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Abstract

It has often been noted that the performance of existing learning sys-
tems is strongly biased by the vocabulary provided in the problem de-
scription language. An ideal system should be capable of overcoming this
restriction by defining its own vocabulary. Such a system would be less
reliant on the teacher’s ingenuity in supplying an appropriate problem rep-
resentation. For this purpose we present a mechanism for automatically
inventing and generalising first-order Horn clause predicates. The method
is based on inverting the mechanism of resolution. The approach has its
roots in the Duce system for induction of propositional Horn clauses. We
have implemented the new mechanism in a system called CIGOL. CIGOL
uses incremental induction to augment incomplete clausal theories. A sin-
gle, uniform knowledge representation allows existing clauses to be used
as background knowledge in the construction of new predicates. Given
examples of a high-level predicate, CIGOL generates related sub-concepts
which it then asks its human teacher to name. Generalisations of predi-
cates are tested by asking questions of the human teacher. CIGOL gen-
erates new concepts and generalisations with a preference for simplicity.
We illustrate the operation of CIGOL by way of various sessions in which
auxiliary predicates are automatically introduced and generalised.

1 Introduction

Most learning systems, whether inductive or explanation-based, produce gen-
eralisations from examples. However, as Utgoff (Utgoff, 1986), Rendell (Ren-
dell, 1985) and others have pointed out, the performance of such systems is
strongly biased by the vocabulary used within the foreground examples and
any supplied background domain knowledge. Although conceptual clustering
algorithms such as those of Michalski and Stepp (Michalski and Stepp, 1982)
and Rendell (Rendell, 1985) have broken ground within this area, these meth-
ods have tended to be limited to the construction of new taxonomic clauses
within non-relational formalisms.



Discovery systems, such as Lenat’s AM program (Lenat, 1979), represent
a second approach to the construction of new predicates. AM independently
proposed new concepts based on machine investigation within a mathematical
domain. The discovery process was guided by a set of heuristics of “interest-
ingness”, and not by any external goal. Other work on discovery (Langley
et al., 1983; Epstein, 1987) shares this property of being only weakly directed
by general heuristics.

It is in this aspect of directedness or goal orientation that the work described
in this paper differs substantially from that of work on machine discovery. For
this reason we prefer to call the new approach machine invention. Thus rather
than employing a set of ad hoc heuristics, the learning program continually as-
sesses the utility of new invented concepts in terms of more absolute parameters
of performance improvement.

The present approach has its roots both in the previously mentioned Duce
system for induction of propositional Horn clauses (Muggleton, 1987) and in
Sammut’s MARVIN (Sammut, 1981). MARVIN uses a single operator to gen-
eralise examples within a first-order Horn clause representation. Meanwhile,
Duce applies the same operator together with an additional, related set of
transformations to introduce and generalise predicates within a propositional
logic formalism. On analysis, Duce’s transformations proved to be simple in-
versions of Robinson’s (Robinson, 1965) mechanism of resolution (Muggleton,
1991). In Section 2 we illustrate a Prolog implementation of this mechanism
called CIGOL (LOGIC backwards). In Sections 3 and 4 we give the theoret-
ical basis of CIGOL and demonstrate that by extending the notion of inverse
resolution to first-order logic, it is possible to produce powerful learning mecha-
nisms capable of inventing and generalising first-order relational predicates. In
Section 5 we describe implementation details of CIGOL.

