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Abstract We investigate the classification performance

of circular fingerprints in combination with the Naive Ba-

yes Classifier (MP2D), Inductive Logic Programming

(ILP) and Support Vector Inductive Logic Programming

(SVILP) on a standard molecular benchmark dataset

comprising 11 activity classes and about 102,000 struc-

tures. The Naive Bayes Classifier treats features indepen-

dently while ILP combines structural fragments, and then

creates new features with higher predictive power. SVILP

is a very recently presented method which adds a support

vector machine after common ILP procedures. The per-

formance of the methods is evaluated via a number of

statistical measures, namely recall, specificity, precision, F-

measure, Matthews Correlation Coefficient, area under the

Receiver Operating Characteristic (ROC) curve and

enrichment factor (EF). According to the F-measure, which

takes both recall and precision into account, SVILP is for

seven out of the 11 classes the superior method. The results

show that the Bayes Classifier gives the best recall per-

formance for eight of the 11 targets, but has a much lower

precision, specificity and F-measure. The SVILP model on

the other hand has the highest recall for only three of the 11

classes, but generally far superior specificity and precision.

To evaluate the statistical significance of the SVILP

superiority, we employ McNemar’s test which shows that

SVILP performs significantly (p < 5%) better than both

other methods for six out of 11 activity classes, while being

superior with less significance for three of the remaining

classes. While previously the Bayes Classifier was shown

to perform very well in molecular classification studies,

these results suggest that SVILP is able to extract addi-

tional knowledge from the data, thus improving classifi-

cation results further.

Keywords Classification � Feature selection �
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Introduction

Molecular similarity searching is based on the ‘‘similar

property principle’’ [1], which states that molecules with

similar structures should exhibit similar properties [2]. This

principle is reflected in neighbourhood behaviour [3],

whereby structurally similar molecules to a molecule of

known bioactivity are likely to exhibit the same activity.

Similarity searching is widely used in classification studies

in the academic and industrial communities to identify

compounds for further testing (often referred to as ‘‘virtual

screening’’) [4].
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The first step in a classification study is to locate mol-

ecules in chemical space using an informatics-based

description of the molecule. Descriptors are usually clas-

sified by their dimensionality. One-dimensional descriptors

use properties such as volume and log P [5]. Two-dimen-

sional descriptors are derived from the connection table [6],

whilst three-dimensional descriptors use geometric infor-

mation from molecular structures in 3D space [7]. Probably

the most commonly used descriptors are those found in 2D

fingerprints [8, 9]. Such descriptors are usually binary in

nature and typically encode the presence or absence of

substructural fragments. More recently, there has been a

shift towards circular substructure descriptors such as Ex-

tended Connectivity Fingerprints (ECFPs) and Functional

Class Fingerprints (FCFPs), as provided by Scitegic in

Pipeline Pilot [10]. One study using all of these fingerprints

was carried out by Hert et al. [11]. They used a dataset of

102,000 molecules, composed of 11 different activity

classes taken from the MDL Drug Data Report (MDDR)

[12]. Their work focused on a comparison of topological

descriptors for similarity-based virtual screening using

multiple bioactive reference structures. They concluded

that circular substructure fingerprints were more effective

than fingerprints based on hashing, dictionaries or topo-

logical pharmacophores. Circular fingerprints have also

been applied to the prediction of pKa values and metabolic

sites, of which a review was recently compiled [13].

On a similar theme, Bender et al. [14] developed a

circular substructure fingerprint. It describes the environ-

ment of each atom in the molecule by generating a fin-

gerprint that takes into account the Sybyl atom types of its

neighbouring atoms at one and two bonds’ distance. A

count vector of the occurrences of the atom types at a given

distance from the central atom is constructed and results in

a fingerprint with the number of count vector entries equal

to the number of atoms in the molecule. The generation of

this fingerprint is shown in Fig. 1.

Feature selection is considered the second step. The aim

of this step is to obtain the features which are most relevant

to the study. Examples of feature selection methods include

genetic algorithms, information gain, gain ratio and the

Gini Index [15]. Feature selection has been found to reduce

noise in datasets and improve classification performance

[16].

In the third step, the molecular structures are then par-

titioned in chemical space using algorithms. Some of the

most successful classification results in chemoinformatics

have come from the field of machine learning. This field is

the study of computer algorithms that improve automati-

cally through experience [15]. In the domain of chemoin-

formatics, these methods are used to build models based on

molecules assigned to a training set; these models are then

used to predict properties or classify test set molecules into

categories. A large number of machine learning methods

exist. Our work concerns MOLPRINT 2D [14]. The

MOLPRINT 2D method generates circular substructure

fingerprints and uses information gain based feature

selection; the selected features are then used by the Naive

Bayes Classifier to predict the expected class of a molecule

in a test set. These circular substructure fingerprints have

also been used as descriptors for input into an inductive

logic programming method (ILP) and a hybrid support

vector machine/inductive logic programming method

(SVILP) for the purpose of classification [17, 18].

