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During the 1980s Michie defined Machine Learning in terms of two orthogonal axes
of performance: predictive accuracy and comprehensibility of generated hypotheses.
Since predictive accuracy was readily measurable and comprehensibility not so, later
definitions in the 1990s, such as that of Mitchell, tended to use a one-dimensional
approach to Machine Learning based solely on predictive accuracy, ultimately favour-
ing statistical over symbolic Machine Learning approaches. In this paper we provide
a definition of comprehensibility of hypotheses which can be estimated using human
participant trials. We present two sets of experiments testing human comprehensibility
of logic programs. In the first experiment we test human comprehensibility with
and without predicate invention. Results indicate that comprehensibility is affected
not only by the complexity of the presented program but also by the existence of
anonymous predicate symbols. In the second experiment we directly test whether
any state-of-the-art ILP systems are ultra-strong learners in Michie’s sense, and
select the Metagol system for use in humans trials. Results show that participants
were not able to learn the relational concept on their own from a set of examples
but they were able to apply the relational definition provided by the ILP system
correctly. This implies the existence of a class of relational concepts which are hard
to acquire for humans, though easy to understand given an abstract explanation.
We believe improved understanding of this class could have potential relevance to
contexts involving human learning, teaching and verbal interaction.
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1 Introduction

In a recent paper [37] the authors introduced an operational definition for comprehen-
sibility of logic programs and conducted human trials to determine how properties of
a program affect its ease of comprehension. This paper builds on and extends the
earlier work by investigating whether machines can not only learn new concepts but
explain those concepts to humans thereby improving human task performance. The
definition of comprehensibility allows, for the first time, experimental demonstration
of Donald Michie’s Ultra-strong Machine Learning criterion.

In 1988 Michie [20] provided weak, strong and ultra-strong criteria for Machine
Learning. Michie’s aim was to provide operational criteria for various qualities of
machine learning which include not only predictive performance but also compre-
hensibility of learned knowledge. His weak criterion identifies the case in which the
machine learner produces improved predictive performance with increasing amounts
of data. The strong criterion additionally requires that the learning system must
provide its hypotheses in symbolic form. Lastly, the ultra-strong criterion extends the
strong criterion by requiring the learner to teach the hypothesis to a human, whose
performance is consequently increased to a level beyond that produced by the human
studying the training data alone.

Most of modern Machine Learning can be viewed as consistent with Michie’s weak
criterion. By contrast, the strong criterion plays an ongoing role within Inductive
Logic Programming. However, to date no documented attempt has been made, even
within Inductive Logic Programming, to apply, or demonstrate Michie’s ultra-strong
criterion to a Machine Learning system. As argued in [37] the major barrier to doing
so has been the lack of an operational notion of human comprehension of symbolic
concepts.

Within Artificial Intelligence (AI) comprehensibility of symbolic knowledge is
viewed as one of the defining factors which distinguishes logic-based representations
from those employed in statistical machine learning. In [37] the issue is addressed
by introducing a definition of comprehensibility which is inspired by “Comprehen-
sion Tests”, administered to school children. Such a test (see Figure 1) comprises
the presentation of a piece of text, followed by questions which probe the child’s
understanding. Answers to questions in some cases may not be directly stated, but
instead inferred from the text. Once the test is scored, the proportion of questions
correctly answered provides the measure of a pupil’s textual comprehension.

In the same fashion, our operational definition of comprehensibility is based on
presentation of a logic program to an experimental participant (see Figure 2), who
is given time to study it, after which the score is used to assess their degree of
comprehension. The detailed results of such a test can be used to identify factors in

For many years people believed the cleverest animals after man were chimpanzees. Now,
however, there is proof that dolphins may be even cleverer than these big apes.

Question: Which animals do people think may be the cleverest?

Fig. 1: Text comprehension test (Credit: http://englishteststore.net)
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p(X,Y) :- p1(X,Z), p1(Z,Y).
p1(X,Y) :- father(X,Y).
p1(X,Y) :- mother(X,Y).
father(john,mary). mother(mary,harry).

Question: p(john,harry)?

Fig. 2: Program comprehension test

the program which affect its comprehensibility both for individuals and for groups
of participants. The existence of an experimental methodology for testing compre-
hensibility has the potential to provide empirical input for improvement of Machine
Learning systems for which the generated hypotheses are intended to provide insights.

