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Abstract

The field of Inductive Logic Programming
(ILP) is concerned with inducing logic pr~
grams from examples in the presence of back-
ground knowledge. This paper defines the ILP
problem, and describes the various syntactic
restrictions that are commonly used for learn-
ing first-order representations. We then de-
rive some ~ositive results concerning the learn-
ability of these restricted classes of lo~ic pro-
gram;, by reduction to a standard ~roposi-
tional learning problem. More specifically, k-
clause predicate definitions consisting of de-
terminate, function-free, non-recursive Horn
clauses with variables of bounded det)th are
polynomially learnable under simple distribu-
tions. Similarly, recursive k-clause definitions
are polynomially learnable under simple distri-
butions if we allow existential and membership
queries about the target concept.

1 Introduction

Most successes within the field of machine learning have
derived from systems that construct hypotheses within
propositional logic, and, unsurprisingly, PAC learning
theory has been applied principally to the learnability
of subsets of propositional concept definitions. As rel-
atively few concept classes are polynomially learnable
under arbitrary probability distributions (for example,
k-CNF, k-DNF [Valiant 1984, Haussler 1988], and k-
DL [Rivest 1987]), learnability under specific distribu-
tions or classes of distributions haa also been studied
[Benedek and Itai 1988].
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Recently, Li and Vit6nyi [1991] have shown that sev-
eral interesting concept classes, including the class of
monotone k-term DNF, which are not known to be
or are known not to be polynomially learnable (unless
RP = NP) under arbitrary distributions, are poly-
nomially learnable under a broad class of probability
distributions, called simple distributions. This class of
distributions includes all enumerable distributions and
hence all distributions with bounded precision parame-
ters that can be usually found in statistics books. Sam-
pling is done according to the universal m distribu-
tion, or its polynomial-time version, which asaign higher
probability y to ‘simpler’ examples, where ‘simple’ means
‘of low Kolmogorov complexity’.

Despite their successes, propositional learning ap-
proaches suffer from the limited expressiveness of their
hypothesis language. Among other issues, propositional
languagea allow one to ignore the complications arising
from recursion and the introduction of new predicates.
Furthermore, computational learning theory has mainly
focussed on learning in the absence of prior knowledge,
whereas difficult learning problems typically require the
presence of a substantial body of prior knowledge.

Learning systems that use more expressive languages,
typically subsets of first-order logic, have recently at-
tracted a substantial amount of research effort in the
machine learning community. As the learned hypothe-
sis most often takes the form of a set of first-order Horn
clausea (i.e., a logic program), the field has been named
Inductive Logic Programming (ILP) [Muggleton 1991,

Muggleton 1992]. ILP takea the field of machine learn-
ing somewhat closer to a practical method for inducing
Turing-equivalent theories.

In this paper we will concentrate on the prob-
lem of learning a single concept or target pred-
icate. Other work in ILP has focuased on
learning several, possibly interdependent, concepts
[Shapiro 1983, De Raedt and Bruynooghe 1992]. Few
PAC-learnability results have been established for ei-
ther case (see section 2), although the multiple-
concept learning methods of [Shapiro 1983] and
[De Raedt and Bruynooghe 1992] have been shown to
identify the correct concept in the limit.
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Three distinct but related approaches to ILP have
emerged. Inverse resohdion methods (for exam-
ple, CIGOL [Muggleton and Buntine 1988] and ITOU
[Rouveirol 1991]) are based on the fact that a correct
hypothesis must allow a resolution proof of the ex-
amples. Inverse resolution is thus a nondeterministic
process that generates all possible premises of resolu-
tion proofs for the observations. The GOLEM system
[Muggleton and Feng 1990] is based on Plotkin’s notion
of the relative least general generalization (RLGG) of
a set of observations with respect to some background
knowledge; by making certain syntactic restrictions, it
can be shown that a unique, finite RLGG can be found,
which is then simplified to generate a reasonable hy-
pothesis. The third class of systems, which includes LI-
Nus [Lavrac et al. 1991] and FOIL [Quinlan 1990], work
by extending propositional approaches to a first-order
framework. While FOIL uses heuristic search techniques
adapted from propositional learning to construct first-

order clauses directly, LINUS explicitly converts the first-
order representation to a propositional one by defining
an appropriate set of new Boolean features.

