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Abstract
Present developments in the natural sciences are pro-
viding enormous and challenging opportunities for var-
ious AI technologies to have an unprecedented impact
in the broader scientific world. If taken up, such ap-
plications would not only stretch present AI technology
to the limit, but if successful could also have a radical
impact on the way natural science is conducted. We re-
view our experience with the Robot Scientist and other
Machine Learning applications as examples of such AI-
inspired developments. We also consider potential fu-
ture extensions of such work based on the use of Uncer-
tainty Logics. As a generalisation of the robot scientist
we introduce the notion of a Chemical Universal Turing
machine. Such a machine would not only be capable of
complex cell simulations, but could also be the basis for
programmable chemical and biological experimentation
robots.

Introduction
Collection and curation of data throughout the sciences is
becoming increasingly automated. For example, a single
high-throughput experiment in biology can easily generate
over a gigabyte of data per day, while in astronomy auto-
matic data collection leads to more than a terabyte of data
per night. Throughout the sciences the volumes of archived
data are increasing exponentially, supported not only by
low-cost digital storage but also by increasing efficiency of
automated instrumentation. It is clear that the future of sci-
ence involves increasing amounts of automation in all its
aspects: data collection, storage of information, hypothesis
formation and experimentation. Future advances have the
ability to yield powerful new forms of science which could
blur the boundaries between theory and experiment. How-
ever, to reap the full benefits it is essential that developments
in high-speed automation are not introduced at the expense
of human understanding and insight.

During the 21st century, Artificial Intelligence techniques
have the potential to play an increasingly central important
role in supporting the testing and even formulation of sci-
entific hypotheses. This traditionally human activity has al-
ready become unsustainable in many sciences without the
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aid of computers. This is not only because of the scale
of the data involved but also because scientists are unable
to conceptualise the breadth and depth of the relationships
between relevant databases without computational support.
The potential benefits to science of such computerization are
high knowledge derived from large-scale scientific data has
the potential to pave the way to new technologies ranging
from personalised medicines to methods for dealing with
and avoiding climate change (Muggleton 2006).

In the 1990s it took the international human genome
project a decade to determine the sequence of a single hu-
man genome, but projected increases in the speed of gene
sequencing imply that before 2050 it will be feasible to de-
termine the complete genome of every individual human be-
ing on Earth. Owing to the scale and rate of data generation,
computational models of scientific data now require auto-
matic construction and modification. We are seeing a range
of techniques from mathematics, statistics and computer sci-
ence being used to compute scientific models from empiri-
cal data in an increasingly automated way. For instance, in
meteorology and epidemiology large-scale empirical data is
routinely used to check the predictions of differential equa-
tion models concerning climate variation and the spread of
diseases.

Machine Learning in Science
Meanwhile, machine learning techniques are being used to
automate the generation of scientific hypotheses from data.
For instance, Inductive Logic Programming (ILP) enables
new hypotheses, in the form of logical rules and principles,
to be extracted relative to predefined background knowl-
edge. This background knowledge is formulated and revised
by human scientists, who also judge the new hypotheses and
may attempt to refute them experimentally. As an exam-
ple, within the past decade researchers in my group have
used ILP to discover key molecular sub-structures within
a class of potential cancer-producing agents (Muggleton
1999; Sternberg & Muggleton 2003). Building on the same
techniques, we have more recently been able to generate ex-
perimentally testable claims about the toxic properties of hy-
drazine from experimental data in this instance, analyses
of metabolites in rat urine following low doses of the toxin
(Tamaddoni-Nezhad et al. 2004).

In other sciences, the reliance on computational mod-



elling has arguably moved to a new level. In systems bi-
ology the need to account for complex interactions within
cells in gene transduction, signalling and metabolic path-
ways are requiring new and richer systems-level modelling.
Traditional reductionist approaches in this area concentrated
on understanding the functions of individual genes in iso-
lation. However, genome-wide instrumentation, including
micro-array technologies, are leading to a system-level ap-
proach to biomolecules and pathways and to the formulation
and testing of models that describe the detailed behaviour of
whole cells. This is new territory for the natural sciences
and has resulted in multi-disciplinary international projects
such as the virtual E-Cell (Takahashi et al. 2003).

One obstacle to rapid progress in systems biology is
the incompatibility of existing models. Often models that
account for shape and charge distribution of individual
molecules need to be integrated with models describing the
interdependency of chemical reactions. However, differ-
ences in the mathematical underpinnings of say differen-
tial equations, Bayesian networks and logic programs make
integrating these various models virtually impossible. Al-
though hybrid models can be built by simply patching two
models together, the underlying differences lead to unpre-
dictable and error-prone behaviour when changes are made.