Although CIGOL is essentially an inductive learning algorithm, the ap-
proach is related to the explanation-based learning (EBL) approach to ma-
chine learning. Firstly, like explanation-based systems described by DeJong and
Mooney (DeJong and Mooney, 1986) and Mitchell, Keller and Kedar-Cabelli
(Mitchell et al., 1986), CIGOL carries out intensive analysis of single examples
with reference to an existing background theory. This leads to a very efficient
use of example material. In (Muggleton and Buntine, 1988) we have shown
that the minimum number of ground unit examples required to learn a theory
containing N clauses is merely 2(N — P) where P is the number of predicates
invented by the system. Secondly, Kedar-Cabelli and McCarty (Kedar-Cabelli
and McCarty, 1987) have shown that mechanisms based on resolution can be
used to produce a powerful and simple framework for explanation-based learn-
ing. This suggests a possible route for integration with the mechanisms de-
scribed here. Towards these ends, Wirth (Wirth, 1988) has used our method of
inverse resolution to deal with part of the incomplete theory problem in EBL.
There are two senses in which any logical theory can be incomplete: the theory
can have insufficient coverage for existing predicates, or, alternatively, it can
have an insufficiently rich vocabulary for describing the domain. In this paper
we attack both these problems.



| 7- cigol.
- member(blue,[blue]).
I- member(eye,[eye,nose,throat]).
TRUNCATION (-20)
Is member(A,[A|B]) always true? y.
member(red,[blue,red]).
TRUNCATION (-15)
Is member(A,[B|C]) always true? n.
member(2,[1,2,3,4,5,6]).
TRUNCATION (-33)
Is member(A,[B,A|C]) always true? y.
ABSORPTION (-1)
New clauses:[(member(A,[B|C]):-member(A,C))]
cover new facts: [member(A,[B,C,A|D)),..]
Are new clauses always true? y.
I- show_clauses.
member(A,[A|B]).
member(A,[B|C]):-member(A,C).

Figure 1: CIGOL learns list membership

2 CIGOL Sessions

In this section we illustrate the operation of CIGOL by way of sessions in which
it learns and invents various predicates.

2.1 List membership

Figure 1! shows a session in which CIGOL learns list-membership. A session
involving predicate invention is left to Section 2.2.

User input is shown in bold. On the first line CIGOL is called from the
Prolog prompt level. CIGOL prompts the user for an example with “!-”. The
first example states that “blue” is a member of the list [blue]. Note that although
this is a ground unit clause, examples can take the form of arbitrary non-ground
Horn clauses. Since there are no other examples, CIGOL returns the prompt.
Given the second example, CIGOL applies the truncation operator (see Section
4.3) and asks if the least general generalisation member(A,[A|B]) is true, i.e.,
is something a member of a list if it is the first element? CIGOL’s questions of
this form should be taken as universally quantified. The number (-20) after the
word TRUNCATION represents the compaction produced in terms of clause
size (Section 5). The user indicates that the generalisation is true. In the next
two examples the user shows CIGOL that something is a member of a list if
it is the second element. At first CIGOL over-generalises with the hypothesis
member(A,[B|C]), i.e. anything is a member of any list. The user rejects this.

'Edinburgh Prolog syntax (Clocksin and Mellish, 1981) is used throughout the examples.



However, the next truncation member(A,[B,A|C)), is correct. CIGOL uses this
new clause as the basis for constructing an inverse proof, finding that it can
apply the absorption operation (see Section 4.1) to get the general recursive
clause (member(A,[B|C]) :- member(A,C)). CIGOL uses a depth-bounded SLD
theorem-proved to show the user that the additional, as yet unknown fact,
member(A,[B,C,A|D]) can be derived using the new clause. The user confirms
this generalisation. CIGOL cannot generalise further and so returns to the
prompt. In reply to the user’s typing “show-clauses”, CIGOL shows the clauses
which are known to be true.

2.2 Arch problem

In (Sammut and Banerji, 1986), the operation of MARVIN is illustrated by its
ability to learn the description of an arch. Where MARVIN had to be taught
each sub-concept involved separately, CIGOL is able to invent these auxiliary
subproblems itself. Figure 2 shows the interaction involved in this process.