We shall use this latter approach to obtain our results,
because of the direct applicability of existing results in
computational learning theory. 1 Section 2 provides for-
mal definitions for the ILP problem and for the syn-
tactic restrictions we will be considering, and section 3
illustrates these definitions in the context of a simple
example. Section 4 shows how an ILP problem can be
transformed to a propositional problem, and section 5
gives the principal results. In section 6 we give several
examples of determinate logic programs, which imply
that many interesting and non-trivial concepts belong
to this class. Section 7 discusses ways in which the syn-
tactic restrictions might be relaxed and suggests topics
for further research.

2 Inductive Logic Programming

Definition 1 ILP Problem:

Given:

● A set 2 = f+ U E- of positive .5+ and negative E-
examples, represented as ground literals.

. Background knowledge B, a set of first-order Horn
clauses, typically including further facts describing
the examples in 8+ and 8-, such that B ~ .5+.

Fred:

● Hypothesis ‘H, also a set of Horn clauses, such that
B A ‘H ~ E+ (where ~ is the relation of logical
entailment), and B A x A &– is consistent.

1It should be noted that only positive results can be ob-

tained this way, since the hardness of a transformed propo-
sitional problem does not guarantee that the original first-
order problem cannot be solved efficiently by some other
means.

We define 1 to be the number of distinct predicates

PI. . .pl in B, and n to be the arity of the target predi-
cate q.

A brief overview of first-order logic terminology is given
in the appendix. Logic programming concepts are ex-
tensively covered in the standard textbook [Lloyd 1987].
For reference, a Horn clause (more specifically, a definite
progiam clause [Lloyd 1987]) haa the following form:

q(...) +-pl(...), pa),..),..., p,(...)

where q(. . .), P1(. . .), P2(. . .) ,. ... p$(...) are positive lit-
erals. The literal q(. . .) is called the head and the con-
junction of literals pl(. . .), pz(. . .. ...). p,(. . .) is called
the body of the clause. It should be noted that variables
in the head of the clause are implicitly universally quan-
tified, while variables that appear in the body, but not
in the head are implicitly existentially quantified.

In the logical framework we have adopted, a concept
is a predicate. When expressed as a logic program, a

concept (predicate) definition is a set of clauses each of
which haa the target predicate appearing in its head:

~(...)+ Pll), P12(P),(...),...
!I(...) +P21), P22(P),(...),...
. . .

Although it appears to be a conjunction of sufficient
conditions, predicate completion is assumed in the eval-
uation of queries, so that the above definition is in fact
equivalent to the logical form

Q(...) e bhl(...), Ply),..),...] ),2]v...),...] v...

Definition 2 k-clause definitions:
A k-clause predicate definition consists of up to k Horn
clauses with the same predicate symbol in the head.

As can be seen above, a k-clause predicate definition
corresponds to a k-term first-order DNF formula.

In practice, ILP systems work within various other syn-
tactic restrictions in order to limit the complexity of the
problem. These are defined as follows:

Definition 3 Ground background knowledge:
B is ground if it consists of ground unit clauses only.

This restriction is used in both FOIL and GOLEM. Non-
ground background knowledge may be used, but has to
be converted to a ground model, i.e. a set of ground unit
clauses, by carrying out all h-easy derivations starting
from the constant symbols in the observations. This
has to be done prior to the learning process. In this
case, the input size includes the number of unit clauses
in the ground version of B. In the LINUS approach, no
pre-conversion is done, but instead the values of the
propositional features are calculated by queries to B,
hence the following assumption:

Definition 4 Efficient background knowledge:
B is ej’icient if all atomtc queries to it can be answered
in time polynomial in the arity of the query predicate.



Table 1: A simple ILP problem

Training ezamples Background knowledge

grandmother(ann, bob). father(zak, tom). father(pat, arm). father(zak, jim).

grandmother(ann, sue). mother(ann, tom). mother(liz, arm). mother(ann, jim).

~grandmother(bob, sue). father(tom, sue). father(tom, bob). father(jim, dave).

~grandmother(tom, bob). mother(eve, sue). mother(eve, bob). mother(jean, dave).

The syntactic complexity of 23 can also be limited:

Definition 5
Bounded-arit y background knowledge:
B is of bounded arity if the maximum arity of the pred-
icates in 1? is bounded by some constant j.