To date, MOLPRINT 2D has been applied successfully

to a variety of datasets and applications in the literature. Its

debut was in 2004 [14], where it was used to classify

molecules taken from the Briem/Lessel dataset (957 li-

gands) [19]. The performance of MOLPRINT 2D was

compared to several other methods, such as feature trees

and Daylight fingerprints, in its ability to retrieve five sets

of active molecules seeded in the MDDR. In 2004,

MOLPRINT 2D was applied to the Hert/Willett (102K) set

[11, 20]. The objective of that work was to compare the

performance of MOLPRINT 2D against alternative search

methods [21] in their ability to retrieve active molecules. It

was found that MOLPRINT 2D achieved considerably

better results than binary kernel discrimination in combi-

nation with Unity 2D fingerprints.

More recently, in 2006, the method has been applied to

two different datasets. The first is the World Anti-Doping

Agency’s (WADA) 2005 Prohibited List [22], where

MOLPRINT 2D was used to classify molecules taken from

WADA [23] and the corresponding MDDR activity classes.

This work compared MOLPRINT 2D with two other ma-

chine learning algorithms, random forest (RF) and k

Nearest Neighbour (kNN). It was found that MOLPRINT

2D had the highest recall of positives but the lowest pre-

cision (recall and precision are defined in section ‘‘Mea-

sures of performance’’). The second example was the use

of MOLPRINT 2D to classify a dataset of ~20 K molecules

taken from the MDDR into different categories based on

bitterness [24]. The aim was to identify important sub-

structural features within the molecules necessary in dis-

criminating bitter from non-bitter molecules. MOLPRINT

Fig. 1 Illustration of the ‘‘MOLPRINT 2D’’ circular fingerprints

used in this study. For each heavy atom of the molecule, the type and

number of atoms at a given number of separating bonds is kept in the

descriptor
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2D was able to predict 72% of the bitter compounds cor-

rectly. It is important to note that in neither of these studies

was the the active/inactive MOLPRINT 2D cut-off score

optimised, an improvement we introduce in this paper (see

section ‘‘MOLPRINT 2D (MP2D)’’).

One of the first successes of ILP in chemoinformatics

was its application to the prediction of structure–activity

relationships [25]. That work used a learning program

called GOLEM, which enabled the authors to obtain better

prediction results than the Hansch linear regression for the

classification of trimethoprim analogues binding to Esc-

herichia coli dihydrofolate reductase. In 1996, King et al.

[26] used ILP with 2D descriptors on 229 aromatic and

heteroaromatic nitro-compounds to predict mutagenic

activity. ILP has also been used very recently to predict

mutagenic activity in Xa inhibitors [27]. Ensemble methods

are now becoming more popular in ILP, where the advan-

tages of two methods are combined together to compensate

for any shortcomings present in individual models. An

earlier example of this ensemble methodology was dem-

onstrated by Pompe et al. [28]. They used an ILP system in

conjunction with a naive Bayesian classifier, and compared

the results to a traditional ILP method. They showed that in

certain domains the ILP-Bayesian methodology clearly

outperformed more traditional methods. They believed this

was due to the learner being able to detect strong probabi-

listic dependencies within the data if they existed. Other

examples include: bagging [29], bootstrapping and boosting

[30]. Over the last few years there has, however, been a

growth in the use of support vector machines as a general

purpose classification tool. In the field of molecular infor-

matics, [31, 32] it has been shown to outperform other

machine learning methods such as artificial neural networks

and C5.0 decision trees. The facts that SVMs are very

sophisticated robust classification tools and that there has

been little coverage in the literature on SVILP models in the

domain of chemoinformatics are just two reasons why we

use ILP models and SVILP in this work.

In this work, we compare MOLPRINT 2D circular

substructure fingerprints in combination with the Naive

Bayes Classifier, ILP and SVILP using the Hert/Willett

dataset. The following section ‘‘Methods’’, gives details of

the materials and methods used in this work, the results are

presented and discussed in section ‘‘Results and discus-

sion’’. Section ‘‘Conclusion’’ summarises our conclusions.

Methods

Dataset and descriptor generation details

The Hert/Willett dataset [11] was taken from the MDDR

(2003.01 version) and contains molecules from 11 different

activity classes. The active molecules were augmented

with 94,290 inactive molecules. The inactives are mole-

cules taken from the MDDR which are listed in the Hert/

Willett dataset, but are not considered to be a member of

any of the 11 activity classes. This lead to a dataset of

101,828 molecules. The breakdown of the data can be

found in Table 1.

The molecules were retrieved in SDF format and con-

verted to Sybyl mol2 format using OpenBabel 2.0.1 [33]

with the –d option to delete hydrogen atoms. The datasets

were divided into three training and test sets for each

activity class (F1–F3). In each case 100 active and 100

inactive molecules were randomly selected for the training

set. The remaining actives and inactives were used as two

separate test sets. MOLPRINT 2D fingerprints were gen-

erated for these molecules. This process was repeated for

all 11 activity classes.