The specific form of arch to be learned in this example has two columns
on either side consisting of a mixture of pairwise matching bricks and blocks.
The arch is topped with a beam. Arches are represented symbolically by terms
consisting of triples of the form (Column 1, beam, Column 2). In the session of
Figure 2, the user consults, without generalisation, a file of clauses called “arch”.
In general, the consult facility used is for loading libraries of problem-specific
background knowledge. Having done this, typing “show-clauses” displays the
ground unit clauses which have been consulted. The user then types in a new
example of an arch. This leads to three unsuccessful truncations followed by
an intra-construction (see Section 4.2). The intra-construction suggests a new
predicate, p110, showing the call to p110 together with four instances of the
new predicate. The user recognises and names p110 as “column”. CIGOL now
applies the absorption operator to produce a recursive generalisation of the two
clauses for column, which the user confirms. CIGOL now tries to generalise
this recursive clause further with a doubly recursive clause. Although this new
generalisation is strictly correct, it is over-complicated and covers no new facts.
The user thus replies with “i”, telling CIGOL to ignore this generalisation.

The absorption operator is now applied again to produce another recursive
clause for column, which the user confirms. The intra-construction operator
now introduces a new predicate, p190, which allows the recursive clauses for
column to be combined into a single clause. The user names the new predicate
“brick-or-block”, representing a new type of object. CIGOL finds no more
operator applications and thus returns to the prompt. Lastly, the user asks the
system to display all the clauses. This final set of clauses is a complete, correct
and non-redundant concept definition.

In Section 3 and 4 we give the theoretical basis for CIGOL’s inverse resolu-
tion operators of truncation, absorption and intra-construction.



| 7- cigol.
I- [-arch].
I- show_clauses.
arch([],beam,]]).
arch([block],beam,[block]).
arch([brick],beam, [brick]).
I- arch([block,brick],beam,[block,brick]).
TRUNCATION (-71)
Is arch(A,beam,A) always true? n.
TRUNCATION (-65)
Is arch([A|B],beam,[A|B]) always true? n.
TRUNCATION (-53)
Is arch([block|A],beam,[block|A]) always true? n.
INTRA-CONSTRUCTION (-32)
arch((A,beam,A)):-p110(A).
p110([)).
p110([block]).
p110([block,brick]).
p110([brick]).
What shall T call p110? column.
ABSORPTION (-2)
New clauses:[(column([block|A]):-column(A))]
cover new facts: [column([block,block]),column([block,block,brick]),..]
Are new clauses always true? y.
ABSORPTION (-10)
New clauses:[(column([A|B]):-column([A,brick]),column(B))]
cover new facts: [...]
Are new clauses always true? i.
ABSORPTION (-2)
New clauses:[(column([brick|A]):-column(A))]
cover new facts: [column([brick,block]),column([brick,brick]),..]
Are new clauses always true? y.
INTRA-CONSTRUCTION (-3)
column(([A|B])):-p190(A), column(B).
p190(block).
p190(brick).
What shall T call p110? brick_or_block.
I- show_clauses.
arch(A,beam,A) :- column(A).
brick_or_block(block).
brick_or_block(brick).
column([]).
column([A|B]):-brick_or_block(A),column(B).

Figure 2: Arch problem



3 Preliminaries

Although we assume basic familiarity with resolution and unification, in this
section we briefly review some of the concepts involved. The terminology de-
veloped will be used in Section 4 to describe inverse resolution.

3.1 Unification

We use terminology similar to that of Lassez, Maher and Marriott (Lassez
et al., 1986). Terms, atoms (predicate symbols applied to terms), literals (pos-
itive or negative atoms), clauses (sets of literals) and Horn clauses (clauses
containing one positive literal) have their usual meaning. The set of variables
occurring in any syntactic object, o, is denoted by vars(o). A substitution
0 = {vi/t1,...,vp/tn}, uniquely maps terms to variables. It is applied to a
term by replacing all occurrences of each v; by the corresponding term ;. The
set of variables {v1,...,v,} is denoted by domain(f). A unifier for two terms
or literals ¢1 and %o, is a substitution @, such that ¢10 = t26. The substitution 8
is a most general unifier or mgu of t; and t5 if and only there is no other unifier
0" for which the unified term #;6’ is more general than ¢;60. We say that two
terms or literals are unifiable if they have an mgu.

