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Abstract
Increasingly, experimental data on biological systems are obtained from several sources and computational
approaches are required to integrate this information and derive models for the function of the system. Here,
we demonstrate the power of a logic-based machine learning approach to propose hypotheses for gene
function integrating information from two diverse experimental approaches. Specifically, we use inductive
logic programming that automatically proposes hypotheses explaining the empirical data with respect to
logically encoded background knowledge. We study the capsular polysaccharide biosynthetic pathway of the
major human gastrointestinal pathogen Campylobacter jejuni. We consider several key steps in the formation
of capsular polysaccharide consisting of 15 genes of which 8 have assigned function, and we explore the
extent to which functions can be hypothesised for the remaining 7. Two sources of experimental data provide
the information for learning—the results of knockout experiments on the genes involved in capsule formation
and the absence/presence of capsule genes in a multitude of strains of different serotypes. The machine
learning uses the pathway structure as background knowledge. We propose assignments of specific genes to
five previously unassigned reaction steps. For four of these steps, there was an unambiguous optimal
assignment of gene to reaction, and to the fifth, there were three candidate genes. Several of these
assignments were consistent with additional experimental results. We therefore show that the logic-based
methodology provides a robust strategy to integrate results from different experimental approaches and
propose hypotheses for the behaviour of a biological system.

© 2012 Elsevier Ltd. Open access under CC BY license. 
Introduction

Biological systems are made up of very large
numbers of different components interacting at
various scales. Systems biology provides a frame-
work for integrating biological information from a
variety of experimental sources to support analysis
0022-2836 © 2012 Elsevier Ltd. Open access under CC BY license. 
and prediction.1,2 A major challenge in systems
biology modelling is to develop techniques that can
readily and robustly integrate information from diverse
sources, often including the results of high-throughput
experiments. The scale and incompleteness of exist-
ing biological data sources has made machine
learning a common approach to the construction of
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systems biology models (e.g., Refs. 3–9). A logic-
based representation provides a rich and flexible
approach for integrating data, models and
hypotheses.5,6,10 In this paper, we investigate wheth-
er an incomplete biological network description can be
automatically extended using both gene knockout and
multi-strain microarray data within the context of a
substantially incomplete network structure (see
Fig. 1a). The approach employs a logic-based
machine learning method to integrate this diverse
information. This enables us to generate hypotheses
assigning function to genes involved in the biosyn-
thesis of the capsular polysaccharide (CPS) of the
common food-borne pathogen,Campylobacter jejuni.
A wide variety of approaches have been employed

to assign protein function from system-wide experi-
mental data (see, e.g., review11). Many approaches
aim to perform genome-wide predictions and integrate
different sources of data using, for example, neural
networks,4 Bayesian statistical analysis,3 flux balance
analysis with Boolean logic12 and machine learnt data
driven scoring schemes.8 Logic-basedmethods5,6,9,10

offer a number of major advantages. Logic-based
statements can express a concept such as that a
protein P1 converts compound A into B and that P2
convertsB intoC, and from this, it canbe inferred thatA
can be converted into C, that is, the transitivity of
conversion. Furthermore, this and other properties and
constraints can be expressed using general defini-
tions, which can then be applied to all instances in the
network. This supports compact, hierarchically defined
descriptions of features that are central to biological
Fig. 1. The logic-based machine learning approach to hypot
C. jejuni. (a) Overview of machine learning. The background kn
basis for abductive inference of novel hypothetical gene func
single-knockout glycan phenotypes. (b) Simple system for abd
Gene functions, represented by instances of the codes predi
background knowledge of reactions, with the aim of explainin
predicate. Capital letters G, R and S represent classes of ob
specific instances.
networks, such as inhibition,6,9 activation, compart-
mentalisation and temporal and spatial distribution.
Additionally, there are well-developed methodologies
for learning logic-based descriptions, in particular,
inductive logic programming (ILP) (see below).13