Potential for Uncertainty Logics
One key development from AI is that of formalisms
(Halpern 1990) that integrate, in a sound fashion, two of
the major branches of mathematics; mathematical logic and
probability calculus. Mathematical logic provides a formal
foundation for logic programming languages such as Pro-
log, whereas probability calculus provides the basic axioms
of probability for statistical models, such as Bayesian net-
works. The resulting ‘probabilistic logic’ is a formal lan-
guage that supports statements of sound inference, such as
“The probability of A being true if B is true is 0.7”. Pure
forms of existing probabilistic logic are unfortunately com-
putationally intractable. However, an increasing number
of research groups have developed machine learning tech-
niques that can handle tractable subsets of probabilistic logic
(Raedt & Kersting 2004). Although it is early days, such re-
search holds out the promise of sound integration of scien-
tific models from the statistical and computer science com-
munities.

The Robot Scientist
Statistical and machine learning approaches to building and
updating scientific models typically use ‘open loop’ systems
with no direct link or feedback to the collection of data. The
robot scientist project in which I was involved offers an im-
portant exception (King et al. 2004). In this project, labora-
tory robots conducted experiments on yeast (Saccharomyces
cerevisiae) using active learning. The aim was to determine
the function of several gene knock-outs by varying the quan-
tities of nutrient provided to the yeast. The robot used a form
of inductive logic programming to select experiments that
would discriminate between contending hypotheses. Feed-
back on each experiment was provided by data reporting

yeast survival or death. The robot strategy that worked best
(lowest cost for a given accuracy of prediction) not only out-
performed two other automated strategies, based on cheap-
est and random-experiment selection, but also outperformed
humans given the same task.

Micro-fluidic robots
One exciting development we might expect in the next 10
years is the construction of the first micro-fluidic robot
scientist, which would combine active learning and au-
tonomous experimentation with micro-fluidic technology.
Scientists can already build miniaturised laboratories on a
chip using micro-fluidics (Fletcher et al. 2002) controlled
and directed by a computer. Such chips contain miniature
reaction chambers, ducts, gates, ionic pumps and reagent
stores and allow for chemical synthesis and testing at high
speed. We can imagine miniaturising our robot scientist
technology in this way, with the overall goal of reducing the
experimental cycle time from hours to milliseconds. With
micro-fluidic technology each chemical reaction not only re-
quires less time to complete, but also requires smaller quan-
tities of input materials, with higher expected yield. On such
timescales it should become easier for scientists to repro-
duce new experiments.

Chemical Universal Turing Machines
Today’s generation of micro-fluidic machines are designed
to carry out a specific series of chemical reactions, but fur-
ther flexibility could be added to this toolkit by developing
what one might call a ‘Chemical Universal Turing Machine’
(CUTM). The universal Turing machine devised in 1936 by
Alan Turing was intended to mimic the pencil-and-paper op-
erations of a mathematician. A CUTM would be a universal
processor capable of performing a broad range of chemical
operations on both the reagents available to it at the start and
those chemicals it later generates. The machine would auto-
matically prepare and test chemical compounds but it would
also be programmable, thus allowing much the same flexi-
bility as a real chemist has in the lab.

One can think of a CUTM as an automaton connected to
a conveyor belt containing a series of flasks: the automa-
ton can move the conveyor to obtain distant flasks, and can
mix and make tests on local flasks. Just as Turing’s orig-
inal machine later formed the theoretical basis of modern
computation, so the programmability of a chemical Turing
machine would allow a degree of flexibility far beyond the
present robot scientist experiments, including complex iter-
ative behaviour. In the same way that modern-day Turing
machines (computers) are constructed from integrated cir-
cuitry, thereby combining the power of many components, a
universal robot scientist would be constructed from a mix-
ture of micro-fluidic machines and integrated circuitry con-
trollers. The mathematical description of a CUTM consists
of the following parts.
1. A finite set of states �
2. A chemical alphabet � consisting of flasks containing

fixed quantities of a variety of chemicals, including the
empty flask



3. A starting state ���
4. A partial function � from ���	� to �
���
��������� where
��������� is the movement of the conveyor in either direc-
tion.
This micro-fluidic Turing machine is not only a good can-

didate for the next-generation robot scientist, it may also
make a good model for simulating cellular metabolism. One
can imagine an artificial cell based on a chemical Turing
machine being used as an alternative to in vivo drug test-
ing. The program running this machine would need to con-
tain algorithms both for controlling the experiment and for
conducting the cell simulation. It would represent a funda-
mental advance in the integration of computation with its
environment.

Some may argue that in the context of biological exper-
imentation, the series of chemical reactions is the compu-
tation itself. However, one can imagine taking the inte-
gration between experiment and environment even further.
In particular, by connecting the input and output ducts of
the micro-fluidic Turing machine to the chemical environ-
ment of a living cell one could conduct experiments on cell
function. Such levels of close integration between comput-
ers, scientific models and experimental materials are still a
decade or more away from standard scientific practice.

Conclusion
Despite the potential benefits, there is a severe danger that
increases in speed and volume of data generation in sci-
ence could lead to decreases in comprehensibility and in-
sight in the results. Academic studies on the development of
effective human-computer interfaces (Jacko & Sears 2003)
emphasise the importance of cognitive compatibility in the
form and quantity of information presented to human be-
ings. This is particularly critical for technologies associated
with hypothesis formation and experimentation. After all,
science is an essentially human activity that requires clar-
ity both in the statement of hypotheses and their clear and
undeniable refutation through experimentation.
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