For the purpose of inverting resolution steps we will introduce the notion
of an inverse substitution. Given a term or literal ¢ and a substitution @, there
exists a unique inverse substitution 6~ such that t#9~! = t. Whereas the
substitution # maps terms to variables within ¢, the inverse substitution 61
maps variables in ¢ to terms in ¢6. Thus if

0= {’01/t1,...,vn/tn}

we denote the corresponding inverse substitution by

071 = {(tla {pl,la ~ey Plomy })/Ula ey (tna {pn,la s ,pn,mn})/vn}

in which p; ,, are the places (see below) at which the variables v; are found within
t. Inverse substitutions are applied by replacing all ¢; at places p;1,...,Dim;
within £ by v;. Places within terms or literals are denoted by n-tuples and
defined recursively as follows. The term at place (a1) within f(¢1,...,%,) is
ta;- The term at place (ai,...,an) within f(¢1,...,t,) is the term at place
(ag,...,am) in tg,. The definition of place can easily be extended to cover
places within clauses by assuming a fixed ordering on literal within a clause.

Example 1 If literal L = likes(A,brother(A)) and 8 = {A/john} then LO =
likes(john,brother(john)) and 0=' = {(john,{(1),(2,1)})/A}. (1) and (2,1) are
the places within L at which variable A is found. Thus LOO ' = likes(A,brother,A)
= L.

Given two terms or literals ¢; and ¢2 which have no variables in common, we
say that the substitution 6 is their #-difference when t16 = t2 and domain(@) C
vars(t1). The #-difference is undefined otherwise. When it is define it is written
as the infix relation 8 = t;— t2. In fact the 8-difference between two terms is
unique and can be defined recursively as follows.



heavier(A,B) :- denser(A,B), larger(A,B) :- heavier(hammer,feather)

denser(hammer,feather) .- denser(hammer feather)

larger(hammer,feather)

larger(hammer feather) :- larger(hammer,feather)

[]

Figure 3: A refutation tree

v1—¢ to = {v1/t2} if v1 is a variable.

flriyern)—g f(s1,-580) = U(ri—g si) for 1 <i < n if f is a predicate or
function symbol with arity n.

t1—g to is undefined otherwise.

When t1—6 t9 is defined we say that ¢, subsumes to.

Example 2 The term t; = plus(A,B) subsumes the term to = plus(3,4) since
t1—0 to = {A/3, B/4}.

3.2 Resolution steps

Resolution allows us to infer a new clause C from two given clauses C; and
Cy. Let C7 and Cy be two clauses with no variables in common. Let L;
and Lo be literals within C; and Cy respectively such that 6 is the mgu of
L; and L,. We say that L; and Lo are the literals resolved on and write
the resolvent, or resolved product of C7 and Cy as C = C; - Cy where C =
(C1 —{L1})0 U (Cy — {L2})0. The substitution # can be uniquely factored into
component parts €; and 02 such that § = 6,16, domain(6;) C vars(C1) and
domain(fy) C vars(Cs). This gives

C = (C1—{L:1})0; U(C2 —{L2})0; (1)

3.3 Resolution proofs

Resolution is used for deriving the consequences of a logical theory. Given a
theory T, C is a consequence of T (or T — C) if only and only if T A C can be
shown to be false. A resolution proof consists of a series of resolution inference
steps which generate the empty or false clause given T A C as input. Such a
proof is often represented graphically as a binary tree.

Example 3 If T is the theory



C, (+) G, (_

Figure 4: A single resolution step

larger(hammer, feather)
denser(hammer, feather)
heavier(A,B) :- denser(A,B), larger(A,B)

and C is the goal
:- heavier(hammer, feather).

then Figure 3 shows a refutation tree for C. The small open square at the root
of the tree represents the empty clause.