We can also define a quantitative measure relating to
the complexity of a clause:

Definition 6 Depth of variables:
Consider a clause h * 11,12,..., lT, ... . Variables that
appear in the head h have depth zero. Let a vam”able V
appear jirst in literal lr. Let d be the maximum depth of
any of the other variables in lr that appear in the clause
h i-- 11,12, ..., l,_l. Then the depth of V is d+ 1.

Several types of restrictions can be imposed on the form
of the hypothesis itself:

Definition 7 Constrained clauses:
A clause is constrained if all variables in the body also
appear in the head.

Definition 8 Function-free clauses:
A clause is function-free if ii has no function symbols.

Definition 9 Nonrecursive clauses:
A clause is nonrecursive ifl the predicate symbol in its
head does noi! appear in any of the Iiierals in its body.
A predicate definition is nonrecursive ifl all the clauses
in it are nonrecursive.

‘Mutually’ recursive definitions, such as

p(X, Y) - r(X, Z), q(Z, Y)
q(x, Y) + S(x, z), p(z, Y)

are not considered recursive by the above definition,
which is, however, sufficient for our purposes, since we

are concerned with learning the definition of a single
predicate, given the definitions of some other predicates.

Definition 10 Determinate clauses:
A clause is determinate iff each of its Iiterals is deter-
minate; a literal is determinate iff each of its variables
that does not appear in preceding literais has only one
possible binding given the bindings of its variables that
appear in preceding literals.

Given maximum variable depth i and maximum arity
j of predicates from L?, the above condition of determi-
nacy is equivalent to the notion of ij-determinacy used

in GOLEM [Muggleton and Feng 1990]. A similar idea
was later used within FOIL [Quinlan 1991].

Given these definitions, we can state the following prior
results. Page and Frisch [1992] have shown that a single
constrained, nonrecursive clause is learnable. Dieroski
and Lavrat [1992] have shown that a set of constrained,
nonrecursive, function-free clauses can be transformed
into a polynomially larger propositional representation.
The work reported in this paper extends these results,
replacing constrained clauses with determinate clauses
and allowing recursion.

3 Example

Let us illustrate the above definitions on a simple ILP
problem. The task is to define the target predicate
grandmother(X, Y), which states that person X is a
grandmother of person Y, in terms of predicates from
the background knowledge, which includes the predi-
cates father and mother. The training examples and
background knowledge are given in table 1.

A definition of the target predicate in terms of back-

ground knowledge predicates is

VXVY : grandmother(X, Y) ++
[32 : father(Z, Y) A mother(X, Z)]V
[3/7 : mother(U, Y) A mother(X, U)]

or in logic programming notation

grarzdmother(X, Y) -
father(Z, Y), mother(X, Z).

grandmother(X, Y) t-
mother(U, Y), mother(X, U).

In the above terminology, this hypothesis is determinate
(but not constrained), because each occurrence of a new
variable (Z in father(Z, Y) and U in mother(U, Y))
has only one possible binding given particular values of
the other (old) variables in the literal (Y in this case).
The hypothesis is of course function-free, the maximum
depth of any variable is 1, and the maximum arity of
background knowledge predicates is 2 (i= 1, j = 2).

However, the logically equivalent hypothesis

grandmother(X, Y) +
mother(X, Z), father(Z, Y).

grandmother(X, Y) -
mother(X, U), mother(U, Y).
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is not determinate, since the new variable Z in the literal
mother(X, Z) can have more than one binding for a
fixed value of X (X = cmn, Z = tom or Z = jim).

4 Transforming ILP problems to

propositional form

Our learnability results are based on transforming an
ILP problem to a propositional form, then using learn-
ability results for the propositional case. This can only
be done for a restricted class of ILP problems. The fea-
tures for the propositional version of the problem cor-
respond to all possible applications of the background
predicates to the arguments of the target predicate. We
first present the transformation algorithm and then il-
lustrate its operation on the example given above.

For the moment, we consider only the problem of learn-
ing non-recursive clauses. To transform the ILP prob-
lem of constructing a definition for target predicate
q(xl, xz, ..., Xn) proceed as follows. First, construct

a list F of all literals that use predicates from the back-
ground knowledge and contain variables of depth at
most i. The determinate literals that introduce new
variables are excluded from this list, as they do not dis-
tinguish between positive and negative examples (the
new variables have a unique binding for any example,
due to the determinacy restriction). The resulting list
is the list of features used for propositional learning.
Next, transform the examples to propositional form.
For each example, the truth value of each of the proposi-
tional features is determined by calls to the background
knowledge base. This is done by algorithm 1. Fi-
nally, after applying a propositional learning algorithm,
transform the output propositional concept definition to
Horn clause form. This conversion is fairly straightfor-
ward (see below).