Circular fingerprint description

An illustration of the descriptor generation step, applied to

an aromatic carbon atom is shown in Fig. 1. The distances

(‘‘layers’’) from the central atom are given in brackets. In

the first step, Sybyl mol2 atom types are assigned to all

atoms in the molecule. In the second step, count vectors

from the central atom (here CÆ0æ) up to a given distance

(here two bonds from the central atom) are constructed.

MOLPRINT 2D fingerprints are then binary presence/ab-

sence indicators of count vectors of atom types.

MOLPRINT 2D (MP2D): Feature selection

The second step of MP2D after the fingerprints have been

generated is to select features. The information content of

individual atom environments was computed using the

information gain measure of Quinlan [34, 35]. In essence,

Table 1 MDDR activity classes used in the study

Activity code Activity class Actives

A06233 5HT3 Antagonists 752

A06235 5HT1A Agonists 827

A06245 5HT Reuptake 359

A07701 D2 Antagonists 395

A31420 Renin inhibitors 1130

A31432 Angiotensin II AT 1 antagonists 943

A37110 Thrombin inhibitors 803

A42731 Substance P antagonists 1245

A71523 HIV Protease inhibitors 750

A78331 Cyclooxygenase inhibitors 636

A78374 Protein kinase C inhibitors 452
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higher information gain is related to better separation be-

tween active and inactive structures. The information gain,

I, can be written as:

I ¼ S�
X

t

jDtj
jDj St

where

S ¼ �
X1

i¼0

pilog2pi

S is the information entropy, St is the information en-

tropy in data subset t, |D| is the total number of data points,

|Dt| is the number of data points in subset t, and pi is the

proportion of positive (if i = 1) and negative examples

(if i = 0) in S. In each run 40 features were selected. This

work was then repeated using 250 features.

MOLPRINT 2D (MP2D): Classification

The Naive Bayes Classifier relies on the assumption that

features are independent [15]. Given a training set of fea-

ture vectors (F) which contain features fi and class labels

(CL), a Bayesian classifier is able to predict the class a new

feature vector belongs to, based on which class has the

highest conditional probability PðCLtjFÞ:

PðCLtjFÞ ¼
PðCLtÞPðFjCLtÞ

PðFÞ

The equation shown below is the one we use in this

work to perform our classification study. Molecules are

represented by their feature vectors F, and the logarithm of

the resulting ratio PðCL1jFÞ=PðCL2jFÞ is used to determine

the class label of the molecule. The default MP2D score

assigns molecules to class 1 if this logarithm is greater than

zero and to class 2 if less than zero. If a given feature from

a molecule is not present in one of the data subsets CL1 or

CL2, the probability of class membership would drop to

zero, meaning either class is equally likely.

PðCL1jFÞ
PðCL2jFÞ

¼ PðCL1Þ
PðCL2Þ

Y

i

PðfijCL1Þ
PðfijCL2Þ

In previous work [22], one of the main problems found

with MP2D is that it overpredicts false positives. To reduce

the number of false positive predictions, in this work, we

optimised the MP2D cut-off score for the active/inactive

partition in each of the training sets based on obtaining the

highest Matthews Correlation Coefficient (MCC).

MCC ¼ tptn � fpfnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtp þ fpÞðtp þ fnÞðtn þ fpÞðtn þ fnÞ

p

The optimised cut-off scores were subsequently used on

the test set to determine whether a molecule was predicted

active or inactive.

Figure 2 simply shows two distributions of MP2D

scores. The first distribution CL2, is shown in red and

represents scores for inactive molecules. The second dis-

tribution CL1, in blue, is for actives. The black line rep-

resents the optimum MP2D cut-off score.

ILP

Inductive Logic Programming learns logic rules from

background knowledge and experimental observations

[36]. The observations are the positive and negative

examples that are, respectively the more active and less

active molecules. The background knowledge is chemical

fragments which could be either two- or three-dimensional.

The ILP algorithm had been implemented in CProgol [37].

CProgol randomly selects a positive example and con-

Fig. 2 Optimising MOLPRINT

2D active/inactive cut-off

scores. Generally a trade-off

between true positives (at the

expense of false positives) and

true negatives (at the expense of

false negatives) is given when

the Bayes Classifier is employed
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structs hypotheses using the provided background knowl-

edge. For each hypothesis it calculates the compression

which is defined as follows:

C ¼ P� N � L

C is the compression, P and N are the number of positives

and negatives covered by the hypothesis and L is the length

of rule which is simply the number of fragments in the

hypothesis. Compression is a measure of the power of the

hypotheses constructed by the program. In the first step, the

algorithm chooses only the best rule with maximum com-

pression which is called the general rule. The calculation is

continued on the next positive example, but the redundant

(repetitive) examples relative to the new background

knowledge are removed. After training is completed, the

program applies the rules derived from the training set to

the ‘‘external’’ (hypothetical) test set. Figure 3 schemati-

cally explains ILP for an example dataset of N positives.