The paper is arranged as follows. In Section 2 we discuss existing work relevant
to the paper. The framework, including relevant definitions and their relationship to
experimental hypotheses is described in Section 3. Section 4 describes two experiments
involving human participants. The first experiment tests the degree to which predicate
invention affects human comprehensibility of concepts. The second experiment tests
whether an ILP system can pass Michie’s Ultra-Strong Learning criterion. Finally in
Section 5 we conclude the paper and discuss further work.

2 Related work

This section offers framing information concerning research into comprehensibility
and explainability of systems in general, and familiarizes the reader with the core
notions motivating our work in particular. We first present a short overview of related
lines of investigation in AI and Machine Learning, respectively, before specifically
discussing cognitive and computational aspects of predicate invention in the context
of the hierarchical structuring of complex concepts, and of induction, abduction, and
recursion as important mechanisms for concept formation and representation.

2.1 Comprehensibility and Explanation in AI

Studies of the comprehensibility—and relatedly explainability—of computational
systems have a long tradition, dating back at least to research into expert and decision
support systems in the early 1980s. Clancey [5] questioned the view that expert
knowledge can be encoded as a uniform, weakly-structured set of if/then associations
(as, e.g., done in the MYCIN system [38]) if the rules shall still be meaningfully
modifiable by people other than the original author, or shall be justified and used
in teaching (i.e., support active learning). Consequently, efforts were undertaken to
improve expert system explanations (see, e.g., [4] and [43]). One resulting line of work
addressed the representation formalisms used [9]: among others, smaller structures
were taken to be more comprehensible, coherent structures were considered more
meaningful, and compositions of familiar concepts were perceived as easier accessible.

In the context of AI testing and evaluation the importance of human comprehen-
sibility of intelligent systems has very recently been emphasised by Forbus [6]. For his
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software social organisms, comprehensibility of the system’s behaviour and outputs is
paramount, since only efficient communication enables participation in human society.
In general when looking at the original Turing Test [42] and discussions of new and
updated versions or substitutes for it, comprehensibility plays a crucial role. While
there frequently are suggestions to abandon the Turing Test and focus on more clearly
specified tasks in well-defined domains, putting emphasis on making systems and
their output comprehensible for humans offers an alternative approach to overcoming
limitations of the original test, while still maintaining domain and task generality.

2.2 Comprehensibility and Explanation in Machine Learning

In Machine Learning, comprehensibility has for instance been discussed in the context
of Argument-Based Machine Learning (ABML) [24], which applies methods from ar-
gumentation in combination with a rule-learning approach. Explanations provided by
domain experts concerning positive or negative arguments are included in the learning
data and serve to enrich selected examples. Although ABML enhances the degree of
explanation, it still fails to pass Michie’s ultra-strong test since no demonstration
of user comprehensibility of learned hypotheses is guaranteed. Moreover, questions
and discussions about comprehensibility have also entered the study of classification
models [7,18,19]. However, while the need for comprehensibility is emphasized, no
definitive test of the kind provided by our definition in Section 3 is offered.

Another approach which engages with aspects of comprehensibility, logical rea-
soning and to some extent, predicate invention (i.e., the automated introduction of
auxiliary predicates)—discussed in more detail in the next subsection due to its role
in our first experiment in Section 4—is Explanation-Based Learning (EBL) (e.g. [22]).
EBL uses background knowledge in a mainly deductive inference mechanism to “ex-
plain” how each training example is an instance of the target concept. The deductive
proof of an example yields a specialisation of the given domain theory leading to the
generation of a special-purpose sub-theory described in a user-defined operational
language. The learning process in EBL is comparable to the use of proof-completion
in the context of Meta-Interpretive Learning (MIL) [28,29], with EBL assuming a
complete (first-order) domain theory and using deduction (rather than induction
or abduction) as key differences. Some EBL systems can discover new features that
are not explicit in the training examples but required in the general rule describing
the former. For example, Prolog-EBG [14] automatically formulates meaningful con-
straints required in the rules underlying the training examples. EBL is also realised
in the inductive functional programming system Igor where observed program traces
are explained as unfolding of an unknown recursive function following some program
scheme [16]. Still, existing EBL systems do not pass Michie’s ultra-strong test either:
again there is no guarantee of user comprehensibility of learned hypotheses. The
deductively generated syntactic explanations (i.e. formal proofs) could be far from
human comprehensible explanations in a semantic sense (causal, mechanistic, etc.).