Algorithm 1

1. vi = {xl, xZ, . ...xn}

2. L={}

3. forr=lio i do

● Dr= the set of literals P(Y1, Y2, ...). where p
is a predicate in f? and the lii!eral contains ex-
actly one new vam”able not in V~–l, 2 that are
determinate

● add literals from DT to the end of list L

● Vr = Vr-l u
{YIY appears in a literal from D.}

2The restriction to one new variable is for the purposes

of simplicity and does not affect the validity of the general

theorems.

4. F= {p$(YI, YZ,..., ~,)l

P. ~ {Pi, P2, ....pJ}. Yl, y2, .. ..yj. = u}
-(DIu D,... uDi)

5. for each q(al,az, . ...a~) E ~+
and each nq(al, a2, ... . an) ~ t- do

●

●

●

determine the values of variables in ~ by exe-
cuting the body of the clause

q(xl, X2, .... Xn) + L with variables
Xl, .. ..Xn bound to al, .. ..a~.

given the values of the variables in U, deter-
mine f, the vector of truth values of the Iiierals
in F, by querying the background knowledge

f is an example of a propositional concept

c (positive if q(a1~a2, .1., an) or negative ‘if
~q(al,a2J ... . an),)

As stated earlier, the knowledge base of background
predicates may take the form of a set of ground facts
or a nonground logic program. In any case, two types
of queries have to be posed to this knowledge base. (NB:
These are not queries to the example distribution!) The
first type are existential queries, which are used to de-
termine the values of the new variables. Given a par-
tially instantiated goal (literal containing variables that
do not appear in previous literals), an existential query
returns the set (possibly empty) of all bindings for the
unbound variables which make the literal true. For ex-
ample, the query mother(X, A), where X = ann and
A is a new variable would return the set of answers
{A = tom, A = jim}. The other type of queries are
ground (membership) queries about background knowl-
edge predicates, where the goal is completely bound.
These are used to determine the truth values of the
propositional features.

In an actual implementation of algorithm 1 , steps 3
and 5 should be interleaved, i.e. the values of the new
variables and the propositional features should be cal-
culated for each example as they are introduced. In
this way, the determinacy of literals in step 3 is aut-
matically tested when the existential query determining
the values of the new variables in a literal is posed. A
literal is determinate if the set of answers to the exis-
tential query is singleton for all examples. If the set of
answers for some example is not singleton, the literal is
not determinate.

Finally, it should be noted that information about
functional relationships that hold among arguments
of background knowledge predicates may be given to
the learner to start with. A weaker kind of informa-
tion, namely information specifying which arguments
of a predicate are to be considered as input (old vari-
ables) and which aa output (either old or new vari-
ables) is used in both FOIL [Quinlan 1991] and GOLEM
[Muggleton and Feng 1990]. The arguments of the
background knowledge predicates may also be sorted,
as in LINUS [Lavrac et al. 1991], in which case the infor-
mation about the sorts of variables (arguments) greatly
reduces the number of propositional features involved.
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Table 2: Propositional form of a simple ILP problem

Propositional features

g(x, Y) x Y f(u, x) f(v, Y) Tn(w, x) m(Z, Y) -.. m(X, V) m(X, Z) ...

c u v w z xl Z2

1 ann bob pat tom liz eve 1 0
1 ann sue pat tom liz eve 1 0
0 bob sue tom tom eve eve o 0

0 tom bob zak tom ann eve o 0

Example: For our simple ILP example, we have j =
2, i = 1, 1 = 2, and n = 2. A literal father(X, A),
where X is old and A is new is not determinate, as a
man can have several children. However, if instead A is
old and X is new, the literal is determinate, since each
person has exactly one father. As the target predicate
is grandmother(X, Y), we have V. = {X, Y} and D1 =

{f(U, x’), f(v, Y), m(W, X), m(Z, Y)}, where f and m
stand for father and mother, respectively.

This gives L1 = D1, VI = {X, Y, U, V, W, Z}. F includes
literals such as f(X, X), f’(X, Y), f(Z, Y), f(W, X) and
similarly m(Z, Z), m(V, Y), m(W, W), r7z(U, X). In fact,
the pairs of arguments off and m are all the pairs from
the Cartesian product VI x V1, excluding the pairs that
produce literals from D1.