4 Inverting resolution

CIGOL employs three types of operators to construct theories from examples.
“V” operators generalise existing clauses without introducing new predicates.
“W?” operators introduce new auxiliary predicates. Lastly the truncation opera-
tor is a boundary case “W” operator which generalises unit clauses by applying
Plotkin’s least general generalisation relation (Plotkin, 1971).

4.1 The “V” operators

The tree in Figure 3 can be seen as being made up of a number of connected
“V”s, in which each “V” represents a single resolution inference. Figure 4 shows
the general form of these “V”s. Resolution is able to derive the clause the base
of the “V” given the clause on the other arm and the clause at the base. In
Figure 4, the literal resolved on is positive (+) in C} and negative (-) in Cs.

Note that within any theory containing C; and Cs, C' is redundant since it
is directly implied by C7 and Cs. Owing to the fact that C' can be discarded
the “V” operators are capable of leading to simplification and compaction of
theories.

The absorption operator in CIGOL constructs Co given Cy and C. Within
the propositional Duce system the identification operator constructs Ci given
C5 and C'. The identification operator has not yet been implemented in CIGOL.
These two operators together are called the “V” operators.

In order to apply either the absorption or the identification operators we
need to be able to find an inverse of the resolved product. The notion of



a resolved quotient is therefore introduced. With reference to the clauses in
Figure 4, we write the resolved quotient of C and C; as Cy = C/C;. This must
satisfy C = C - Cy (see Section 3.2). In the propositional Horn clause case, as
in Duce, the resolved quotient of two clauses is unique under the assumption
of separability explained below. For first-order clauses, the resolved quotient is
not unique in general. However, we can find exact constraints on this quotient
by considering equation (1) (Section 3.2). By simple algebraic manipulation of
(1), we get

Cr = (C—(C1—{L1})61)0;" U{Ly} (2)

We have made the assumption here that the clauses (Ci — {L1})6; and
(Co—{L32})02 contain no common literals. We make this separability assumption
throughout the paper. Now, since 06, is the mgu of L; and Lo, we know that
L6, = Ly, and thus

Ly = Li0:65" 3)

Substitution (3) into (2) we get

Cy = (C—(C—{L1})01)05 UL.6:6,"
= (C—(C1—{L1})61 UL161)6; " (4)

Note that the constraints on inverting resolution described by (4) are not
restricted to Horn clauses, but hold for arbitrary first-order clauses. Given
only C and C; there are three sources of indeterminacy within equation (4).
Namely, L1, 61 and 65 2. In order to reduce this indeterminacy, we first of
all assume that C; is a unit clause, i.e. C; = {L;}. This simplifies (4) to
Cy = (CU{L1}61)05" and reduces the indeterminacy to the choice of #; and
0y ! Let us imagine constructing 0y ! non-deterministically. From the definition
of an inverse substitution (Section 3.1), we must decide which terms within
(C U{L1}61) map to distinct variables. Let term ¢ in C and 160, in {L;}6; be
mapped to the same variable v within 65 where #; is a term within {IZ;}. This
implies that ¢16; = t. Clearly in this case t1—¢t is defined and is a subset of
0. This suggests a non-deterministic algorithm for hypothesising Co given C
and C; = {L1} (algorithm 1). Note that in algorithm 1, by a partition II of a
set S we mean a set of sets such that no two blocks (elements) of II have any
common elements, and the union of the blocks of II is equal to S.

Algorithm 1 A non-deterministic algorithm for computing absorption

Input: clauses C and Cy; = {L;}
Let TP = {(t,p)|t is a term found at place p in (C'U{L1})}
Let TP' be a subset of TP
Construct a partition I1 of TP' as follows



Figure 5: Two resolution steps with common clause A

Let each block B = {(r,p1), .-, (,pn)} U{(s,q1), -, (S, am)}
of II be such that s subsumes r and all

(r,p;) correspond to terms from C and
(s,q;) correspond to terms from {L}
Let 61 =U(s —g ) for all blocks B as above
Let 51 = {(r,{p1, -, Pns 1, - Gim }) /0| for all blocks B as above} where
all v are distinct variables not found in (C U {L})
Output: Cy = (CU{L10:})05"

Since Algorithm 1 is non-deterministic, it is necessary to reformulate it as a
search-based algorithm in order to execute it. In Section 5 we describe CIGOL’s
best-first search implementation of Algorithm 1. The search uses simplicity or
compaction as a heuristic.