C. jejuni is the leading bacterial cause of human
gastroenteritis, and its cell surface displays at least four
types of glycostructures, which play roles in patho-
genesis,14 avoiding bacteriophage predation15 and
interaction with the host immune system. One of these
glycostructures is the CPS that is found on the surface
of numerous bacterial species involved in diverse roles
ranging from prevention of desiccation to immune
evasion and pathogenesis. The original full genome
sequence16,17 ofC. jejuni strainNCTC11168 identified
a locus of 35 genes implicated in the synthesis and
export of CPS, whose glycan structure has been fully
determined.18,19 Here, we focus on several key
biosynthetic steps in the formation of CPS and aim to
predict function for the several unassigned gene
products using abductive machine learning.
Two sources of experimental information were

used in gene assignment. Of the 35 CPS genes, 28
representing the capsule biosynthesis region and
excluding well-characterised export genes (kpsS, C,
F, D, E, T, M) were systematically knocked out and
the capsule structure was examined by high-
resolution magic angle spinning (HR-MAS) NMR
(Table 1 and Figs. 1–3). The second source of
information is the absence or presence of the CPS
genes obtained by DNA microarray analysis of 270
diverse C. jejuni strains (Supplementary Material).
hesise functions for genes in the CPS synthetic pathway of
owledge, consisting of known facts and rules, is used as a
tions that might explain the experimental observations of
uctive inference of gene functions in a metabolic network.
cate, are hypothesised by the ILP program, based on the
g observed knockout phenotypes represented by the ko
ject (genes, reactions, etc.) while small letters represent



Table 1. CPS glycan phenotypes for single-knockout C. jejuni mutants assigned by HR-MAS NMR

Gene knockout Phenotype of CPS Functional annotation Reference

Specific gene function modelled as unknown
Cj1416 P1-loss of OMePN OMePN nucleotidyltransferase McNally et al.19

Cj1417 P1-loss of OMePN OMePN biosynthesis McNally et al.19

Cj1418 P1-loss of OMePN OMePN biosynthesis McNally et al.19

Cj1432 P6-loss of CPS Sugar transferase This study
Cj1434 P6-loss of CPS Sugar transferase This study
Cj1438 P6-loss of CPS Sugar transferase This study
Cj1440 P6-loss of CPS Sugar transferase This study
Cj1442 P6-loss of CPS Sugar transferase This study

Specific gene function modelled as known
Cj1421 P2-loss of OMePN on GalfNAc NDP-OMePN transferase McNally et al.19

Cj1422 P3-loss of OMePN on Hep NDP-OMePN transferase McNally et al.19

Cj1423 P4-loss of Hep Heptose guanosyltransferase Karlyshev et al.20

Cj1424 P4-loss of Hep Sedoheptulose isomerase Karlyshev et al.20

Cj1425 P4-loss of Hep Heptose kinase Karlyshev et al.20

Cj1426 P5-loss of 6-OMe on Hep Methyltransferase This study
Cj1427 P4-loss of Hep GDP-heptose epimerase This study
Cj1428 P4-loss of Hep GDP-heptose epimerase St Michael et al.18

Cj1430 P4-loss of Hep GDP-heptose epimerase This study
Cj1431 P4-loss of Hep GDP-heptosyltransferase Karlyshev et al.20

Cj1439 P6-loss of CPS UDP-Gal/GalNac pyranose mutase St Michael et al.18

Poulin et al.21

Cj1441 P6-loss of CPS UDP-GlcA dehydrogenase St Michael et al.18 and this study

The wild type and knockout mutant glycan phenotypes (P1 to P6) for the CPS repeat unit are described as well as being shown
schematically in Fig. 2. Functional assignments were made for the genes involved in capsule biosynthesis on the basis of the
publications listed.
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Results