2.3 Hierarchical structuring of complex concepts through predicate invention

Research into the inner structure of complex concepts found these to be strongly
hierarchically organised in a tree-like structure, with more general categories higher in
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the hierarchy dominating lower-level categories via IS-A links [31]. This hierarchical
structure is presumably acquired by successive abstractions based on sets of instances
from lower-level categories. Emulating these generalisation processes, predicate in-
vention has been viewed as an important problem since the early days of ILP (e.g.
[26,35,40]), though limited progress has been made in this topic recently [30]. Early
approaches were based on the use of W -operators within the inverting resolution
framework (e.g., [26,35]). However, the completeness of these approaches was never
demonstrated, partly because of the lack of a declarative bias to delimit the hypothesis
space. Failure to address these issues has, until recently, led to limited progress being
made in this important topic and many well-known ILP systems such as ALEPH [39]
and FOIL [32] have no predicate invention. In MIL, predicate invention is conducted
via construction of substitutions for meta-rules applied by a meta-interpreter. The
use of the meta-rules clarifies the declarative bias being employed. New predicate
names are introduced as higher-order skolem constants, a finite number of which are
added during every iterative deepening of the search.

2.4 Logical mechanisms in concept formation and representation

Mechanisms from logical reasoning are found to play crucial roles in human under-
standing and conceptualization. Induction has long been shown to be highly related to
concept attainment and information processing [17], and abduction also is considered
a key mechanism in this context [11]. Recursion plays a similarly prominent role
during the process of concept acquisition and meaning making, and has been argued
to be a key human ability regarding language and understanding in general [10].
Additionally, the capacity to apply recursion is strictly necessary for the representa-
tion of infinite concepts (such as, e.g., the concept of an ancestor, or the notion of
ordinal numbers). All three mechanisms are also present in MIL. There, induction and
abduction, together with predicate invention, are all achieved by way of (higher-order)
meta-rules. Owing to the existentially quantified variables in the meta-rules, the
resulting first-order theories are strictly logical generalisation of the meta-rules.

Learning recursive programs is a technically difficult task in ILP and is not fully
supported by general-purpose ILP systems such as Foil [33], Golem [27] and Progol [25].
Still, different techniques allow for the induction of recursive programs. For instance
CRUSTACEAN [1], CLAM [34], TIM [12] and MRI [8] use inverse entailment based
on structural analysis. SMART [23] and FILP [3] use top-down induction of arbitrary
Horne clauses, including recursive definitions. However, the search remains incomplete
due to restrictions regarding the use of (intensional) background knowledge, as well
as pruning techniques. FILP can only induce functional predicates and SMART
cannot learn mutually inter-depending clauses. Regarding functional and inductive
programming, for example the system Igor1 relies on explanation-based generalization
over program traces [16]. The successor Igor2 [15] can induce recursive functions which
depend on additional, invented functions based on the abduction of input-output
pairs for some function call (e.g., in modelling the inductive generalization of rules for
domains such as Tower of Hanoi or blocksworld [36]). However, Igor requires the first
k examples of a target theory to generalise over a whole class. Esher [2] is a generic
and efficient algorithm that interacts with the user via input-output examples, and
synthesizes recursive programs implementing intended behaviour. Hence, Esher needs
to query an oracle each time a recursive call is encountered to ask for examples.
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3 Framework

3.1 General Setting

We assume sets of constants, predicate symbols and first-order variables are denoted
C,P,V. We assume definite clause programs to be defined in the usual way. Further-
more we assume a human as possessing background knowledge B expressed as a
definite program. We now define the distinction between private and public predicate
symbols.

Definition 1 [Public and private predicate symbols]. We say that a predicate
symbol p ∈ P found in definite program P is public with respect to a human population
S in the case that p forms part of the background knowledge of each human s ∈ S.
Otherwise p is private.

Now we define Predicate Invention as follows.
Definition 2 [Predicate Invention]. In the case background knowledge B of an
ILP is extended to B ∪H, where H is a definite program we call predicate symbol
p ∈ P an Invention iff p is defined in H but not in B.