To illustrate the transformation process, table 2 gives
two features and their propositional values, as well as
the values of the variables introduced by the determi-
nate literals, generated for the ILP problem as defined
by the training examples and background knowledge
from table 1.

To outline the transformation from a propositional DNF
concept description to a Horn clause predicate definition
we again use our simple example. Suppose a proposi-
tional learner induces the concept c - xl V X2 from the
examples in table 2. The literals m(X, V) and m(X, Z)
correspond to features z 1 and Z2. As these literals use
new variables, we must include the determinate Iiterals

that introduced the new variables in the correspond-
ing first-order form. The corresponding first-order form
would then be

QXVY : grandmother(X, Y) -
[W: f(V, Y) A m(X, V)]V

[3Z : m(Z, Y) A m(X, Z)]

5 Results

The following result is derived from similar results by
D2eroski and Lavrat [1992] and Muggleton and Feng
[1990].

Theorem 1 Algorithm 1 transforms the ILP problem
defined by a set of m examples & of the target predicate

q(xl, xz, ..., Xn), background predicates pl, pz, ... . pi of
maximum arity j, and maximum depth of variables i,

to a propositional form. in time

O(poly(j)ml((jl + l)n)j’+’),

assuming that each call to a predicate from the back-
ground knowledge takes O(poly(j)) to answer.

Proof: Let v, = ]Vrl. We have V. = n and Vr <

Vr- 1 + jl~~~~, since there are at most jd~:~ applica-
tions of each predicate from the background knowledge,
each of them introducing exactly one new variable. It

can be easily proved that vi < ((j/ + l)n)~’. Each of
the 1 predicates from the background knowledge can

be applied to the variables in U in at most ~“ ways.
The number of features in F is thus upper bounded by

n~ = lv$ < /((j/+ l)n)~’+’.

The transformation of a single example to proposi-
tional form takes O(poi~(j)vi ) time to determine the
values of variables in Vi and O(po/~(j)ni ) time to de-
termine the truth values of features in F, altogether

O(poiy( j)i((ji + l)n)j’+’ ). For m examples, the trans-

formation process takes O(po/y(j)m/((j/ + l)n)~i+’ )
time. •l

Theorem 2 k-clause predicate definitions consisting of
non-recursive determinate function-free Horn clauses
with variables of bounded depth are polynomially PA C-
Cleanable under simple distributions.

Proof: After transforming the problem to a proposi-
tional form, we use the algorithm for learning monotone
k-term-DNF described in [Li and Vitanyi 1991]. When
transforming the induced monotone k-term-DNF for-
mula back to first-order form, we have to include the
necessary determinate literals which determine the vari-
ables used in the features from the induced formula.
This may change the length of each of the clauses, but
not the number of clauses. The time this transforma-
tion takes is O(hjni ), where h is the size of the in-
duced monotone k-term-DNF formula. The learnability
under simple distributions of k-clause predicate defini-
tions consisting of non-recursive determinate function-
free Horn clauses with variables of depth up to i then
follows from the polynomial learnability of monotone
k-term-DNF under simple distributions. ❑

Theorem 3 k-clause (possibly recursive) predicate def-
initions consisting of determinate function-free Horn
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clauses with vmz”ables of bounded depth are polynomially

PA C-learnable under simple distributions if we restrict

the arity of the target predicate q(X1, X2, . . . . Xn) to be

less than j and allow O(m((jl + j + 1)j)~ ‘+’ ) existential

and membership quem”es about the target predicate.

Proof: Since we have restricted the arity of the tar-
get predicate to be less than j, we can use the tar-
get predicate as any of the other predicates from the
background knowledge, except that the literal (feature)
q(xl, x2,..., X.) is deleted from F. Thus the number of
predicates in the background knowledge has increased
to 1’ = 1+ 1. During the transformation process, when
generating values for features involving q for the train-
ing examples, the training examples are used first. For
example, suppose the value of a feature is to be assigned
the truth-value of the fact q(al, az, ..., an). If this fact
(or its negation lq(al, az, . . . . an)) is among the training
examples we assign the appropriate truth value to the
feature. However, as we do not have an exhaustive set
of training examples for q, it may happen that the fact
q(al,az, . . . . an) is not among the training examples. In
that c~e we have to resort to membership queries in
order to complete the transformation process. In addi-
tion, if we allow for recursive literals that introduce new
variables, existential queries about the target predicate
g will have to be used, which would determine the val-
ues for the new variables. Existential queries have also
been used in MIS [Shapiro 1983].