Machine learning approach

Our machine learning approach uses logic state-
ments (encoded in the computer language Prolog23)
Fig. 2. Schematic diagram of the glycan phenotypes descri
unit phenotypes (P1 to P6) are shown to highlight the loss of s
gene mutations. In the glycan structure, shading represents CP
are non-sugar modifications. OMePN, phosphoramidate; NGro
in the furanose configuration; GlcA, glucuronic acid; 6-OMe, 6
as the basis for abductive reasoning. Each abductive
step takes as input experimental observations and
background knowledge and produces a hypothesis
as output. We illustrate the process of abduction
using a simplification of our full model consisting of
glycans, genes and reactions (Fig. 1b). The figure
shows the categories of logic statements with their
bed in Table 1. The wild type and knockout mutant repeat
pecific residues from the wild-type structure as a result of
S sugar residues that form the repeat unit and clear ovals
, N-glycerol; Rib, ribose; GalfNAc, N-acetylgalactosamine
-O-Methyl; Hep, heptose, 3-OMe, 3-O-methyl.
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Fig. 3 (legend on next page)
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Fig. 4. CE-ESMS and precursor
ion scanning of m/z 424 for (a)
Cj1430 and (b) Cj1427. The pres-
ence of GDP-heptose (m/z 634) in
these two lysates was confirmed
by CE-ES mass spectrometry
shown in (c).
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corresponding Prolog clauses. The experimental
observations take the form: s is the largest glycan
when gene g is knocked out. There are two
components to the background knowledge—known
facts and general rules. The facts are of the form: (i)
glycan p can be polymerised in one step from glycan
s and (ii) reaction r polymerises glycan s to glycan p.
The general rule in the background knowledge is: S
is the largest glycan when gene G is knocked out if
glycan P can be polymerised in one step from glycan
S and reaction R polymerises glycan S to glycan P
and the product of gene G catalyses reaction R. (In
Prolog, lower case letters s, g, p and r are used for
specific objects and capitals S, G, P and R are used
for variables.)
The abductive hypothesis is automatically gener-

ated using the Progol ILP program (seeMaterials and
Methods). This is achieved by matching the obser-
vations and known facts to the general rule in order to
extract a hypothesis that explains the observations.
In this example, abduction will generate the hypoth-
esis that the product of gene g catalyses reaction r.
In our full model, many choices for matching can

be made, leading to a variety of alternative hypoth-
eses, and a preference is imposed by Progol using
an information-theoretic criterion known as com-
pression. Here, compression=o−n−h, where o is
the number of observations correctly explained by
the hypothesis, n is the number incorrectly explained
and h is the length of the hypothesis (in this study,
always 1 because the hypothesis is a single fact).
Fig. 3. HR-MAS [1H]NMR analyses of the CPS of C. jejun
Cj1426; (c) Cj1427; (d) Cj1430; (e) Cj1432; (f) Cj1434; (g) Cj143
of the CPS correspond to (A) 3,6-di-O-methyl-D-glycero-α-
amidated predominantly with 2-amino-2-deoxyglycerol and (D)
labelled proton resonances include the phase variable O-me
(MeOPN) modifications linked to heptose and GalfNAc. In the
oligosaccharides derived from theN-glycan pathway are visible
the repeating subunit of the capsule of 11168 H.
Learning from gene knockout information

The experimental observations are the capsule
phenotypes of gene knockout mutants using HR-
MAS NMR.19 Known facts describe the reaction
steps based on the known pathways for CPS
syntheses. In addition, gene products whose func-
tions have been determined are associated to the
appropriate reaction step. Other known facts that
were used are reported in Supplementary Material.
Manually, we provide general rules describing
principles of the mechanism of the synthetic path-
way. In this study, to explore the power of this logic-
based learning, we employ the assumption that if a
gene is knocked out then the precursor of that
particular reaction can be identified experimentally
(as seen in Fig. 4). This is only a working assumption
as feedback regulation in biosynthetic pathways
might result in the precursor not being accumulated.
However, the results in Fig. 4 confirm that CPS
heptose biosynthesis does indeed utilise a GDP-Hep
intermediate, aswe proposed,24 and further supports
the modelling and HR-MAS NMR results that Cj1427
and Cj1430 are involved in Hep biosynthesis. HR-
MAS NMR analysis together with sequencing also
confirmed that Cj1426 is responsible for adding the
phase variable 6-O-Me residue onto Hep (Fig. 3b).
We focus on the central part of the synthesis

pathway leading to the formation of the CPS and
consider 15 reactions or sequences of reaction
steps (Fig. 5). In our modelling, specific enzymes
i 11168 H and several mutants. (a) C. jejuni 11168 H; (b)
8; (h) Cj1440; (i) Cj1441; (j) Cj1442. The anomeric protons
L-glucoheptose, (B) β-D-ribose, (C) α-D-glucuronic acid
N-acetylgalactosamine in the furanose configuration. Other
thyl groups linked to heptose and the phosphoramidate
acapsular mutants, the anomeric resonances from the free
and labelled.22 The top right corner depicts the structure of