3.2 Comprehensibility

Next we provide our operational definition of comprehensibility.
Definition 3 [Comprehensibility, C(S, P )]. The comprehensibility of a definition
(or program) P with respect to a human population S is the mean accuracy with
which a human s from population S after brief study and without further sight can
use P to classify new material sampled randomly from the definition’s domain.
Note that this definition allows us to define comprehensibility in a way which allows
its experimental determination given a set of human participants. However, in order
to clarify the term "after brief study" we next define the notion of inspection time.
Definition 4 [Inspection time T (S, P )]. The inspection time T of a definition (or
program) P with respect to a human population S is the mean time that a human s
from S spends studying P before applying P to new material.
Since, in the previous subsection, we assume humans as having background knowledge
which is equivalent to a definite program, we next define the idea of humans mapping
privately defined predicate symbols to ones found in their own background knowledge.
Definition 5 [Predicate recognition R(S, p)]. Predicate recognition R is the
mean proportion of times that a human s from population S gives the correct public
name to a predicate symbol p presented as a privately named definition q.
For each of these mappings from privately defined predicate symbols to elements
from the background knowledge we can now experimentally determine the required
naming time.
Definition 6 [Naming time N(S, p)]. For a predicate symbol p presented as a
privately named definition q in definite program P the naming time N with respect
to a human population S is the mean time that a human s from S spends studying
P before giving a public name to p.
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Lastly we provide a simple definition of the textual complexity of a definite program.

Definition 7 [Textual complexity, Sz(P )]. The textual complexity Sz of a def-
inition of definite program P is the sum of the occurrences of predicate symbols,
functions symbols and variables found in P .

3.3 Ultra-strong Machine Learning

The following definitions extend those above by describing measures for estimating
the degree to which humans can be aided by inspection of the output of a symbolic
machine learning algorithm. Firstly we define the output of symbolic machine learning.

Definition 8 [Machine Learned Program, M(E)]. The program learned from
examples E using machine learning algorithm M which outputs a symbolic hypothesis
in the form of a definition of program.

Unaided human learning from training examples can now be defined as follows.

Definition 9 [Unaided Human Comprehension of Examples, C(S, E)]. The
comprehensibility of a definition (or program) P with respect to a human population
S is the mean accuracy with which a human s from population S after brief study
of an example set E of a hidden target definition can classify new material sampled
randomly from the target definition’s domain.

Lastly we define machine-aided human learning from training examples.

Definition 10 [Machine-aided Human Comprehension of Examples, C(S, M(E))].
The machine-aided comprehensibility of a definition (or program) P with respect to
a human population S is the mean accuracy with which a human s from population
S after brief study of a program M(E), learned by a symbolic Machine Learning
algorithm M from examples E, can classify new material sampled randomly from
the target definition’s domain.

3.4 Experimental Hypotheses

We are now in a position to define and explain the motivations for the experimental
hypotheses to be tested in Section 4. Below C(S, P ), T (S, P ), R(S, p), N(S, p), Sz(P ),
C(S, E), C(S, M(E)) are denoted by C, T, R, N , Sz, CH, CHM respectively. Note
that CH and CHM indicate respectively Comprehension of a Human given data as
opposed to Comprehension of a Human given data and a Machine Learning system.

Hypothesis H1, C ∝ 1
T . This hypothesis relates to the idea of using inspection time

as a proxy for incomprehension. That is, we might expect that humans take a long
time to commit to an answer in the case they find the program hard to understand.
As a proxy, inspection time is easier to measure than comprehension.

Hypothesis H2, C ∝ R. This hypothesis is related to the idea that humans
understand private predicate symbols, such as p1/2, generated during predicate
invention, by mapping them to public ones in their own background knowledge.
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Table 1: Mapping defined properties from this section and independent variables in
the experiments.

Defined property Experimental variable
Comprehensibility C Score
Inspection time T Time
hline Recognition R CorrectNaming
Naming Time N NamingTime

Hypothesis H3, C ∝ 1
Sz . This hypothesis is motivated by the idea that a key prop-

erty of predicate invention is its ability to compress a description by introducing new
predicates which are used multiply within the definition. We are interested in whether
the resultant compression of the description leads to increased comprehensibility.

Hypothesis H4, R ∝ 1
N . This hypothesis relates to the idea that if humans take

a long time to recognise and publicly name a privately named predicate they are
unlikely to correctly identify it. Analogous to H1, this allows naming time to be used
as a proxy for recognition of an invented predicate.