Example 4 Let C = (A < s(s(A))) and C; = (B < s(B)), where s(X) means
the successor of X. Then

(CU{Li}) = ((A<s(s(4): —(B
TP: {(A7 <17 1))7(A7 <1727]‘7 S
(B,(2,1)),(B,(2,2,1)),(s(B),(2,2)
Non-deterministically choose TP' = {(s(s(4)),(1,2)), (s(B),(2,2))}. Then
01 ={B/s(A)},
07" = {(s(s(4)),{(1,2),(2,2)})/D} and
Cy=((A<D):—(s(A) < D))
Note that this satisfies the resolution relation C = C1 - Cs.

4.2 The ‘W’ Operators

By combining together two resolution ‘V’s back-to-back we get a ‘W’ of the
form shown in Figure 5.

Assume that C7 and C5 resolve on common literal L within A to produce
Bi and Bs. The methods described in this section construct the clauses A,
C1 and C given By and Bs. The ‘W’ operators are called intra-construction
when L is negative and inter-construction when L is positive. Note that since
the common literal L in A is resolved away, the clauses A, C7 and Cs can
contain a literal with a predicate symbol not found in B; and By. It is in
this that new predicates are invented by the ‘W’ operators. Although both

10



‘W’ operators were implemented within Duce, CIGOL presently only uses the
intra-construction operator whom we will discuss in this section.

The ‘W’ in Figure 5 can be extended to multiple clauses as follows. Let
BB = {By,...,B,} and CC = {C,...,C,} be two sets of clauses, and L a
negative literal in A such that B; = A - C; resolved on L. Applying equation
(1) we get

B; = (A—{L})8a,: U (Ci — {Li})0c, (5)
where 64 ;0¢; is the MGU of L and L, i.e.,

LOa; = Lifc, (6)
We make the simplifying assumption that

Ci = {Li} (7)

Applying this to (5) we get
Bi= (A= {L})0a, (8)
Thus let us choose a clause B = (A — {L}) such that it is a common

generalisation of all clauses B;. Given such a choice for B we get

04; = B—yB; 9)

From equation (6) we can see that vars(L) C domain(f4,;) for 1 < i < n.
The simplest choice for L is L = p(vy,..,vm) where {} = |Jdomain(64,) and
p is a new predicate symbol. Clearly this is a most general literal, and thus
overlineL must subsume L;. Hence unifying L and L; gives L;. But, according
to (6) unifying L and L; gives L;0c ;, so 6¢,; must be empty. Applying this fact
to (7) and (6) we get

Ci ={L;} = {L}0a, (10)

Since we are constructing the definition of a new predicate it is worth check-
ing that we are not introducing irrelevant terms into the definition. To explain
what is meant here, imagine there is a place () such that for all L; the term at
place (j) shares no variables with the remainder of L;. Removing the variable
v; from L and the corresponding term from C; will not affect the semantics of
any subsequent predicate based on p. Since there is not room here to prove this,
we merely demonstrate the effect of this definition of irrelevance in Example 5
below. Lastly, if we rearrange (8) we get

A = B;;U{L} (11)
BU{L} (12)

Equations (9), (10) and (12) give us the basis for the following non-deterministic
algorithm.