image of Fig.�4


Fig. 5. The CPS synthesis pathway of C. jejuni showing assigned gene functions. The pathway is shown in a
representation based on Systems Biology Graphical Notation. The CPS structure is represented in bold, its non-sugar
modifications being shown as white ellipses. Transformations are shown as small white circles. Precursors are
represented as medium circles with peach fill. Chemical reactions are shown as broken lines, and enzymatic steps are
shown as continuous lines. Genes are shown as green boxes, with sets of genes involved in a path shown as a green
accordion. Where genes in a path are known, the final gene number is used to represent the chain, as in the precursor
paths for Hep,24 GalfNAc21,25 and GlcA18 and this study (involvement of 1427 and 1430 in Hep biosynthesis and Cj1426 in
6-OMe transfer). Genes of unknown identity are surrounded in red and labelled with a question mark. ?A, ribofuranose
biosynthesis pathway; ?B, ribosyltransferase; ?C, N-acetyl galactofuranosamine transferase; ?D, glucuronic acid
transferase; ?E, N-glycerol biosynthesis pathway; ?F, ethanolamine biosynthesis pathway; ?G, O-methyl donor
biosynthesis pathway; ?H, phosphoramidate biosynthesis pathway.
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were assigned to 7 of the 15 reactions and the
remaining 8 reactions are considered as unknown
(indicated by ?A to ?H) (see Table 1 and Fig. 5). The
modelling challenge is to hypothesise which of the un-
annotated enzymes perform these steps. Reactions
at the perimeter of the pathway (?A,?E,?F,?G,?H)
could be a series of enzyme reactions, and thus,
several genes can be assigned. The presence of
these chains of reactions is encoded in the back-
ground knowledge. Of these eight, Cj1416, Cj1417
and Cj1418 were known to be involved in reaction ?H
from the HR-MAS NMR results19 showing that
mutation of any of the genes Cj1416–Cj1418c leads
to a capsule that lacksOMePN. Thus, Cj1416, Cj1417
and Cj1418 acted as a test of the modelling.
Table 2 (column 2) gives the results of learning

from the knockout data. Certain reactions were not
assigned to any gene (Cj1419, Cj1420, Cj1429,
Cj1433 and Cj1436) as there were no relevant
knockout observations. The reaction step denoted
?H is assigned to genes Cj1416, Cj1417 and
Cj1418. However, each of the remaining reactions
was ambiguously assigned to several genes
(Cj1432, Cj1434, Cj1438, Cj1440 and Cj1442). The
compression values (listed after the gene name in
Table 2) are the same and equal to 1, that is, the
number of observable knockout information for each
gene. Compression provides a metric of confidence
in an assignment (higher compression indicating
higher confidence). All the assignments had the
same compression value; thus, no discrimination
was possible between the corresponding gene
product assignments. Despite these unresolved
ambiguities, the machine learning still was able to



Table 2. The five transformations for which gene assignments were made (see Fig. 3)

Enzyme reaction (names as in Fig. 3)
Learnt from

knockout data
Learnt from knockout

and strain data
Final assignment based on maximally

compressive selection

?H (phosphoramidate synthesis chain) Cj1416 (1) Cj1416 (1+130) Cj1416 (131)
Cj1417 (1) Cj1417 (1+127) Cj1417 (128)
Cj1418 (1) Cj1418 (1+127) Cj1418 (128)

?D (glucuronic acid transferase) Cj1442 (1) Cj1442 (1+118) Cj1442 (119)
Cj1440 (1) Cj1440 (1+104)
Cj1432 (1) Cj1432 (1+103)
Cj1438 (1) Cj1438 (1+100)
Cj1434 (1) Cj1434 (1+99)

?C (N-acetyl galactofuranosamine transferase) Cj1442 (1) Cj1442 (1+117) Cj1440 (118)
Cj1440 (1) Cj1440 (1+103)
Cj1432 (1) Cj1432 (1+102)
Cj1438 (1) Cj1438 (1+101)
Cj1434 (1) Cj1434 (1+100)

?B (ribosyltransferase) Cj1442 (1) Cj1442 (1+116) Cj1432 (117)
Cj1440 (1) Cj1440 (1+103)
Cj1432 (1) Cj1432 (1+102)
Cj1438 (1) Cj1438 (1+100)
Cj1434 (1) Cj1434 (1+99)

?A (ribose precursor synthesis chain) Cj1432 (1) Cj1432 (1+87) Cj1434 (88)
Cj1434 (1) Cj1434 (1+87) Cj1438 (88)
Cj1438 (1) Cj1438 (1+87)
Cj1440 (1) Cj1440 (1+87)
Cj1442 (1) Cj1442 (1+87)