Hypothesis H5, CwithM ≥ CwithoutM. This hypothesis relates to the idea of
Ultra-Strong Machine Learning. That is, we might expect that humans perform bet-
ter on unseen data after having seen a symbolic machine learned definition compared
with simply inspecting the training data.

In the next section we describe experiments which test these four hypotheses. Table 1
shows the mapping between the measurable properties defined in this section and
the independent variables used in the experiments.

4 Experiments

To investigate the hypotheses concerning comprehensibility of concept description in
a logical representation we conducted two experiments with human participants. In a
first experiment, our main interest was whether making a concept definition more
compact by introducing additional predicates in the body of Prolog rules positively
impacts comprehensibility and we explored several aspects related with the use of
invented predicates. In a second experiment, focus was on ultra-strong learning. To
examine whether a machine learned hypothesis is operationally effective, we compared
performance of participants when they had to classify unseen objects of a domain on
their own in contrast to being offered explicit classification rules learned with an ILP
approach. In the following, we will present the details of the experiments, introducing
the materials, describing the experimental methods, and giving the results.

4.1 Experiment 1 - Comprehensibility and Predicate Invention

We gave a closer look on whether classification rules using additional predicates are
helpful per se or whether their helpfulness is dependent on the ability of a person
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to assign a specific meaning to the predicate. Furthermore, we were interested in
possible interactions between predicate use and complexity of rules. For this reason,
the first experiment involved quite a number of variations in material and procedure
which are introduced in the following.

4.1.1 Materials

Material construction is based on the well-known family tree examples used to teach
Prolog [41] and also used in the context of ILP [29]. Based on the grandparent/2
predicate, three additional problems were defined: grandfather/2 which is more
specific than grandparent/2, greatgrandparent/2 which needs the double amount
of rules if defined without an additional (invented) predicate, that is, which has a
high textual complexity, and the recursive predicate ancestor/2 which has small
textual but high cognitive complexity [13]. Instead of these meaningful names, target
predicates are called p/2. Given facts are identical to the family tree presented in
[29].In the rule bodies, either public names (mother, father)—that is, names which
relate to the well-known semantics of family relations—or private names (q1/2, q2/2 )
were used. Furthermore, programs were either presented with or without the inclusion
of an additional (invented) predicate for parent/2 which was named p1/2. The tree
and the predicate definitions for the public name space are given in Figure 3.

– What is the result of p(bill,bob)?
2 true 2 false 2 don’t know

– What is the result of p(jake,harry)?
2 true 2 false 2 don’t know

– What is the result of p(bob,bill)?
2 true 2 false 2 don’t know

– What is the result of p(mary,jo)?
2 true 2 false 2 don’t know

– What is the result of p(john,sam)?
2 true 2 false 2 don’t know

– What is the result of p(X,bob)?
2 false 2 X = bill 2 X = alice
2 X = bill; alice 2 don’t know

– What is the result of p(john,X)?
2 false 2 X = sam 2 X = jo
2 X = sam; jo 2 don’t know

Fig. 4: Questions for the grandparent/2
problem with public names.

In Section 3 we defined comprehensi-
bility of a program as the accuracy with
which a human can classify new material
sampled from the domain. To assess com-
prehensibility, we defined seven questions
for each of the four predicates (see Fig. 4).
For five questions, it has to be determined
whether a relation for two given objects is
true. For two further questions, it has to
be determined for which variable bindings
the relation can be fulfilled. In addition,
an open question was included, where a
meaningful name had to be given to pred-
icate p/2 for each of the four problems
and—if applicable—also to the additional
predicate p1/2.

To evaluate the material, we ran a pilot
study (March 2016) at Imperial College

London with 16 students of computer science with a strong background in pro-
gramming, Prolog, and logic. The pilot study was conducted as a paper-and-pencil
experiment where for each problem first the seven questions had to be answered
and afterwards a meaningful name had to be given to the program. 13 out of the
16 students solved all questions correctly and most students were able to give the
correct public names to all of the programs, regardless whether they had to work
with the public or with the private names. Participants needed about 20 minutes
for the four problems. Thus, the instructions and the material are understandable
and coherent. A very interesting outcome of the study was that about a third of the
students made notes on the questionnaires. Some of the notes showed that students
first named the target predicates and the invented predicate (see Fig. 5) and then
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matilda

jake

alice

bill

john

mary

ted

jill

megan

harry

liz

susan

andy

bob

jane

sam

jo

Background Knowledge (Observations):
father(jake,alice). mother(matilda,alice).
father(jake,john). mother(matilda,john).
father(bill,ted). mother(alice,ted).
father(bill,megan). mother(alice,megan).
father(john,harry). mother(mary,harry).
father(john,susan). mother(mary,susan).

mother(mary,andy).
father(ted,bob). mother(jill,bob).
father(ted,jane). mother(jill,jane).
father(harry,sam). mother(liz,sam).
father(harry,jo). mother(liz,jo).

