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Abstract

A logic-based approach to Machine Learning, called Inductive Logic Programming
(ILP), is outlined, and several applications of ILP are reviewed. These benefit from the
ability of ILP to use background knowledge in the learning process. The results from
a variety of experimental applications of ILP are presented together with a discussion

of the relative advantages of ILP and other Machine Learning approaches.

1 Introduction

Techniques of Machine Learning have been successfully applied to various problems [1, 13].
Most of these applications rely on attribute-based learning, exemplified by the well-known
programs CART [5] and C4.5 [23], which induce decision trees from examples. The advan-
tages of attribute-based learning are: relative simplicity, efficiency, and existence of effective
techniques for handling noisy data. However, attribute-based learning is limited to non-
relational descriptions of objects in the sense that the learned descriptions do not specify
relations among the objects’ parts. Attribute-based learning thus has the following strong

limitations:
e the background knowledge can be expressed in rather limited form,

e the lack of relations makes the concept description language inappropriate for some

domains.

Examples of such domains are presented in this paper.
An attempt to overcome the limitations of attribute-based learning has led to a number

of recent development of several programs which learn at the level of first-order predicate



logic. These include FOIL [22], Golem [16], LINUS [14] and Progol [24]. This has led to the
inception of a new area of Machine Learning called Inductive Logic Programming [17] (for
recent developments see [18, 15, 20]). ILP is characterised by its lock-step development of
theory, implementations and applications.

The learning problem in ILP is normally stated as follows: given background knowledge
B, expressed as a set of predicate definitions, positive examples E and negative examples

E~, an ILP system will construct a logic formula H such that:

1. all the examples in E™ can be logically derived from B A H, and

2. no negative example in £~ can be logically derived from B A H.

Typically for ILP systems B, H, ET and E~ will each be logic programs. B A H is simply
the logic program B extended by the logic program H. The use of Prolog throughout
allows for a highly versatile representation language for all constituents of the problem.
This versatility is reflected in the wide variety of ILP applications. ILP differs from other
machine learning approaches owing to its insitence on a particular representation language.
This has advantages in integrating techniques and theory with those inherited from the Logic
Programming school.

One of the main advantage of ILP over attribute-based learning is that it enables the user
to provide domain-specific background knowledge to be used in learning. The use of back-
ground knowledge enables the user both to develop a suitable problem representation and to
introduce problem-specific constraints into the learning process. By contrast attribute-based
learners typically learn more or less from scratch. So in ILP, if the problem is to learn to
distinguish cyclic from acyclic graphs, the graphs can be introduced by representing their
edges as background knowledge. In addition a recursive definition of the notion of a path
within a graph can be provided. If the problem is to learn about properties of chemical
compounds, the molecular structures can be introduced as background knowledge in terms
of the atoms and bonds between them. If the task is to automatically construct a model of
a physical system from the observed behaviours, mathematical apparatus that is considered
useful for the modelling domain is included in the background knowledge. Application of
ILP involves development of a good representation of the examples together with relevant
background knowledge. A general purpose ILP system is then applied.

The ILP framework can also be applied to automatic program synthesis from examples
as follows. The existing, known predicates are introduced to a general ILP system as back-

ground knowledge. The target program is specified by examples of its input/output vectors.
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A common ILP exercise of this kind is the induction of the quick-sort program from ex-
amples, saying for instance that the list [4,1,2] sorts into [1,2,4]. Suitable background
knowledge contains the definition of the predicates for list concatenation, and for partitioning
of a list, with respect to some value, into the lists of “small” and “big” elements. Using this
background knowledge and some ten examples and counter examples, a typical ILP system
will induce the known Prolog program for quick-sort in a few seconds of CPU time.

In the rest of this paper we describe selected applications of ILP. We chose those ap-
plications that specifically benefit from the ILP’s predicate logic descriptions, and from the
background facility in ILP.

2 Finite Element Mesh Design

Finite element (FE) methods are used extensively by engineers and modelling scientists to
analyse stresses in physical structures. These structures are represented quantitatively as
finite collections of elements. The deformation of each element is computed using linear
algebraic equations. Finite element methods require that the objects being modelled are
partitioned into a finite number of elements, resulting in a finite element mesh (Figure 1).
In order to design a numerical model of a physical structure it is necessary to decide the
appropriate resolution of the mesh. Considerable expertise is required in choosing these
resolution values. Too fine a mesh leads to unnecessary computational overheads when
executing the model. Too coarse a mesh produces intolerable approximation errors.