One of the major strengths of logic-based structure

activity relationships is that the program is able to construct

chemical fragments in the form of logic relations using the

basic atom and bond information. For instance, an OH

group can be defined as:

oh(M):- atom(M, A, o, sp3), atom (M, B, h, h), bond

(M, A, B, 1).

That means: a molecule (M) has an OH group if it has a

sp3 oxygen atom and a hydrogen atom and the bond be-

tween these two atoms is single. A and B are used to label

each atom. In the current study we have used the pre-

processed background knowledge where all of the frag-

ments have been prepared for the ILP calculations. Logic

rules have one of the following formats: (1) active(A):-

fragment(A) (2) active(A):-fragment1(A), fragment2(A)

(3) active(A):-fragment(A), fragment2(A), fragment3(A).

In type 1, molecule A is active if it has fragment1; in type

2, molecule A is active if it has fragment1 and fragment2;

in type 3, molecule A is active if it has fragment1, frag-

ment2 and fragment3.

We have done separate studies using ILP and SVILP

for toxicology and activity predictions. One article on

toxicology prediction is expected to be published soon.

The logic rules are interpretable and this is one of the

main advantages of the logic-based Structure Activity

Relationships (SAR) with respect to the other methods.

The description of the rules is beyond the scope of this

article because of the number of rules and number of

targets.

Support vector logic programming (SVILP)

Support vector inductive logic programming (SVILP) is a

machine learning method that combines the advantages of

a support vector machine (SVM) with ILP [18]. ILP is

used to learn logic rules as explained in the last section,

however, all of the hypotheses constructed by ILP that

have positive compression are collected for quantification.

Therefore SVILP, unlike ILP, is not dependent on the

general rules. The number of collected rules is dependent

on the size of the dataset, the complexity and the diversity

of the molecules. In the current study, for the same

number of molecules in the training sets, the number of

rules varies from less than 100 to about 1,000 for different

targets. Figure 4 shows the SVILP algorithm. Molecules

are in rows (M1... Mn) where n is the number of mole-

cules, and rules are in columns (X1... Xm) where m is the

Fig. 3 Schematic reprensentation of ILP. Starting with general rules

covering as many instances as possible, rules are iteratively refined to

cover as many instances of the training dataset as feasible in every

step Fig. 4 Schematic reprensentation of SVILP
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number of features. The first column is the value of ob-

served activities (if available) or in case of classification,

+1 for positive and –1 for negatives (Y). Rules are con-

sidered as features and a value of ‘‘1’’ is considered if the

rule covers the molecule, otherwise a value of ‘‘0’’ is

designated. The result is a binary matrix, Fig. 4. The

support vector machine is then used for classification or

regression. In this study we used SVMLight for classifi-

cation [38]. For all calculations in this work, we used an

SVM with a linear kernel and all the default parameters

provided in SVMLight.

Measures of performance

We generated a (2 · 2) confusion matrix for each of the

three runs (F1–F3) and repeated this process for each

activity class. The measures we have used to assess the

classification results are recall, specificity, precision, the F-

measure and the Matthews Correlation Coefficient (previ-

ously defined in sections ‘‘MOLPRINT 2D (MP2D): Fea-

ture selection and MOLPRINT 2D (MP2D):

Classification’’).

Recall ¼ tp

tp þ fn
Specificity ¼ tn

tn þ fp

Precision ¼ tp
tp þ fp

F-measure ¼ 2 � Recall � Precision

Recallþ Precision

tp is simply the number of true positives, that is molecules

of a particular activity being classified as exhibiting that

activity. tn represents inactive molecules not of the activity

under question correctly predicted. fp and fn represent the

number of molecules incorrectly predicted to be active and

inactive, respectively.

Kendall’s W coefficient

We have also applied Kendall’s W Coefficient of Con-

cordance [39] to compare the inter-rater agreement be-

tween the 11 activity classes and the results for each

classifier. In this study, each classifier is an object and each

activity class is a rater. The Kendall’s W Coefficient can be

interpreted as a coefficient of agreement among raters. The

coefficient W ranges from 0 fi 1. A value of 1 indicates

complete inter-rater agreement, 0 indicates complete dis-

agreement.

Receiver operating characteristic curve

Here we have simply calculated the area under the ROC

curve, for each activity class, run (F1–F3) and machine

learning method. It is the most commonly used method in

the machine learning community, and gives an indication

of the likelihood that a classifier will assign a higher score

to a positive example than a negative example if one from

each class were picked at random.

Enrichment factor

The enrichment factor (EF) is a measure of the ratio of the

number of active molecules retrieved in a test set in

comparison to what would have been expected if the

molecules were selected at random at a given percentage of

the ranked test set.

NOAMR = Number of active molecules retrieved

NEBR = Number of active molecules expected by ran-

dom

EF ¼ NOAMR

NEBR

� �

In this work we have calculated the EF value for the top

1% and 5% of the ranked test set.