Target Concepts (Rules):
% grandfather without invented pred.
p(X,Y) :- father(X,Z), father(Z,Y).
p(X,Y) :- father(X,Z), mother(Z,Y).
% grandfather with invented predicate
p(X,Y) :- p1(X,Z), father(Z,Y).
p1(X,Y) :- father(X,Y).
p1(X,Y) :- mother(X,Y).
% grandparent without invented pred.
p(X,Y) :- father(X,Z), father(Z,Y).
p(X,Y) :- father(X,Z), mother(Z,Y).
p(X,Y) :- mother(X,Z), mother(Z,Y).
p(X,Y) :- mother(X,Z), father(Z,Y).
% grandparent with invented predicate
p(X,Y) :- p1(X,Z), p1(Z,Y).
p1(X,Y) :- father(X,Y).
p1(X,Y) :- mother(X,Y).
% ancestor without invented predicate
p(X,Y) :- father(X,Y).
p(X,Y) :- mother(X,Y).
p(X,Y) :- father(X,Z), p(Z,Y).
p(X,Y) :- mother(X,Z), p(Z,Y).

% greatgrandparent without invented predicate
p(X,Y) :- father(X,U), father(U,Z), father(Z,Y).
p(X,Y) :- father(X,U), father(U,Z), mother(Z,Y).
p(X,Y) :- father(X,U), mother(U,Z), father(Z,Y).
p(X,Y) :- father(X,U), mother(U,Z), mother(Z,Y).
p(X,Y) :- mother(X,U), father(U,Z), mother(Z,Y).
p(X,Y) :- mother(X,U), father(U,Z), father(Z,Y).
p(X,Y) :- mother(X,U), mother(U,Z), mother(Z,Y).
p(X,Y) :- mother(X,U), mother(U,Z), father(Z,Y).
% greatgrandparent with invented predicate
p(X,Y) :- p1(X,U), p1(U,Z), p1(Z,Y).
p1(X,Y) :- father(X,Y).
p1(X,Y) :- mother(X,Y).
% ancestor with invented predicate
p(X,Y) :- p1(X,Y).
p(X,Y) :- p1(X,Z), p(Z,Y).
p1(X,Y) :- father(X,Y).
p1(X,Y) :- mother(X,Y).

Fig. 3: Public tree and the Prolog programs for grandfather/2, grandparent/2, great-
grandparent/2, and ancestor/2 with and without use of an additional (invented)
predicate parent/2. In the corresponding programs for the private name space, fa-
ther/2 is replaced by q1/2, mother/2 is replaced by q2/2, and given names are
replaced by two letter strings as shown in Observations in Figure 8.

Fig. 5: Example of student giving meaningful names to predicate symbols.

answered the questions. That is, students gave a meaningful name without being
instructed to do so and one can assume that they used this strategy because it made
answering the questions easier.

4.1.2 Method

Variables. To assess the influence of meaningful names and of predicate invention on
comprehensibility, we introduced the following three independent variables:
NameSpace: The name space in which context the problems is presented is either

public or private.
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PredicateInvention: The problems are given either with or without an additional
(invented) predicate p1/2 which represents the parent/2 relation.

NamingInstruction: The open question to give a meaningful name to predicate p/2
and—if applicable— also to the additional predicate p1/2 is either given before
or after the seven questions given in Figure 4 had to be answered.

The variation of the independent variables results in a 2× 2× 2 factor design which
was realised between-participants for factors NameSpace and NamingInstruction
and within-participants for factor PredicateInvention. Problem presentation with
PredicateInvention was either given for the first and the third or the second and the
fourth problem.

The textual complexity varies over problems and in dependence of the intro-
duction of the additional predicate p1/2. The textually most complex program is
greatgrandparent/2 without the use of p1/2. The least complex program is grandfa-
ther/2 without the use of p1/2 as can be seen in Figure 3.