11



Algorithm 2 A non-deterministic algorithm for computing intra-construction

Input: clauses BB = By, .., B,
Let B be a generalisation of the clauses in BB such that
04, =B—B;
Construct L = p(v1,..,vm) where {v1,..,0m}
1s the relevant subset of
Udomain(04,;) and p is a new predicate symbol
Output: A= BU{L} and C; = {L}04,

Example 5 Imagine we are given as input the clauses BB = {B1, By} where
By = (min(D,[s(D)|E))) : —min(D, E)
By = (min(F,[s(s(F))|G)])) : —min(F,G).
Here min(X,Y) should be taken to mean that X is the minimum of the list of
numbers Y. If we let B = (min(H, [I|J]) : —min(H, J)) then
04, = {H/D,I/s(D),J/E}
On2 = {H/F,1/s(s(F)),J/G}

Since none of the terms substituted for J contain variables present within
any other substitutions, it will be irrelevant within the definition of C;. Thus

L = p(H,I)
A = (min(H,[I|J]) : —min(H,J),pl(H,I))
Cr = (p(D,s(D)))

and

Co = (p(F,s(s(F))))

In fact p is the numeric comparison relation “<”, where Cy and Cy are two
instances of this relation.

4.3 The truncation operator

The empty clause is found at the root of every refutation tree (see Figure 3).
However, the operators so far described do not deal with the case in which
the empty clause is found at the base of ‘V’ or ‘W’. The truncation operator
described in this section deals with this case. Figure 6 shows such a ‘W’. Given
the unit clauses {L;} and {Ls} the truncation operator hypothesises L. In fact,
we show in (Muggleton and Buntine, 1988) that it is sufficient for completeness
to cover only the case in which 7 and 7o are empty substitutions, in which
case L subsumes both L; and Ly,. Moreover, without loss of completeness the
operation can be made deterministic by constructing L to be the least general
generalisation of Ly and Ly. The details of this algorithm can be found in
Plotkin (Plotkin, 1971). In CIGOL this operation has been extended to deal
with arbitrarily large sets of unit clauses.

12



{L} L {L}

Figure 6: The truncation operator

5 CIGOL

The operators described in Section 4 have been implemented within the learning
system CIGOL. CIGOL is an interactive Prolog program which incrementally
constructs first-order Horn clause theories from example clauses presented by
a human teacher. Questions are asked of the teacher in order to verify gener-
alisations made by the truncation and absorption operators. CIGOL also asks
the teacher to name new predicates introduced using the intra-construction
operator. The following is a top-level description of CIGOL.

Algorithm 3 CIGOL

Let theory T := () and counter-clauses N := ()
Forever Do
Let I := term-indexing(T)
Read example clause E from teacher
E' := best-agreed-truncation(E, T, N, I)
inverse-prove({E'}, T, N, I)
reduce-pclauses(T, N, I)
Repeat

In the algorithm above, T is a set of Horn clauses representing the growing
theory. The set of clauses N is composed of false clauses. These act as counter-
examples of predicates and are added to when the teacher rejects generalisations
posed within procedures best-agreed-truncation and inverse-prove. The proce-
dure reduce-clauses removes redundant clauses using Buntine’s (Buntine, 1986)
redundancy algorithm.

The truncation operator is applied to new unit clause examples. The pro-
cedure best-agreed-truncation develops a subset 7" of the unit clauses in T (in-
dexed using I) such that E' is the least general generalisation of T'U{E}. T' is
found using a best-first search based on minimising the size of (T'—T") U{E'}.
The size of syntactic objects is defined as follows.

size-of clause set {C1,..,Cp} =1+ Y (size-of clauseC;), 1<i<mn
size-of clause {L1,..,L,} = 1+ > (size-of literalL;), 1<i<n
size-of literal or term f(t1,..,tp) = 2+ Y (size-oft;), 1<i<n
size-of variable v =1

13



The search within best-agreed truncation halts at local minima. At this point
CIGOL tests to see whether E' can be shown to be true or false using 7' and
N. This is based on depth-bounded theorem proving, again using Buntine’s
redundancy algorithm. When it cannot be shown to be true or false the teacher
is asked about the truth of E’. If the teacher rejects the generalisation then E'
is added to N and the search resumes. Otherwise T becomes (T' —T") U {E'},
I is updated and E’ is returned by best-agreed-truncation.