Column 2 gives the genes assigned using just knockout data with the number in parentheses being the compression. Column 3 gives the
assignment after learning from both knockout and strain data. The compression is given as the compression from the knockout data
followed by the compression from the strain data. The higher the compression, the greater confidence there is in the assignment. Column
4 gives the final assignment based on the progressive selection of genes with maximal compression from column 3. The number in
parentheses is the compression. The table is ordered based on decreasing compression values in the final assignment. The
transformations ?H and ?A each constitute a series of individual reactions, and consequently, several genes are assigned.

Table 3. An illustration of the working assumption that
allows us to make inferences about gene function from the
relationship of gene occurrences in different strains with
the same serotype

Gene Present in strain 1 Present in strain 2 Supports rule

Cj1432 Yes Yes Yes
Cj1433 Yes No No
Cj1434 No Yes No
Cj1435 No No No

192 Gene Function Hypotheses for the C. jejuni Glycome
make assignment for ?H and to exclude several
functions for genes.

Learning from gene knockout and strain data

Recently, whole genome comparison studies using
DNA microarrays revealed the gene content com-
pared to the NCTC 11168 reference of the capsule
locus across a wide variety ofC. jejuni strains24 (data
available as Supplementary Material). Many of the
genes in the CPS loci appear to be conserved
between the same Penner serotype, with the
exception of the export genes that are highly
conserved between all strains. The Penner serotyp-
ing procedure is based on the cross-reaction of
antiserum to similar CPS structures and is used as
the gold standard to distinguish between groups of
strains.20 We therefore explored the possibility of
using strain data to refine our predictions. To use
these data, we developed a working assumption:

if the product of Gene1 synthesises a compound
which is subsequently the substrate of Gene2,
then Gene1 tends to be present in strains with the
same serotype as those expressing Gene2.

The effect of this working assumption is illustrated
in Table 3.
Table 2 (column 3) shows the result of learning
using both the gene knockout data and the absence
or presence of genes fromnatural strain variants. The
final assignment was made by accepting the assign-
ment with the maximum compression; no enzyme is
assigned to more than one reaction. The highest
compression values (i.e., the highest confidence) are
for ?H. Since ?H denotes a series of reaction steps,
all three genes were assigned. Assignments then
proceeded as shown in Table 2. However, Cj1442
had a compression of 119 when assigned to ?D and
118 when assigned to ?C. Thus, there is an
assignment with sub-maximal compression that is
only marginally less confident than the optimal one.
In this sub-maximal assignment, ?D would be
assigned to Cj1440 and ?C to Cj1442. The compres-
sion values for the learning with both knockout and
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strain data are far larger than those from just the
knockout learning because the strain data provide a
large number of additional observations.

Estimation of accuracy of gene function
identification

We studied how well both our knockout-based initial
model and our model extended with strain genetic
information performed over varying degrees of com-
pleteness of the input information (Fig. 6). We
considered the seven reactions where the assignment
of gene products to reactions was known. For each
model, we withheld from the learning framework the
assignment of function to a gene product. We varied
thenumber ofwithheld functions fromall sevendown to
one. The withheld assignments were randomly select-
ed without replacement. Learning was performed and
then we evaluated the percentage of all the withheld
gene assignments that were correctly assigned. This
percentage is referred to as the “identification accura-
cy”. The spreads for the identification accuracy are the
standard error over an ensemble of 10 independent
samples. The accuracy expected by chance, if
w assignments are withheld, is 1/w.
Figure 6 shows that the knockout-based model

substantially boosts the identification accuracy
relative to random. The strain-based extension
further boosts the identification accuracy. The re-
sults of this study depend on the structure of the
network, and different networks with different strain
data will yield different improvements from the two
models over random. Nevertheless, this study pro-
vides evidence that the learning approach is
generating hypotheses that are of value to guide
subsequent biological experiments.
Fig. 6. Evaluation of accuracy of machine learning.
Performance of knockout-based (broken line) and knock-
out+strain-based (continuous line) logical models with
varying degrees of completeness of the input information
(shown on the x-axis) relative to the baseline accuracy
expected by chance (dot/dash). The spreads are standard
error over 10 independent samples.
Discussion and Conclusion