Following an argument similar to the one in the proof
of theorem 1, we see that the number of features in-

volving q is of the order of n: < [(( ji’ + l)n)~ ‘]n <

((jl+j+l)j)~’+’. In the worst case, we will have to make
a membership query for each of the features for each of
the training examples, a total of O(rn((j/+j + l)j)~’+’ )
membership queries. A similar result is obtained for the
determinate literals involving q and existential queries.
Thus, we have transformed the ILP problem into a
propositional form and the learnability under simple
distributions of k-clause, possibly recursive, predicate
definitions consisting of determinate function-free Horn
clauses with variables of depth up to i then follows from
the polynomial learnability of monotone k-term-DNF
under simple distributions. ❑

It should be noted that the induced recursive definitions
may be highly inefficient or even non-terminating if exe-
cuted by a PROLOG interpreter. Additional information
and techniques, similar to the ones used in FOIL, may
be used to prevent the construction of such definitions.

6 On the expressiveness of determinate

logic programs

Despite the number of syntactic restrictions that were
imposed on predicate definitions in the previous sec-
tions, the class of determinate logic programs includes
many interesting and nontrivial concept definitions. We
support this claim by listing several determinate pred-

icate definitions that were actually learned by the ILP
systems GOLEM and FOIL. These include concepts from
integer arithmetic and list manipulation.

/ess-than(A, B) t
successor(A, B).

/ess_than(A, 1?) t

successor(A, C), /ess_than(C, l?).

The above definition is a 2-clause recursive predicate
definition, where the maximum arity is j = 2 and the
maximum variable depth is i = 1. It was learned from
training examples of the target predicate less-than and
background knowledge about the predicate successor.

The following definition has the same complexity, pa-
rameters as above, except for the maximum arity, which
is in this case j = 3. The background knowledge con-
sists of the predicates plus and decrement. In addi-
tion, we need the unary predicate zero, since no func-
tion symbols (and thus constants) are allowed in the
learned clauses.

multiply (A, B, C’) &

zero(B), zero(C).

mu/tip/y(A, B, C) t

decrement(B, D),

pk(A, E, C),
muRip/y(A, D, E).

Finally, consider the recursive formula for computing
the number of combinations consisting of m elements
chosen out of n elements.

()n =
o

1

It is implemented by the following two clauses:

choose(A, B, C) +

zero(B), one(C).
choose(A, B, C) -

cZecrement(B, D),
decrement(A, E),

multiply(B, C, G),

ctivide(G, A, F),

choose(l?, D, F).

The maximum variable depth is in this case i = 2, the
maximum arity is j = 3, and k = 2.

The notion of determinacy should not be confused with
the notion of determinism. Consider, for example the
following logic program.
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7 Further work

rnember(A, 1?) ~

components(B, C, D),
Determinacy is a reasonable restriction if we are working

= (A, C’).
in a programming domain (as in the above examples);

mernber(A, B) t-
however, in casessuch as the induction of scientific theo-

components(B, C, D),
ries or mathematical conjectures, indeterminate clauses
are common. If we consider a slight variant on the

rnernber(A, D).
grandmother theory, the complexity problem begins to
become apparent:

Since the clauses are to contain no function sym-
bols, a flattened version of the cons function sym-
bol is provided as a background knowledge predicate
(components(A, B, [AIB])), as well as the predicate
nu//(X), which is true for the empty list only (ntdl(o)).
(In PROLOG [All?] stands for cons(A, B), and D stands
for the empty list.) In addition, the equality predicate
= is provided (X = X).

Given the above definition for the member predicate,
the query member(X, [1,2, 3]) has more than one cor-
rect answer (three in this case: X = 1,X = 2,X = 3).
The definition is thus nondeterministic. At the same
time, it is determinate, with j = 3, i = 1.