The following dependent variables were assessed:

Score: For each problem, the score is calculated as the sum of correctly answered
questions (see Fig. 4). That is, score has minimal value 0 and maximal value 7
for each problem.

Time: The time to inspect a problem is measured from presenting the problem until
answering the seven questions.

CorrectNaming: The correctness of the given public name for a predicate definition
p/2 was judged by two raters. In addition, it was discriminated between clearly
incorrect answers and responses where participants wrote nothing or stated that
they do not know the correct meaning.

NamingTime: The time for naming is measured from presenting the question until
indication that the question is answered by going to the next page. For condition
PredicateInvention/with both p/2 and p1/2 had to be named.

Empirical Hypotheses. Given the independent and dependent variables, hypotheses
can now be formulated with respect to these variables:

H1: Score is inverse proportional to Time, that is, participants who comprehend a
program, give more correct answers in less time than such participants who do
not comprehend the program.

H2: CorrectNaming is proportional to Score, that is, participants who can give the
intended public—that is, meaningful—name to a program have higher scores than
participants who do not get the meaning of the program.

H3: Score is inverse proportional to textual complexity, that is, for problem great-
grandparent/2 the differences of score should be greatest between the Predi-
cateInvention/with and PredicateInvention/without condition because here the
difference in textual complexity is highest.

H4: CorrectNaming is inverse proportional to NamingTime, that is, if participants
need a long time to come up with a meaningful name for a program, they probably
will get it wrong.

Participants and Procedure. The experiment was conducted in April 2016 with
cognitive science students of the University of Osnabrück. All students had passed
at least one previous one-semester course on Prolog programming and all have a
background in logic. That is, their background in Prolog is less strong than for the
Imperial College sample but they are no novices. From the originally 87 participants,
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three did not finish the experiment and six students were excluded because they
answered “don’t know” for more than 50% of the questions. All analyses were done
with the remaining 78 participants (43 male, 35 female; mean age = 23.55 years,
sd = 2.47).1

The experiment was realised with the soscisurvey.de system and was conducted
online during class. After a general introduction, students worked through an example
problem (“sibling”) to get acquainted with the domain and with the types of questions
they needed to answer. Afterwards, the four test problems were presented in one of
the experimental conditions. For each problem, on the first page the facts and the
tree and the predicate definition was presented. On the next page, this information
was given again together with the first question or the naming instruction. If the
“next”-button was pressed, it was not possible to go back to a previous page.

Working through the problems was self-paced. The four problems were presented
in the sequence grandfather/2, grandparent/2, greatgrandparent/2, ancestor/2 for all
participants. That is, we cannot control for sequence effects, such as performance gain
due to getting acquainted with the style of the problems and questions or performance
loss due to decrease in motivation or fatigue. However, since problem type is not
used as an experimental condition, possible sequence effects do not affect statistical
analyses of the effects of the independent variables introduced above.

4.1.3 Results

Scores and Times.When considering time for question answering and naming together,
participants needed about 5 minutes for the first problem and got faster over the
problems. One reason for this speed-up effect might be, that participants needed less
time to inspect the tree or the facts for later problems. There is no speed-accuracy
trade-off, that is, there is no systematic relation between (low) number of correct
answers and (low) solution time for question answering. In the following, time is
given in seconds and for statistical analyses time was logarithmically transformed.
Giving meaningful names. In the public name condition, the names the participants
gave to the programs were typically the standard names, sometimes their inverse,
such as “grandchildren”, “child of child”, or “parent of parent” for the grandparent/2
problem. In the condition with private names, the standard names describing family
relations were also used by most participants, however, some participants gave
more abstract descriptions, such as “X and Y are connected via an internode” for
grandparent/2. Among the incorrect answers for the grandparent/2 problem often
were over-specific interpretations such as “grandson” or “grandfather”. The same
was the case for greatgrandparent/2 with incorrect answers such as “greatgrandson”.
Some participants restricted the description to the given tree, for example, “parent
of parent with 2 children” for grandparent/2. Incorrect answers for the ancestor/2
problem typically were overly general, such as “related”.
Impact of NameSpace, PredicateInvention, and NamingInstruction on Score and Time.
An overview of the impact of all factors on score is given in Figure 6. There it can be
seen that NameSpace/public results in higher scores for all four problems. The effects
of PredicateInvention and NamingInstruction are less obvious. It is not the case that
having to think about the meaning of a predicate before question answering has a