McNemar’s test

McNemar’s test [40] evaluates the significance of the dif-

ference between two methods. In comparison between

method 1 and 2, A is the number of times both methods

have correct predictions; B is the number of times method 1

has a correct prediction and method 2 has a wrong pre-

diction; C is the number of times method 2 has a correct

prediction and method 1 has a wrong prediction; D is the

number of times both methods have incorrect predictions;

the McNemar’s v2 can then calculated as shown below.

v2 ¼ ðB� CÞ2

ðBþ CÞ

Statistical significance is then evaluated by finding the

probability associated with that v2 value using a reference

table. The difference is considered to be significant if

p < 0.05. B and C in the above equation are calculated

separately for actives and inactives and since the number of

inactives in this calculation (~94 K) is far more than the

number of actives (200–1,300), larger B and C values are

found for inactives. It is concluded that the significance test

is dominated by the inactives. The values of B and C for

inactives, however, could be scaled down using a function:

f ¼ number of actives

number of inactives

by using this function, the actives and inactives now have

an equal contribution to the McNemar significance test.
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Results and discussion

All results are summarised in Figs. 5–12 below and the

breakdown is given in Table 2. The results presented here

have been averaged over three runs (F1–F3) and have been

calculated using the optimised thresholds with respect to

MCC on the training set. Table 3 gives information on the

McNemar’s test results, comparing every method against

every method for each activity class. Supplementary

information on the optimised MP2D scores can be found in

supplementary Table 4. Information on how well the Naive

Bayes Classifier performed using a default cut-off value of

zero can be found in supplementary Table 5. In supple-

mentary Table 5 we present the recall, specificity, preci-

sion, F-measure and MCC values for the default Naive

Bayes Classifier. The recall is higher on average using the

default MP2D cut-off, however the specificity, precision,

F-measure and MCC values are considerably lower on

average. These trends are due to the lower MP2D cut-off

score in the default model, which means that more

Fig. 5 Recall for each activity class and method. While ILP and

SVILP show broadly similar performance across the datasets, the

Naive Bayes Classifier shows much smaller recall on cyclooxygenase

and protein kinase C inhibitors (classes A78331 and A78374)

Fig. 6 Specificity for each activity class and method. Again, ILP and

SVILP show broadly similar performance across all activity classes.

As opposed to the previous recall plot, the cyclooxygenase and

protein kinase C inhibitor datasets show very high specificity, thus the

Naive Bayes Classifier represents a different trade-off position than

the other methods

Fig. 7 Precision for each activity class and method. Here, wide

variability is observed both across methods and datasets. Highest

precision is observed for the renin inhibitor dataset (A31420), which

has previously been shown to be atypical in size and thus easier to

separate [41]

Fig. 8 F-measure for each activity class and method. While similar

results are observed across classes and methods, the most profound

drop is with the Naive Bayes Classifier applied to the 5HT1A agonists

and HIV protease inhibitors
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molecules are classified as being active, resulting in an

increase in the recall of positives.

MP2D shows the highest overall recall of positives,

coming top in eight of the 11 classes (Fig. 5). The results

show that more homogeneous classes such as thrombin

inhibitors (A37110, 0.42), substance P antagonists

(A42731, 0.40) and HIV protease inhibitors (A71523, 0.45)

have a considerable enhancement in recall using MP2D

(values in the brackets represent the activity class code and

average intra-class Tanimoto similarity using the Unity 2D

fingerprints [11]). MP2D using only 40 features however

performs particularly badly for the A78331 and A78374

classes. This may be due to the molecular skeletal diversity

of the cycloxygenase (COX) inhibitors and the protein

kinase C inhibitors [11]. The poor performance in these

two classes could however be attributed to the fact that the

40 features selected in the filtering stage may not be en-

ough to differentiate active from inactive molecules using

the Naive Bayes Classifier. In contrast, the SVILP method

tends to perform second best in this measure with the ILP

Fig. 9 Matthews Correlation Coefficient for each activity class and

method. The results are fairly consistent with the previous perfor-

mance measures, with the renin inhibitors having the spoil of the high

values, whilst the cyclooxygenase and protein kinase C inhibitors

show much more reserved estimates

0.0 0.2 0.4 0.6 0.8 1.0

0.1
8.0

6.0
4.0

2.0
0.0

1 − Specificity

ytivitisne
S

MP2D250F
MP2D40F
SVILP
Random
Ideal

Fig. 10 Sample ROC plot for the second run of the A31432 activity

class shows very steep ascents, in line with retrieving a large number

of actives in the first few percent of the ranked database. These curves

are close to the perfect case scenario

0.0 0.2 0.4 0.6 0.8 1.0

0.1
8.0
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4.0

2.0
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ytivitisne
S

MP2D250F
MP2D40F
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Random
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Fig. 11 ROC curve for the second run of the A78331 activity class.

