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Abstract

This paper is an overview of scientific knowledge discovery tasks carried
out using Inductive Logic Programming (ILP). The results reviewed have
been published in some of the top general science journals, and as such are
among the strongest examples of semi-automated scientific discovery in
the Artificial Intelligence literature. Space restrictions do not permit this
paper to cover other discovery areas of ILP. These include the discovery of
linguistic features in natural language data and the discovery of patterns
in traffic data.

1 Introduction

The pharmaceutical industry is increasingly overwhelmed by large-volume-data.
This is generated both internally as a side-effect of screening tests and combina-
torial chemistry, as well as externally from sources such as the human genome
project. On the other hand the industry is predominantly knowledge-driven.
For instance, knowledge is required within computational chemistry for phar-
macophore identification, as well as for determining biological function using
sequence analysis.

From a computer science point of view, the knowledge requirements within
the industry give higher emphasis to “knowing that” (declarative or descriptive
knowledge) rather than “knowing how” (procedural or prescriptive knowledge).
Mathematical logic has always been the preferred representation for declarative
knowledge and thus knowledge discovery techniques are required which generate
logical formulae from data. Inductive Logic Programming (ILP) [8, 1] provides
such an approach.
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Figure 1: Positive and negative examples of a “4-helical-up-and-down-bundle”.

ILP algorithms take examples E of a concept (such as a protein family) to-
gether with background knowledge B (such as a definition of molecular dynamics)
and construct a hypothesis H which explains E in terms of B. For example, in the
protein fold domains (Section 2.2.2), E' might consist of descriptions of molecules
separated into positive and negative examples of a particular fold (overall pro-
tein shape). This is exemplified in Figure 1 for the fold “4-helical-up-and-down-
bundle”. A possible hypothesis H describing this class of proteins is shown
in Figure 2. The hypothesis is a definite clause consisting of a head (fold(..,..))
and a body (the conjunction length(..), .. helix(..)). In this case “fold” is the
predicate involved in the examples and hypothesis, while “length”, “position”,

fold("Four-helical up-and-down bundle’ P) :-
helix(P,H1),
length(H1,hi),
position(P,H1,Pos),
interval(1< Pos < 3),
adjacent(P,H1,H2),
helix(P,H2).

Figure 2: An hypothesised definite clause for 4-helical-up-and-down-bundles



etc. are defined by the background knowledge. A logic program is simply a set
of such definite clauses. Each of F, B and H are logic programs.

In the context of knowledge discovery a distinct advantage of ILP over black
box techniques, such as neural networks, is that a hypotheses such as that shown
in Figure 2 can, in a straightforward manner, be automatically translated into
the following piece of English text.

The protein P has fold class “Four-helical up-and-down bundle” if it
contains a long helix H1 at a secondary structure position between 1
and 3, and H1 is followed by a second helix H2.

Such explicit hypotheses can be used within the familiar human scientific discov-
ery cycle of debate, criticism and refutation.

2 Discovery of biological function

Biological functions are regulated by the docking of small molecules (ligands)
with sites on large molecules (proteins). Drugs, such as beta-blockers, mimic
natural small molecules, such as adrenaline. Effectiveness of drugs depends on
the correct shape and charge distribution of ligands. Thus beta-blockers block
the binding of adrenaline, and so stop over-stimulation of heart muscle in patients
prone to heart attacks.

Results on scientific discovery applications of ILP are separated below between
those related to small molecules (such as ligands) and those related to proteins.

2.1 Small molecules
2.1.1 Structure-activity prediction

The majority of pharmaceutical R&D is based on finding slightly improved vari-
ants of patented active drugs (292 out of 348 US drugs introduced between 1981
and 1988 were of this kind). This involves laboratories of chemists synthesis-
ing and testing hundreds of compounds almost at random. The average cost
of developing a single new drug is $230 million. In [3] it was shown that ILP
system Golem [6] was capable of constructing rules which accurately predict the
activity of untried drugs. Rules were constructed from examples of drugs with
known medicinal activity. The accuracy of the rules was found to be slightly
higher than traditional statistical methods. More importantly the easily under-
standable rules provided insights which were directly comparable to the relevant
literature concerning the binding site of dihydrofolate reductase.