Normally some regions of the object require a denser mesh whereas in other regions
a coarser mesh still suffices for good approximation. There is no known general method
that would enable automatic determination of optimal, or even reasonably good meshes.
However, many examples of successful meshes for particular objects have been accumulated
in the practice of FE computations. These meshes can be used as sources of examples for
learning about the construction of good meshes.

In general the mesh depends on the geometric properties of the object, the forces acting
on it, and the relations between different components of the object. The mesh density in
a region of the object depends also on the adjacent regions. Because of these relational
dependences, the ILP approach most naturally applies to the mesh design problem.

In the application of ILP to this problem [8], an object to be partitioned is represented as
(1) a set of edges, (2) the properties of the edges, and (3) relations among the edges. These

properties and relations are represented as part of background knowledge by predicates, such



Figure 1: Partition of an object into a finite element mesh.




as: short (Edge), loaded(Edge), not_loaded(Edge), two_side _fixed(Edge),
neighbour_xy(Edgel,Edge2), etc. In experiments to learn a characterization of the density
of a mesh in terms of these relations, ten meshes known to be numerically adequate have been
used as sources of examples for learning. The target relation to be learned is: mesh(Edge,N)
where Edge is the name of an edge in the structure, and N is the recommended number of finite
elements along this edge. The available meshes comprise several hundreds of edges. Each
edge is used as an example for learning, and typically some additional positive examples are
derived from the meshes. The typical number of examples is between 300 and 600. Negative
examples are generated by a form of closed-world assumption which gives rise to several
thousands of negative examples.

Several relational learning algorithms were tried on this data including Golem [16], LINUS
[14], FOIL [22] and CLAUDIEN [7]. The resulting set of rules were of interest to expert users
of the finite element methods. According to their comments, these rules reveal interesting
relational dependences. Here we give an interesting example of such a rule (in Prolog syntax

as output by Golem, except that the variables were mnemonically renamed).

mesh( Edge, 7) :-
usual_length( Edge),
neighbour_xy( Edge, EdgeY),
two_side_fixed( EdgeY),
neighbour_zx( EdgeZ, Edge),
not_loaded( EdgeZ).

This rule says that partitioning Edge into 7 elements is appropriate if Edge has “usual
length”, and has a neighbour EdgeY in the xy-plane so that EdgeY is fixed at both ends,
and Edge has another neighbour EdgeZ in the xz-plane so that EdgeZ is not loaded. The

following recursive rule was also generated by Golem.

mesh( Edge, N) :-
equal( Edge, Edge2),
mesh( Edge2, N).

This rule is interesting as it expresses, by recursion, a recurrent pattern in the structure.
The rule observes that an edge’s partition can be determined by looking for an edge of the
same length and shape positioned symmetrically in the same object. In other words, this can

be viewed as Golem’s discovery that an edge may inherit a suitable partition from similar



edges in the structure. Of course, for this rule to be computationally useful, at least some
of the equivalent edges must have its partition determined by some other rule.

The accuracy of the induced rule sets was investigated in detail in [8]. One method for
estimating accuracy is cross-validation whereby a subset, say 90%, of all the available exam-
ples (that is edges) are used for learning, and the remaining examples are used for testing.
Using this method, the test set accuracy of the rules induced by Golem was (on average)
found to be as follows: the rules suggested correct partition of an edge into finite elements
in 78% of all test cases, incorrect in 2% of the cases, and 20% of the test edges remained un-
decided (not covered by the induced clauses). Although the proportion of undecided edges
here seems rather high, it is within an acceptable range for the practice of mesh design.
Because of some general local consistency constraints used in mesh generators, many of the

omissions can be automatically recovered.