These curves are considerably less steep than those in Fig. 10,

however the enrichment when compared to random is still great

Fig. 12 Enrichment factor at the top one and five percent of the

ranked database. Similar trends in enrichment factor are found as was

the case for previous measures. The A06245, A07701 and A78331

classes have lower enrichment whilst higher values are noted from the

A31420, A31432 and A71523 classes
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coming in last. The ILP method also found the A78331 and

A78374 classes the hardest to predict, however only a little

dip in performance was noted.

The SVILP method appears to have the highest speci-

ficity (Fig. 6), being ranked first on six out of the 11

occasions. The ILP method gave the best results for the

A06235 and A07701 classes, whilst MP2D retrieved the

most negatives for A78331 and A78374 activity classes.

One possible explanation for the low recall but high

specificity using MP2D with 40 features with the A78331

and A78374 classes is that it could be a result of the low

MP2D scores assigned to the active molecules. Given that

the optimised cut-off scores are positive, this means fewer

molecules will be classified as being positive and more as

negative; effectively this means MP2D with 40 features

classifies a lot of molecules in these two classes as false

negatives, hence a lower recall and higher specificity.

When considering precision (Fig. 7), SVILP performs

better than the other two methods. Notable differences for

the A31420 and A71523 classes in comparision to the other

methods were found. The precision for MP2D is consid-

erably lower than the other methods except for the A31432

and A78374 activity classes. The highest precision is ob-

served for the renin inhibitor dataset (A31420), which has

previously been shown to be atypical in size and thus easier

to separate [41]. In general, the precision of predicting

positives shown in Table 2 is very low. However, if one

considers that the ratio between active and inactive mole-

cules in this dataset is around 1:100, values exceeding 0.01

are better than random.

The F-measure is a measure that combines both recall

and precision. Figure 8 shows that the SVILP method is the

best overall using this measure. This method ranks first in

seven out of the 11 classes. MP2D is the best for the

Table 2 Recall, specificity, precision, F-measure, Matthews correla-

tion coefficient, area under the ROC curve and enrichment factors

taken at 1% and 5% of the ranked database all averaged over three

runs. AUC, EF at 1% and EF at 5% values have been omitted from

this table for the ILP method on the basis that it predicts molecule

class using a binary system with no score component

Measure Method A06233 A06235 A06245 A07701 A31420 A31432 A37110 A42731 A71523 A78331 A78374 Average

Recall ILP 0.790 0.662 0.761 0.762 0.916 0.881 0.878 0.744 0.875 0.646 0.787 0.791

SVILP 0.816 0.861 0.855 0.878 0.947 0.964 0.858 0.850 0.871 0.780 0.827 0.864

MP2D40F 0.683 0.847 0.668 0.853 0.960 0.948 0.865 0.970 0.849 0.185 0.290 0.738

MP2D250F 0.913 0.930 0.878 0.844 0.945 0.963 0.940 0.875 0.928 0.774 0.845 0.894

Specificity ILP 0.921 0.959 0.855 0.900 0.978 0.920 0.924 0.933 0.922 0.927 0.904 0.922

SVILP 0.931 0.952 0.856 0.852 0.986 0.924 0.949 0.957 0.968 0.888 0.900 0.924

MP2D40F 0.911 0.751 0.800 0.712 0.941 0.877 0.826 0.885 0.849 0.953 0.985 0.863

MP2D250F 0.824 0.769 0.731 0.782 0.958 0.944 0.861 0.922 0.709 0.763 0.714 0.816

Precision ILP 0.064 0.111 0.014 0.024 0.315 0.089 0.080 0.119 0.072 0.048 0.030 0.088

SVILP 0.076 0.122 0.016 0.018 0.430 0.102 0.111 0.195 0.159 0.038 0.030 0.118

MP2D40F 0.055 0.026 0.009 0.010 0.154 0.067 0.042 0.093 0.041 0.023 0.119 0.058

MP2D250F 0.035 0.031 0.010 0.013 0.207 0.157 0.051 0.121 0.023 0.018 0.011 0.062

F-Measure ILP 0.119 0.191 0.028 0.046 0.468 0.162 0.146 0.205 0.133 0.089 0.057 0.158