Weexamined the hypothesised enzymatic functions
of the gene products derived from the C. jejuni NCTC
11168 CPS locus in terms of supporting biological
data. The assignments that Cj1416, Cj1417 and
Cj1418 are involved in the series of reactions (denoted
?H) involved in the biosynthesis of the OMePN
modification were known prior to our modelling study.
These NMR results were incorporated in the observa-
tions used for learning, but the assignments of these
three genes to ?H were not forced. Thus, the correct
assignment of these genes confirms that ourmodelling
approach is valid. The NMR study in Ref. 19 revealed
that 70% of C. jejuni strains tested were shown to
express the OMePN modification. A previous study
showed that the Cj1416–Cj1418 genes were detected
in some of these strains (e.g., strain NCTC 11168 that
was used to generate our model, as well as strain 81–
176) and that Cj1416–Cj1418 were missing in certain
strains without the OMePN side groups.24

In the optimal assignment, the transferase of the
backbone GlcA (?D) is assigned to Cj1442c while in
the best suboptimal to Cj1440. Both alternatives are
consistent with the observations that knockout of
either Cj1442 or Cj1440 leads to an acapsular
phenotype. The optimal assignment of the backbone
GalfNAc transferase (?C) is to Cj1440c, while in the
suboptimal assignment, it is to Cj1442. Again, either
assignment is consistent with the knockout data of
an acapsular phenotype.
The transfer of ribose into the CPS backbone (?B)

is assigned to Cj1432. This is consistent with the
Cj1432 knockout being acapsular, since ribose is
also required for capsule biosynthesis. We assign
Cj1434 and Cj1438 as steps in ribose synthesis and
transfer to CPS (?A), while other genes encoding
enzymes for ribose synthesis may be located
elsewhere on the chromosome.
The above discussion raises the question of

whether the assignments could have been made
by manual inspection. A review of the knockout data
suggests that the final assignments in Table 2 could
not have been made by an expert alone, since
mutation of all transferases resulted in an acapsular
phenotype. It is also less likely that a prioritised list of
gene assignments could have been made without a
computational approach when examining the strain
data that had experimental error.
There are several novel aspects of the way in

which the machine learning was adapted to be used
in the study. In the standard setting for ILP, the input
consists of two parts: (1) background knowledge and
(2) observational examples. While the observational
examples are assumed to contain classification
errors, the background knowledge has been as-
sumed, to date, to be correct. Here, we introduce a
new variant of background knowledge that we refer to
as “working assumptions”. The working assumptions

image of Fig.�6
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(see Learning from gene knock-out and strain data)
represent speculative premises that are assumed
true for the purposes of generating hypotheses from
the examples. The use of these extra working
assumptions within the experiments allowed the
inclusion of the strain data as a secondary source.
The compression achieved on this secondary source
was used as a heuristic guide for the hypotheses
chosen. Again, this use of secondary observations is
novel from a machine learning perspective.
It is our contention that the use of working

assumptions and secondary observations follows
common practice among human scientists in settings
of the kinddemonstrated in this paper.Our results also
clearly indicate that the approach can lead to
increased predictive accuracy by allowing other
relevant information involving related biochemistry to
be included. Indeed, in a related study,9 we have used
abduction to infer control points in metabolic networks
from transcriptomic and metabolomic data. In conclu-
sion, this paper has shown that abductive ILP can
encompass and integrate diverse sources of biolog-
ical data in a natural and robust approach. This would
be more difficult to achieve in many other methodol-
ogies currently used for systems biology modelling.
Materials and Methods