We conclude with the quicksort example, where the
task is to learn how to sort a list, given the back-
ground knowledge predicates partition(A, B, C, D) and
append(A, B, C). The former takes a number A and a
list B, and partitions the list B in two lists C and D,

such that all the elements of B which are less than A go

to C, and all the others to D. The latter takes two lists
A and B and concatenates them to produce C. Using
in addition the background knowledge from the member

definition, the definition of quicksort may be expressed
aa follows [Quinlan 1991]:

quicksort(A, B) ~

= (A, B), nu//(A).

quicksort(A, B) +

components(A, C, D),

partition(C, D, E, F),

quicksort(E, G), quicksort(F, H),

append(G, 1, B),

components(~, C, H).

The maximum variable depth is in this case i = 4 and
the maximum background predicate arity is j = 4.

To summarize, the above examples illustrate the fact
that the class of determinate logic programs includes
many interesting and nontrivial concept definitions. We
would again like to emphasize that the above defini-
tions have been actually generated by existing ILP sys-
tems. It should also be noted, however, that the sets of
training examples for the above cases given to FOIL and
GOLEM have been exhaustive (for example, for quick sort

all lists of elements O..3 of length up to 3 appear as train-
ing examples [Quinlan 1991]). In this way, the need for
either existential or membership queries about the tar-

t get predicate has been avoided. This would not be the
case if the training examples are randomly chosen.

greatgrandmother(X, Y) ~

parent(Zl, Y), parent(Z2, 21), mother(X, 22).

With two possible values for ZI and two for 22, we will
get four times as many propositional features. With ad-
ditional parameters limiting the length of these indeter-
minate chains and the number of possible instantiation
at each step, we could allow for limited indeterminacy
without sacrificing too much efficiency.

Removal of the function-free restriction is straight-
forward, because any clause containing function sym-
bols can be flattened, that is, rewritten in determinate
function-free form with the addition of one background
clause per function symbol [Rouveirol 1991].

In the above, we have not addressed the question of us-
ing new predicates (that is, predicates not appearing
in the background knowledge) in the hypothesis. At
present it is not known whether new predicates are es-
sential in order to find compact representations for some
data sets. Some propositional methods that generate
new predicates (e.g., DUCE [Muggleton 1987]) could per-
haps be used on the transformed problem, although we
have not investigated this possibility.

As mentioned above, the transformational approach
does not allow one to use existing propositional hard-
ness results for ILP problems. Page and Frisch used the
RLGG approach to show positive results for constrained
clauses, also showing negative results for sorted theo-
ries. All positive results so far obtained have, nonethe-
less, been for cases in which the propositional version of
the problem is only polynomially larger than the first-
order form. A result showing learnability of a class of
first-order formula that provides exponential compres-
sion would be a more conclusive validation of the ILP
approach.
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Appendix

Formuke in first order predicate calculus

A variable is represented by an upper case letter fol-
lowed by a string of lower case letters and digits. A
function symbol is a lower case letter followed by a string
of lower case letters and digits. A predicate symbol is a
lower case letter followed by a string of l~wer case letter
and digits. The negation of F is ~F or F.

A variable is a term, and a function symbol immediately
followed by a bracketed n-tuple of terms is a term. Thus
f(g(X), h) is a term when f, g and h are function sym-
bols and X is a variable. A predicate symbol immedi-
ately followed by a bracketed n-tuple of te~ms is called
an atomic formula, or atom. Both 1 and 1 are literals
whenever 1 is an atomic formula. In this case / is called
a positive literal and ~ is called a negative literal.

A clause is a formula of the form

VXIVX2...VX,(1I v Iz v .../m)

where each /i is literal and X1, X2, .... X~ are all the
variables occurring in 11V 12 V ...!m. A clause can also
be represented as a finite set (possibly empty) of literals.
Thus the clause (/1 V 12V ..~ V li+l V ...) is equivalently.—
represented aa {/1, 12,../i, /i+l, ...} or most commonly as
/1,12, .. b li, li+l, .... A Horn clause is a clause which
cent ains at most one positive literal. A definite program
clause is a clause which contains exactly one positive
literal. The positive literal in a definite program clause
is called the head of the clause while the negative literals
are collectively called the body of the clause. A Horn
clause with no positive literal is a definite goal. A unit
clause is a clause of the form 1 +-, that is, a definite
program clause with an empty body. A set of clauses is
called a clausal theory and represents the conjunction
of its clauses. A set of definite program clauses is called
a definite logic program.

Literals, clauses and clausal theories are all well-formed-
formuke (wff’s). Let E be a wff or term. var.s(E) de-
notes the set of variables in E. E is said to be ground
if and only if vars(E) = 0.
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