SVILP 0.138 0.214 0.031 0.036 0.591 0.184 0.197 0.318 0.269 0.073 0.058 0.208

MP2D40F 0.101 0.050 0.018 0.019 0.265 0.125 0.079 0.170 0.077 0.040 0.155 0.100

MP2D250F 0.067 0.061 0.019 0.025 0.338 0.266 0.097 0.212 0.046 0.036 0.022 0.108

MCC ILP 0.211 0.260 0.091 0.123 0.530 0.266 0.251 0.280 0.239 0.162 0.141 0.232

SVILP 0.235 0.314 0.105 0.114 0.633 0.301 0.298 0.395 0.365 0.156 0.146 0.278

MP2D40F 0.175 0.120 0.061 0.071 0.371 0.233 0.165 0.282 0.165 0.049 0.169 0.169

MP2D250F 0.159 0.146 0.075 0.087 0.430 0.371 0.200 0.308 0.120 0.094 0.076 0.188

AUC SVILP 0.953 0.957 0.930 0.910 0.990 0.987 0.963 0.960 0.977 0.883 0.933 0.949

MP2D40F 0.847 0.810 0.746 0.788 0.950 0.915 0.865 0.931 0.874 0.663 0.627 0.820

MP2D250F 0.869 0.849 0.803 0.818 0.952 0.959 0.907 0.930 0.819 0.776 0.790 0.861

EF at 1% SVILP 49.2 51.6 31.8 30.7 79.5 56.6 43.1 48.5 72.9 36.0 44.6 49.5

MP2D40F 30.7 15.3 17.6 16.3 8.1 44.4 22.3 60.8 54.5 5.6 28.3 27.6

MP2D250F 46.3 22.5 31.3 28.5 12.0 48.7 26.6 51.6 67.3 22.6 44.1 36.5

EF at 5% SVILP 15.8 17.1 13.5 11.9 19.4 18.9 17.0 17.1 18.0 14.0 13.2 16.0

MP2D40F 11.0 11.5 8.4 9.2 18.8 17.0 13.5 18.6 15.3 3.4 6.4 12.1

MP2D250F 15.0 13.4 12.0 11.6 19.0 19.2 15.6 16.4 16.6 10.1 12.2 14.6
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A31432 and A78374 classes. There is no significant dif-

ference between SVILP and MP2D with 250 features for

the A06233. These observations were supported by the

McNemar’s test results given in Table 3. The McNemar’s

test showed that in nine out of the 11 classes the SVILP

method outperformed the other methods. MP2D with 250

features was favoured for the A31432 activity class using

the McNemar’s test. The probability was 0.21 indicating no

significant difference between MP2D with 250 features and

SVILP and was reflected in the F-measure scores of 0.266

and 0.184 for MP2D with 250 features and SVILP,

respectively. The McNemar’s test also supports the fact

that there is little difference in performance across the

A06233 class using SVILP and MP2D with 250 features

(probability 0.64).

It can be seen from Fig. 9, that again the SVILP method

appears to dominate the field in terms of MCC value. On

seven occasions the SVILP performed the best. Particularly

high results came from the A31420 class with the SVILP

obtaining an MCC value of 0.63. The A06245 and A07701

classes were found to have the lowest MCC values. MP2D

has the highest MCC values with the A31432 and A78374

classes. These results are in line with those for the F-

measure, as would be expected, given the similar nature of

the two performance measures.

In general, it is evident from these graphs that we see a

divide in performance, with the SVILP and MP2D method

with 250 features performing better than average, whilst

MP2D with 40 features and the ILP models perform worse

than average. These results are supported by the Kendall’s

W Coefficient of Concordance, with W coefficients of 0.71,

0.50, 0.81, 0.84 and 0.87 when using recall, specificity,

precision, the F-measure and MCC as measures for the

activity classes to act as raters to rank the four classification

methods. The coefficients indicate there is a high level of

inter-rater agreement between the ranks assigned to each

classifier for each activity class and performance measure.

The v2 probability associated with these values was

p < 0.05 in all cases. This simply means the results in

Table 2 are statistically significant for these performance

measures. The McNemar’s test results in Table 3 support

the conclusion that the SVILP method is the best classifier,

in nine out of the 11 classes the SVILP method outper-

formed the other two methods. A31432 and A42731 were

the only activity classes where MP2D outperformed the

SVILP method. In all cases bar the A42731 class, SVILP

was significantly better than MP2D with 40 features. When

compared to MP2D with 250 features, SVILP was the best

method over all activity classes except A31432. In general

the level of significance for the difference in performance

Table 3 Results of McNemar’s significance test. p is the two-tailed probability; BM is the better method in a pair-wise comparison. A method is