Construction of the C. jejuni 11168 mutants

For construction of the Cj1427 and Cj1430 heptose
mutants, PCR fragments containing these genes were
amplified from a C. jejuni 11168 strain lacking the OMePN
groups with the following primer pairs. For the Cj1427
mutant , Cj1427cF918 (5 ′ -AACTTTCATCATTT-
TAAACGCTCTT-3′) and fclR51 (5′-TACAGCATTGGTA-
GAAAACTTACAA-3′) were used. For the creation of the
Cj1430 mutant, primer pairs fclF1023 (5′-CCATTCATA-
CATCATTTTAATACCA-3′) and Cj1431Cr7 (5′-AATT-
CAAAACCTCTCATAATTGCAG-3′) were used. The PCR
products were ligated into pPCR-Script-Amp according to
manufacturer's instructions. A blunt-ended kanamycin
resistance cassette (KmR) from pILL600 was inserted
into the BsaBI restriction site of Cj1427 or the NruI
restriction site for Cj1430. The orientation of the KmR
cassette was determined by sequencing with the ckanB
primer (5′-CCTGGGTTTCAAGCATTAG-3′) using termina-
tor chemistry and AmpliTaq FS cycle polymerase sequenc-
ing kits (Applied Biosystems, Carlsbad, CA) and analysed
on an Applied Biosystems 373 sequencer. The plasmids
were electroporated into C. jejuni 11168 to give the strains
Cj1427 and Cj1430. The KmR transformants were char-
acterised by PCR to confirm a double-crossover event. The
construction of other C. jejuni 11168 mutants was
undertaken as described previously.19 The BamHI frag-
ment containing KmR from pJMK30 was inserted into
unique restriction sites within target gene-containing
fragments from a 2-kb sequencing library from the C. jejuni
NCTC 11168 genome project.16 KmR was inserted in a
nonpolar orientation, and the derivatives were used for
transformation of C. jejuni cells. The mutants were verified
by PCR using KmR and gene-specific primers.

CE-ESMS of the C. jejuni 11168 Cj1427 and Cj1430
cell lysates

Cell lysates from wild type and the isogenic mutants of
C. jejuni 11168 were prepared for metabolomic analysis as
previously described (McNally et al., 2006). These lysates
were subsequently probed for intracellular sugar nucleo-
tide intermediates using capillary electrophoresis coupled
to electrospray mass spectrometry (CE-ESMS) and
precursor ion scanning as previously described.19,26

Glycan structure and gene knockout results

Table 1 and Fig. 2 show the results of the gene knockout
experiments based on HR-MAS [1H]NMR analyses of the
capsule of C. jejuni 11168 H and its mutants summarised
in Fig. 3. HR-MAS NMR experiments were performed as
previously described.19 In addition to genes reported in
Table 1, McNally et al. showed that Cj1415 is also involved
in OMePN biosynthesis,19 but this mutant was not
included in this study because it also shows a second
phenotype of reduced CPS production.19

For theCj1426mutant, HR-MASNMRdemonstrated loss of
the 6-O-Me. In an earlier study, we isolated a C. jejuni 11168
variant that lacked the 6-O-Me group and concluded that this
modification was phase variable.22 In this study, we compared
the homopolymeric tract of the Cj1426 gene in this variant and
the wild type by PCR amplification using the primers 1426-
PCR-F (5′-TTGAGAATTATGATAAGATGAAGG-3′) and
1426-PCR-R (5′-TTTCCTAAGAATTCTTTACTTTCG-3′) and
then sequenced using the primers 1426-seq-F (5′-AAGATC-
CAGATAAAAGAGATTATTTGG-3′) and 1426-seq-R (5′-
ATCAGGAGAATCAAAAATGATTTTTCC-3′). The results
confirmed that this gene is inactive in the variant (9 Gs)
described in our original study22 and is active in the wild type
(10 Gs), providing further support that Cj1426 is indeed the
6-O-Me transferase. We subsequently demonstrated that
Cj1426 is phase variable in vivo, and modification provides
C. jejuni resistance to phage F336 during co-infection
studies in chickens.27

To further confirm that Cj1427 and Cj1430 were involved
in heptose biosynthesis, we looked for GDP-heptose
intermediates using CE-ESMS and precursor ion scan-
ning. Figure 4 demonstrates that GDP-Hep does indeed
accumulate in the mutants, but not in the wild type,
identifying two additional enzymes involved in heptose
biosynthesis in C. jejuni 11168 and confirming that this
pathway proceeds through GDP-linked intermediates.

