented in Figure 3a: a T-
test suggests that the difference in accuracy is statistically
significant (p < 0.05) for a training set up with up to 16 in-
stances thus refuting Null Hypothesis 1. Sample complexity

1The code for reproducing the experiments is available at https:
//github.com/celinehocquette/bottom up.git

(a) KRK: accuracy

(b) KRK: learning time

Accuracy Metagol k=1 k=2 k=3
0.85 5 2 2 3
0.9 7 4 4 4
0.95 13 7 7 8
0.98 21 13 13 14

(c) Experimental Sample Complexity
vs the number of bottom-up iterations k

Figure 3: KRK results: Learning ”rook protected by the king”

results are detailed in Figure 3c and show that performing
bottom-up iterations can reduce the sample complexity. It is
consistent with Proposition 4.1 and we thus refute null hy-
pothesis 2. Metagol with bottom-up steps requires shorter
learning times as shown in Figure 3b thus refuting null hy-
pothesis 3. The surface hypothesis from Figure 1b has a size
typically reduced from 5 to 3 clauses after k = 1 bottom-
up iteration and to 1 clause for k = 2. It is better than the
expected reduction of 1 and 2 clauses for k = 1 and k = 2 re-
spectively guaranteed by Theorem 4.2. The number of pred-
icates available after the iterations k = 1 and k = 2 typi-
cally is at most p1 = 18 and p2 = 42 respectively. These
numbers are much lower than the worst case scenario bound
provided by Theorem 4.1 which guaranteed p1 < 150 and
p2 < 90150 and are consistent with Proposition 4.1. Per-
forming more bottom-up iterations (k > 2) is not beneficial
for this experiment as it can not further reduce the size of the
target theory but increases learning times.

6.3 String Transformations
Materials. We consider 94 real-world string transformation
problems evaluated in [Cropper, 2019] and inspired from [Lin
et al., 2014; Gulwani, 2011]. The dataset contains 10 positive
examples for each problem. Each example is an atom of the
form task(s1, s2) where task is the task name and s1 and
s2 are input and output strings respectively. Some examples
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Input Output
James Brown BROWN
David Batty BATTY

(a) Task p9: examples

Input Output
James Brown JB
Joanie Faas JF

(b) Task p39: examples

p39(A,B):-copy1skipwordskip1copy1(A,C),skiprest(C,B).
copy1skipwordskip1copy1(A,B) :- copy1skipword(A,C), skip1copy1(C,B).
copy1skipword(A,B):-copy1(A,C), skipalphanum(C,B).
skip1copy1(A,B):- skip1(A,C), copy1(C,B).

(c) Hypothesis learned for task p39: initial predicates are
represented in bold. Predicates have been renamed for clarity.

Figure 4: String transformation experiment

are shown in Figure 4a and 4b. For each run and each task,
one example is randomly selected to form the training set, the
remaining nine being being left for testing.

Methods. We provide both systems with the same back-
ground knowledge from [Lin et al., 2014] containing
the predicates copyalphanum/2, copy1/2, write point/2,
skipalphanum/2, skip1/2, skiprest/2, make lowercase/2,
make uppercase/2, make uppercase1/2 and the chain
metarule (Figure 2). A functional restriction is set to com-
pensate for the lack of negative examples. We set the size of
the top-down learner search space to n ∈ [2, 4] clauses. For
k ∈ [0, 3], k bottom-up iterations are performed. If a learning
tasks fails and no hypothesis is returned, the default accuracy
is 0. A timeout is set to 10 minutes. We measure the standard
error of the mean over 20 repetitions of the 94 tasks.

Results. Results are presented in Figure 5. The accuracy
increases with the number of bottom-up iterations, outper-
forming the regular version of Metagol, thus refuting null hy-
pothesis 1. Moreover, both the accuracy and the percentage
of tasks solved for a clause bound of n and after k bottom-
up iterations are greater than that’s of Metagol for a clause
bound of n + k. Indeed, k bottom-up iterations can reduce
the target theory by more than k clauses which is more than
the guarantee provided by Theorem 4.2. Learned hypotheses
are characterized by a high usage of predicates invented in
bottom-up iterations. For example, the hypothesis learned for
the task 39 is shown in Figure 4c. Respectively one and two
bottom-up iterations are enough to build the bottom two or
three invented substrate predicates in which case the surface
hypothesis has respectively 2 and one clauses. Conversely,
Metagol requires 4 clauses to learn the same hypothesis.

7 Conclusion
We have introduced in this work a method for performing
extensive predicate invention in a bottom-up fashion within
MIL. The background knowledge is generalised with an ex-
tension of the immediate consequence operator for second-
order logic programs. We have demonstrated this method is
complete with respect to a fragment of dyadic datalog. This
methods reduces the number of clauses to be learned by the
top-down learner, which can reduce the sample complexity.
Our experimental results provide convincing evidence to sup-
port this claim.
We have restricted the scope of this work to second-order
metarules. The use of higher-order metarules [Cropper and

(a) Accuracy

(b) Percentage of tasks solved

(c) Learning time of solved tasks

Figure 5: String transformation results: baselines (dotted lines)
correspond to the regular version of Metagol, results for Metagol
augmented with bottom-up steps are represented with solid lines

Muggleton, 2016a] could allow higher-order definitions to be
learned, thus allowing disjunctions or recursions to be built in
bottom-up iterations.
Preliminary experiments suggest our method is more effec-
tive for target theories for which the calling diagram has a tree
structure instead of a more complex directed cyclic or acyclic
graph. We intend to conduct a theoretical characterisation of
target theories for which this method is more effective. This
characterisation will be based upon the degree of reuse of in-
vented predicates in the calling diagram and the density of
relevant predicates in the search space. We also intend to
determine theoretically the optimal number of bottom-up it-
erations given a search space.
We have shown a theoretical condition over the number of
predicate symbols introduced which guarantees a sample
complexity gain. We will devise a more discriminative selec-
tion of relevant predicates to guarantee this condition is ful-
filled which would provide a better scalability of this method.
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