2.1.2 Mutagenesis

In [4, 10] ILP system Progol [5] was used to predict the mutagenicity of chemical
compounds taken from a previous study in which linear regression had been
applied. Progol’s predictive accuracy was equivalent to regression on the main
set of 188 compounds and significantly higher (85.7% as opposed to 66.7%) on 44
compounds which had been discarded by the previous authors as unpredictable
using regression. Progol’s single clause solution for the 44 compounds was judged
by the domain experts to be a new structural alert for mutagenesis.

2.1.3 Pharmacophores

In a series of “blind tests” in collaboration with the pharmaceutical company
Pfizer UK, Progol was shown [2] capable of re-discovering a 3D description of the
binding sites (or pharmacophores) of ACE inhibitors (a hypertension drug) and
an HIV-protease inhibitor (an anti-AIDS drug).

2.1.4 Carcinogenicity

Last year Progol was entered into a world-wide carcinogenicity prediction com-
petition run by the National Toxicology Program (NTP) in the USA. Progol was
trained on around 300 available compounds, and made use of its earlier rules
relating to mutagenicity. In the first round of the competition Progol produced
the highest predictive accuracy of any automatic system entered [9] (see Figure
3).

2.2 Proteins
2.2.1 Protein secondary structure prediction.

In [7] Golem was applied to one of the hardest open problems in molecular biol-
ogy. The problem is as follows: given a sequence of amino acid residues, predict
the placement of the main three dimensional sub-structures of the protein. The
problem is of great interest to pharmaceutical companies involved with drug de-
sign. For this reason, over the last 20 years many attempts have been made to
apply methods ranging from statistical regression to decision tree and neural net
learning to this problem. Published accuracy results for the general prediction
problem have ranged between 50 and 60%, very close to majority-class predic-
tion rates. In our investigation we found the ability to make use of background
knowledge from molecular biology, together with the ability to describe structural
relations boosted the predictivity for a restricted sub-problem to around 80% on
an independently chosen test set.



Method Type Accuracy P
Ashbyf Chemist 0.77 0.29
Progol ILP 0.72 1.00
RASH{ Biological potency analysis 0.72 0.39
TIPTt Propositional ML 0.67 0.11
Bakale Chemical reactivity analysis 0.63 0.09
Benigni Expert-guided regression 0.62 0.02
DEREK Expert system 0.57 0.02
TOPKAT Statistical discrimination 0.54 0.03
CASE Statistical correlation analysis 0.54 < 0.01
COMPACT | Molecular modelling 0.54 0.01
Default Majority class 0.51 0.01

Figure 3: Comparative accuracies on the first round of the Predictive Toxicol-
ogy Evaluation (PTE-1). Here P represents the binomial probability that Progol
and the corresponding toxicity prediction method classify the same proportion of
examples correctly. The “Default” method predicts all compounds to be carcino-
genic. Methods marked with a f have access to short-term in vivo rodent tests
that were unavailable to other methods. Ashby and RASH also involve some
subjective evaluation to decide on structural alerts.

2.2.2 Discovery of fold descriptions

Protein shape is usually decribed at various levels of abstraction. At the lower
levels each family of proteins contains members with high sequence similarity. At
the most abstract level folds describe proteins which have similar overall shape
but are very different at the sequence level. The lack of understanding of shape
determination has made protein fold prediction particularly hard. However, it
is intriguing that although there are around 300 known folds, around half of
all known proteins are member of the 20 most populated folds. In [12] Progol
was applied to discover rules governing these 20 most populated protein folds.
Average in class cross-validated prediction was around 70% and many of the rules
were judged to be good characterisations of the fold classes by Michael Sternberg,
a world-class protein prediction expert at the Imperial Cancer Research Fund in
London.

3 Conclusion

In his statement of the importance of this line of research to the Royal Society
[11] Sternberg emphasised the aspect of joint human-computer collaboration in



scientific discoveries. Science is an activity of human societies. It is our belief
that computer-based scientific discovery must support strong integration into
existing the social environment of human scientific communities. The discovered
knowledge must add to and build on existing science. The author believes that
the ability to incorporate background knowledge and re-use learned knowledge
together with the comprehensibility of the hypotheses, have marked out ILP as
a particularly effective approach for scientific knowledge discovery.
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