HR-MAS NMR

HR-MAS NMR analysis of intact bacterial cells was
performed as previously described.19

Strain data

DNAwas extracted from 270 strains and hybridised to the
C. jejuni 11168 DNA microarray containing reporters for all
1575 genes in the genome as described by Champion et
al.28 Datawere processed as either absence (0) of presence
(1) of genes. The experiments were performed in triplicate,
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and fromaverage values, the presenceor absenceof a gene
was determined based on a threshold using the GACK
(Genomotyping Algorithm by Charles Kim) program29 as
described in Champion et al.28 In summary, DNA from each
test strain and control strain (11168) was labelled with Cy5
and Cy3, respectively, and then hybridised against the
11168 microarray. Microarrays were scanned using an
Affymetrix 418 scanner (MWGBiotech, HighPoint, NC), and
signal data were extracted by using BlueFuse (BlueGnome
Ltd., Cambridge, UK). Triplicate spot averaging and data
quality control were performed inGeneSpring v7.3.1 (Agilent
Technologies, Santa Clara, CA).
The experiments and raw data on 270 strains are in

BUGSBASE† and are available from ArrayExpress via the
accession number obtainable fromBUGSBASE.A subset of
these data was used in the strain modelling and is provided
in the Excel file “Strain Data”. This contains the Penner
serogroup and serotype for a series of strains and the
presence (1) and absence (0) of a gene; undetermined
results are denoted by ?. Machine learning only used entries
with 1 to show the presence of a gene within that strain.
Machine learning

Machine learning used Progol 5.0.30 Prolog clauses
express the background knowledge, both known facts and
general rules, together with the observations.
The known facts:

1. define the compounds (which are both the metab-
olites and the glycan structures), for example,
compound('gdp-dd-hep') and compound('glca6n-
gro+hep+omepn+6ome') where gdp-dd-hep is a
metabolite and glca6ngro+hep+omepn+6ome is a
glycan structure;

2. define the gene names, for example, gene('cj1430c');
3. define the strains and their serotypes, where

known, for example, strain(strain176_83), penner_
serotype(hs41) and strain_has_penner_serotype
(strain176_83, hs41);

4. state that there is a single reaction between two
compounds, for example, reaction(capsule_
hep5,'gdp-dd-hep','gdp-d-al-gluco-hep'), which states
that the reaction named capsule_hep5 catalyses the
conversion of 'gdp-dd-hep' to 'gdp-d-al-gluco-hep';

5. state that a gene performs a reaction, for example,
codes(cj1430c, capsule_hep5), which states that
gene cj1430c performs the reaction named capsule_
hep5; and

6. state that one glycan structure is related to another
by the addition of a single chemical group, for
example, struct_next('glca6ngro-galfnac-ribf',
'glca6ngro-galfnac+omepn-ribf').

General rules encode:

1. the pathway in terms of steps of sequential reactions,
that is,

path(R, A, B) if
reaction(R, A, B)
path(R, A, B) if
reaction(R0, A, X) and
path(R, X, B)

2. the effect of knocking out a gene in terms of the
absence of a glycan structure and the implications
for assigning a gene to a specific reaction, that is,

knockout_observable(Gene, Observable) if
struct_next(Observable, Abs_Struct) and
path(R, Prs_Struct, Abs_Struct) and
codes(Gene, R)

3. the working assumption that, if a pair of genes is
present in two strains that share the same serotype,
they both perform neighbour reactions in a path that
synthesises a particular glycan, that is,

occurs(Strain1,Gene1) if
codes(Gene1, R1) and
neighbour_reaction(R1, R2) and
codes(Gene2, R2) and
occurs(Strain2, Gene2) and
have_same_serotype(Strain1, Strain2)

The observations:

1. state that when a specific gene is knocked out, this
result causes a particular glycan structure to be the
largest synthesised, for example, knockout_obser-
vable(cj1431c, 'glca6ngro-galfnac+omepn-ribf') and

2. state that a particular gene is absent or present from
a particular strain, for example, occurs(strainClini-
cal44811, cj1431c).

The Prolog files used are available as supplementary
data files (background_pl, codes_pl, common_pl,
CPS_pathwayd_pl, glycan_structure_pl, learn_h_pl,
learn_H-out, mutant_pl and strains_pl, together with a
documentation file README).

Data sources

The background knowledge was largely compiled from
KEGG31 and BioCyc32 augmented by some specific
information about the C. jejuni glycan structures that was
extracted from publications.18 The gene knockout exper-
iments were from previously published data19 and
included the data presented here. The cross-strain
genomic data for the CPS loci originate from an in-
progress study in which 270 C. jejuni isolates were
analysed by comparative phylogenomics (whole genome
comparisons of bacteria using DNA microarrays, com-
bined with Bayesian-based algorithms, to model the
phylogeny), using a previously published method.28
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