3 Predicting the mutagenicity of chemical compounds

The construction of new scientific knowledge from real-world data remains an active fo-
cus for machine learning. One such problem is the Structure/Activity Relationships (SAR)
of chemical compounds. This forms the basis of rational drug design. One widely used
method of SAR stems from the work of Hansch [11] and uses regression/discrimination to
predict activity from molecular properties such as hydrophobicity, sigma effect, molar reflec-
tivity and LUMO (the energy of the Lowest Unoccupied Molecular Orbital). This and many
other traditional approaches are limited in their representation of molecular connectivity and
structure. They take into account the global attributes of a molecule, but do not comprehen-
sively consider the structural relationships in the molecule. Thus some possibly important
information, comprised as patterns in the molecular structure, may remain unexploited.
The ILP approach allows, however, that the complete structural information is taken
into account. An ILP system Progol has been applied to the problem of identifying Ames
test mutagenicity within a series of heteroaromatic nitro compounds [21, 24]. Hansch and
coworkers have studied 230 compounds using classical regression [6]. For 188 compounds,
they successfully obtained a linear regression function using hydrophobicity, LUMO and
two hand-crafted binary attributes indicative of some structural properties. This regression
formula predicts high mutagenicity with very acceptable accuracy. However the remaining
42 compounds could not be successfully modelled by regression and no structural principles

were proposed. This subset of 42 compounds will be therefore referred to as “regression



unfriendly”. Progol was applied to this mutagenicity data using the split of the compounds
into those with high mutagenicity and the rest as suggested by Hansch and coworkers. All the
compounds were represented relationally in terms of atoms, bonds and their partial charge.
This information was automatically generated by the modelling program QUANTAT™ and
was represented as about 18300 Prolog facts (unit Horn clauses) for the entire set of 230
compounds. For the 188 compounds found to be amenable to regression, the additional
Hansch attributes of LUMO and hydrophobicity were also provided. All this was supplied
to Progol as background knowledge for learning. For these compounds, Progol constructed
the following theory. A compound is highly mutagenic if it has (1) a LUMO value < -1.937;
or (2) a LUMO value < -1.570 and a carbon atom merging six-membered aromatic rings; or
(3) a LUMO value < -1.176 and an aryl-aryl bond between benzene rings; or (4) an aliphatic
carbon with partial charge < -0.022. The theory has an estimated accuracy of 89%. This
matches the accuracy of both the regression analysis of Hansch and coworkers, and a more
recent effort using neural networks [26]. It should be noted, however, that Progol’s theory
is easier to comprehend and was generated automatically, without access to any structural
indicator variables hand-crafted by experts.

The advantage of ILP, however, became particularly clear on the remaining subset of

]

the 42 “regression unfriendly”’ compounds. For these, Progol derived a single rule with an
accuracy of 88% estimated from a leave-one-out validation (Figure 2). This is significant at
P < 0.001. In contrast, linear regression and linear discrimination on the parameters used
by Hansch and coworkers yield theories with accuracies estimated at 69% and 62% which
are no better than random guesses supplied with the default accuracy of 69%. Perhaps even
more important than the predictive accuracy, Progol’s rule provides the new chemical insight
that the presence of a five-membered aromatic carbon ring with a nitrogen atom linked by a
single bond followed by a double bond indicates mutagenicity. Progol has therefore identified

a new structural feature that is an alert for mutagenicity.

4 Some other applications of ILP

Biological clasification of river water quality. River water quality can be monitored
and assessed by observing various biologocal species present in the river. In particular,
the river-bed macro-invertebrates are considered to be suitable indicators of the quality of
water. Different species have different sensitivity to pollutants, and therefore the structure

of the macro-invertebrate community in a river is well correlated with the degree and type



of pollution. Dzeroski et al. [9] used ILP to analyse the relation between the samples
of macro-invertebrates and the quality class of water. For learning, they used 292 field
samples of benthic communities taken from British Midlands rivers, classified by an expert
river ecologist into five water quality classes. They constructed a relational representation
of these samples and used the ILP systems Golem [16] and CLAUDIEN [7] for inducing
logic clauses from the data. The induced clauses were judged by experts to be intuitively
appealing and largely consistent with their knowedge. In particular, the experts appreciated
the symbolic explicitness of the generated descriptions. They considered this as a major
advantage over neural net learning that was also applied to the same data.

Biomolecular modelling. ILP applications in biomolecular modelling aim to improve
the understanding of the inter-relationships of chemical formula, three-dimensional struc-
ture, and function of molecules of biological importance. An overview of such applications
of ILP can be found in [25]. These ILP applications involved applying Golem [16] to protein
secondary structure prediction [19], prediction of 3-sheet topology and qualitatively mod-
elling the structure activity relationship (QSAR) of a series of drugs [12]. For secondary
structure prediction Golem yielded predictive accuracies well in excess of any other contem-
porary approach. In the case of QSAR predictive accuracies were not significantly higher
than those produced by linear regression. However, in all three studies Golem discovered
rules that provided insight into the stereochemistry of the system. Statistical techniques and
neural networks do not do so, and are thus highly impaired for scientific discovery problems.