considered to be significantly better if p < 0.05

ILP–SVILP SVILP–MP2D40F SVILP–MP2D250F ILP–MP2D40F ILP–MP2D250F MP2D40F–MP2D250F

A06233 P 0.03 < 0.0001 0.64 < 0.0001 0.37 < 0.0001

BM SVILP SVILP SVILP ILP MP2D250F MP2D250F

A06235 P < 0.0001 < 0.0001 < 0.0001 0.49 0.008 < 0.0001

BM SVILP SVILP SVILP ILP MP2D250F MP2D250F

A06245 P 0.01 < 0.0001 0.03 0.051 0.94 0.036

BM SVILP SVILP SVILP ILP ILP MP2D250F

A07701 P 0.02 0.0003 0.02 0.03 0.41 0.12

BM SVILP SVILP SVILP ILP ILP MP2D250F

A31420 P < 0.0001 0.01 0.02 0.68 0.52 0.85

BM SVILP SVILP SVILP MP2D40F MP2D250F MP2D250F

A31432 P < 0.0001 0.0006 0.21 0.21 < 0.0001 < 0.0001

BM SVILP SVILP MP2D250F MP2D40F MP2D250F MP2D250F

A37110 P 0.83 < 0.0001 0.85 < 0.0001 1 < 0.0001

BM SVILP SVILP SVILP ILP Even MP2D250F

A42731 P < 0.0001 < 0.005 0.35 < 0.0001 < 0.0001 < 0.018

BM SVILP MP2D40F MP2D250F MP2D40F MP2D250F MP2D40F

A71523 P 0.01 < 0.0001 < 0.0001 0.0001 < 0.0001 < 0.02

BM SVILP SVILP SVILP ILP ILP MP2D40F

A78331 P < 0.0001 < 0.0001 0.0002 < 0.0001 0.35 < 0.0001

BM SVILP SVILP SVILP ILP ILP MP2D250F

A78374 P 0.93 < 0.0001 0.0003 < 0.0001 0.0004 < 0.0001

BM SVILP SVILP SVILP ILP ILP MP2D250F
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was a lot lower than in comparison between SVILP and

MP2D with 40 features, indicating in general MP2D with

250 features is a better classifer than MP2D with 40 features.

Two example ROC curves are shown in Figs. 10 and 11.

The first graph is for the A31432 dataset taken on the

second run (F2). From Table 2 it can be seen that this

dataset had the second highest average area under the curve

(AUC), with values ranging from 0.92 to 0.99, which

compare well with the ideal result of 1 (perfect classifier).

A value of 1 indicates that no false positives and false

negatives are present in the ranked test set. This effectively

means that all the true positives were found at the top of the

ranked database, with all true negatives coming lower;

where the ranking is established based on a sorted list of

scores (highest at the top). The area under the curve in this

work was calculated using the trapezium rule. The values

of 0.92 and 0.99 represent the proportion of the area of the

ideal curve covered using our classifiers. Comparable area

under the curve is achieved for the A31420 and A42731

datasets. Figure 11 shows a ROC curve for the A78331

dataset taken on the second run. The area under this curve

for MP2D using 40 features is 0.73, the average AUC for

MP2D using 40 features is 0.66. The A78331 and A78374

datasets were the most disappointing of all the runs, how-

ever the results are still far superior to an area of 0.50

expected if the molecules were to be sorted at random.

The EFs at 1% and 5% shown in Table 2 and Fig. 12

illustrate that the EF in general is higher at 1% than 5% and

that the enrichment results for the SVILP method are better

than either result by MP2D. The only anomalous result is

the surprisingly low EF at 1% for MP2D using the renin

inhibitor class. Here the average enrichment factor is only

12 compared to SVILP’s 79, yet the AUC values are very

comparable. The explanation is that firstly the renin test set

is large (1,030), this would result in more active molecules

being expected to be in the top 1% (10) rather than say four

molecules with the A07701 activity class, hence the

enrichment is partly dependent upon the size of the activity

class. Secondly, after viewing the individual breakdown of

the MP2D scores it became evident that some inactive

molecules were assigned higher scores than any of the

active molecules. This led to the actives falling lower in the

rankings, hence we see a low enrichment at 1%. However,

when we move to 5% we see the EF has increased to 19 in

line with the 5% EF of SVILP, indicating that the vast

majority of the active molecules in the renin test set fall in

the top 2–5%. In fact, MP2D with 250 features retrives 976

active molecules out of 1,030 in the top 5% of the test set

(5% of 1,030 = 51.5, the EF at 5% is 18.96 therefore 18.96

· 51.5 = 976 active molecules). This result compares

favourably to previous work [20], in that 94.44% of actives

were retrieved for the renin dataset in the top 5% of the test

set (which equates to 973 actives).

We had considered classifying the datasets using an

SVM on its own. However, in an unpublished study, we

found that the model based on the chemical fragments and

SVM was unstable and some of the features acted as noise.

It is thus imperative that a powerful feature selection

method is used before testing all structural features using

an SVM. ILP not only selects the best features, but it also

combines the features and generates new information and

in this article we have shown that it gives a substantial

improvement across most measures of performance.

Conclusion

On the datasets examined here, which comprise 11 activity

classes and about 102,000 structures, Support Vector

Inductive Logic Programming outperforms both the opti-

mised Naive Bayes Classifier and the standard Inductive

Logic Programming with regard to the F-measure, which

takes both recall and precision into account. SVILP is, for

seven out of the 11 activity classes, the superior method,

with six of the classification differences being significant in

McNemar’s test at a confidence level of p < 5%. SVILP

is a very recently presented method which adds a support

vector machine after common ILP procedures. We thus

present a combination of previous machine learning

methods which improves results over considering individ-

ual features independently (such as the Naive Bayes

Classifier) as well as over Inductive Logic Programming

only. While previously the unoptimised Bayes Classifier

was shown to perform very well in molecular classification

studies, these results suggest that the optimised Bayes

Classifier performs better. However, despite this improve-

ment, the Support Vector Inductive Logic Programming is

able to extract additional knowledge from the data, thus

improving classification results further.
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