The amount of search involved with best agreed truncation is reduced by
use of the indexing I. Thus the search up to a local minimum for applying the
truncation operator is carried out with upper-bound time complexity O(|S’|?)
where S’ is the number of unit clauses in T' which have the same predicated
symbol and arity as E.

The absorption and intra-construction operators are applied within inverse-
prove. The inverse-prove procedure works in a way, which is similar to the
goal reduction mechanism of Prolog. The difference is that whereas Prolog
constructs resolution proofs of goal clauses from a given program, CIGOL uses
inverse resolution to construct a resolution proof backward from the truncated
examples. The clauses at the leaves of CIGOL’s proof trees are then added to
the background theory T'. Clauses at the internal nodes of the proof tree are
deleted from the theory, since these clauses are, by definition, implied by T.
The structure of the inverse-prove procedure is given below.

Algorithm 4 The inverse-prove procedure

Input: Goal clauses Gs, theory T, counter-clauses N and term-indexing I
ForEach goal clause G in Gs
NewGs := best-agreed-operator(G,T, N, I)
inverse-prove(NewGs,T,N,I)
Repeat

The procedure best-agreed-operation works in the same way as best-agreed-
truncation except that I is used to index into the terms and literals within 7T
in order to search for absorption and intra-construction operators efficiently. In
this way, the search up to a local minimum for applying the absorption operator
is carried out with the upper-bound time complexity O(U.V) where U is the
number of subterms G and V is the number of terms within 7" which have
corresponding function symbols and arity. The search up to a local minimum
for applying the intra-construction operator is carried out with upper-bound
time complexity O(|T'|.M.D) where |T'| is the number of clauses in T, M is the
maximum arity of any term or literal in G and D is the maximum depth of the
literals in G.

6 Discussion

Apart from the predicates learned in Sections 2.1 and 2.2, CIGOL has been
capable of successfully learning a wide range of first-order concepts, each re-
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quiring only a small number of examples. The following are among the concepts
learned so far:

list-reverse - invented auxiliary predicate “append”

list-minimum - minimum number in list, invented auxiliary “<” (see example

5)
ordered-binary-tree-insert - invented auxiliary “<”
merge-sort - given split and “<”, invented “merge”

The reader will notice that in the last case a fair amount of background
knowledge was necessary to learn the predicate. This seems to indicate a limit
to the complexity of predicates which can be learned given only examples of
the top-level predicate. It is not clear at this stage whether this limitation is
fundamental to the approach, or whether it can be overcome by using a different
control strategy. One hope is that non-incremental control would help. This
would give the new version of CIGOL a control strategy similar to that of its
propositional predecessor Duce. Indeed, Duce was capable of hierarchically
decomposing problems on a much larger scale than anything CIGOL has been
applied to.

As it is, CIGOL is capable of learning as wide a set of Prolog predicates
as Shapiro’s Model Inference System (MIS) (Shapiro, 1983) using far fewer
examples. More importantly, systems such as MIS only carry out generalisation
of underspecified predicates, without the invention of new auxiliary concepts.

It is widely believed that a first-order framework is too unconstrained for
effective learning. However, we have shown here that just as resolution and uni-
fication can produce well-constrained deductive problem solvers such as Prolog,
these constraints in reverse strongly limit the search for inductive generalisa-
tions (see polynomial complexity results in Section 5).

In conclusion, it is worth noting that choice of first-order clausal logic has
several distinct advantages as a knowledge representation for machine learn-
ing. Predicate calculus’ long history has left a particularly well-laid theoretical
foundation. Moreover the notion of generality, central to all forms of machine
learning, maps directly to the concept of implication, which is the mainstay
of logic. The advent of resolution (Robinson, 1965) provided the only known
sound and complete mechanism for computing logical implication. Our hope is
that the methods based on inverse resolution will prove as powerful within the
context of Machine Learning.
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