Inducing program invariants with ILP. In formally proving the correctness of pro-
cedural programs, one needs to find suitable conditions that always hold at given points in
the program. Such a precondition has to be sufficiently strong to imply the postcondition
of the program. Of particular interest is the problem of finding suitable conditions that are
true inside program loops, called loop invariants. In general, the construction of loop invari-
ants is considered difficult, and is usually done simply by guessing. Bratko and Grobelnik
[3] explored the idea that ILP techniques can be used for automatically constructing loop
invariants. A program that is to be proved correct can be executed, and the resulting execu-
tion traces can be used as learning examples for an ILP system. The states of the program
variables at a given point in the program represent positive examples for the condition asso-
ciated with that point in the program. Negative examples can be generated by employing a
kind of “controlled closed-world assumption”. In [3] suitable loop invariants were straight-
forwardly induced for simple programs that are used in typical correctness proof exercises.

The automatic induction of an invariant for a parallel program was also demonstrated. The



scaling up of this approach to larger programs has not been investigated yet.

Data refinement in program design. In program construction from higher order
specification, functions in the specification language (higher level) are to be implemented
in the target language (lower level). Thereby abstract data types at the higher level are to
be refined into concrete data types at the target language level. For example, sets can be
reified into lists. In [3] this refinement problem is formulated in the ILP framework. As an
illustration, the general ILP program Markus [10] was used to implement by induction the
set union operation from abstract, high level specification.

Innovative design from first principles. Bratko [2] formulated an approach to inno-
vative design as an ILP problem. The design process is viewed as the process of structuring
available elementary components in such a way that they together realize some specified tar-
get behaviour. The approach addresses the design from “first principles” in the sense that
the functional behaviour of an artifact is derived from the physics of the elementary compo-
nents available to the designer. The approach involves: specification of the target artifact
by examples of its intended behaviour, qualitative physics definition of the behaviour of the
elementary components available, and ILP as the mechanism for conceptually constructing
the device. As an illustration, the Markus program [10] was applied to constructing simple
electric circuits from examples of their intended behaviour and the qualitative physics of
some simple electrical components.

Qualitative system identification A fundamental problem in the theory of dynamic
systems is system identification. This can be defined as follows: given examples of the
behavior of a dynamic system, find a model that explains these examples. Motivated by
the hypothesis that it should be easier to learn qualitative than quantitative models, Bratko
et al. [4] formulated the qualitative identification problem as an ILP problem. In their
work, models are sets of Qualitative Differential Equations (QDEs) that constrain the values
of the system variables. A Prolog implementation of QDE constraints normally used in
qualitative physics is provided as background knowledge for learning. Example behaviors
of the modelled system are used as positive training examples, while negative examples are
generated as near misses. Models of simple dynamical systems have been induced using

general ILP systems.



5 Conclusion

ILP has been applied to difficult, industrially relevant and not yet satisfactorily solved prob-
lems. In the main applications described, the results obtained with ILP using real industrial
or environmental data are better than with any other known approach, with or without ML.
In many of these applications, the users — domain specialists — are becoming increasingly
interested in the understandability, or meaningfulness, of the induced concept descriptions.
This helps them to obtain new insights in their problem domains.

In all applications, general purpose ILP systems were used. Accordingly, a typical ILP
application amounts to designing a good relational representation of the problem, including
the definition of relevant background knowledge. A major strength of ILP systems, compared
with other Machine Learning approaches, is that they accept background knowledge in the
form as general as Prolog programs. A major obstacle to more effective use of ILP at present
is the relative inefficiency of the existing ILP systems, and their rather limited facilities for
handling numerical data.
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Figure 2: “Regression unfriendly” compounds and the structural feature found by Progol.
(A) Some of the compounds found not to be amenable to analysis by statistical methods of
regression or discrimination [6]. No structural rules/alerts have previously been proposed for
mutagenesis in these compounds. (B) Progol identified the alert of a double bond conjugated
to a five membered aromatic ring via a carbon atom. The atoms U-Z do not necessarily
have to be carbon atoms. This is the most compressive explanation for mutagensis for the 42
compounds possible within the hypothesis language used by Progol. The alert is present in
the two high mutagenic compounds shown in (A) and not present in the two low mutagenic

compounds.
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