1 A comprehensive description of all analyses and results can be found at http://www.cogsys.
wiai.uni-bamberg.de/publications/comprAnalysesDoc.pdf.
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Fig. 6: Scores distributed over NameSpace, PredicateInvention, and NamingInstruction
(arithmetic means and standard deviations are given; for significant differences, see
text).

general positive effect on Score. PredicateInvention is helpful for some problems, for
others not. We will give a closer look on the effect of PredicateInvention for the textu-
ally most complex problem greatgrandparent/2 below (H3). Statistical analyses were
done with general linear models with NameSpace, PredicateInvention, and NamingIn-
struction as predictor variables and Score as criterion variable. Predictor variables
were dummy coded as contrasts. The effect of NameSpace/public is significant for
grandfather/2 (b = 1.55, p = 0.03) and marginally significant for greatgrandparent/2
(b = 1.12, p = 0.069). In addition, for grandfather/2 the interaction of NameSpace
and PredicateInvention is significant (b = −2.52, p = 0.017).
Inverse proportional relation between Score and Time (H1). There is a significant
negative Pearsons product-moment correlation between Time and Score over all
problems (r = −.38, p ≤ 0.001).
Effect of CorrectNaming on Score (H2). To assess the impact of being able to give a
meaningful name to a problem (CorrectNaming) on comprehensibility (Score), answers
were classified as “correct”, “incorrect” and “no answer” which covers answers where
participants either did not answer or explicitly stated that they do not know the answer.
Participants who were able to give meaningful names to the programs answered
significantly more questions correctly. Statistical analyses were again performed
with general linear models with dummy coding (contrast) for the predictor variable
CorrectNaming. The results are given in Table 2.
Impact of textual complexity on the effect of PredicateInvention on Score (H3). For
the greatgrandparent/2 problem, there is a marginally significant effect of PredicateIn-
vention for NameSpace/private and NamingInstruction/after with a higher score for
the PredicateInvention/with condition (b = −1.59, p = 0.09).
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Table 2: Means and standard deviations of Score in dependence of CorrectNaming,
where “no answer” covers answers where participants either did not answer or explicitly
stated that they do not know the answer. Results for linear models are given as
b-estimates and p-values for the contrast between correct and incorrect naming.

Correct Incorrect No answer Test

Grandfather n = 28 n = 46 n = 4
Score Mean 6.68 (sd = 0.61) 5.15 (1.81) 4.75 (1.71) -1.53, p < 0.001

Grandparent 50 23 5
Score 6.56 (1.23) 5.04 (2.12) 3.4 (1.82) -1.52, p < 0.001

Greatgrandparent 54 18 6
Score 6.76 (0.66) 5.78 (1.66) 3 (1.67) -1, p < 0.001

Ancestor 32 39 7
Score 5.75 (1.44) 3.08 (1.8) 2.86 (1.57) -2.67, p < 0.001

Fig. 7: Relation between time needed
for giving a meaningful name and
correctness of naming, where “no
answer” covers answers where par-
ticipants either did not answer or
explicitly stated that they do not
know the answer (averaged over
PredicateInvention with/without).

Relation of CorrectNaming and Naming-
Time (H4). Participants who give a correct
meaningful name to a problem do need
less time to do so than participants who
end up giving an incorrect name for all
problems except ancestor/2. This relation
is given in Figure 7 accumulated over all
factors per problem. Statistical analyses
were done separately for conditions Pred-
icateInvention/with and PredicateInven-
tion/without because in the first case two
names—for target predicate p/2 and for
the additional predicate p1/2—had to be
given. Differences between correct and in-
correct are significant for grandfather/2 in
the condition PredicateInvention/without
(b = 0.31, p = 0.007) and marginally
significant for grandparent/2 in the con-
dition PredicateInvention/with (b = 0.2,
p = 0.084). For ancestor/2 in the condi-
tion PredicateInvention/with there is a sig-
nificant difference between correct naming
and “no answer” (b = −0.49, p = 0.039).

4.2 Experiment 2 - Ultra-Strong Learning

After exploring the impact of predicate invention on comprehensibility, we conducted
a further experiment to test the hypothesis that ILP-learned relational concepts can
support humans making sense from observations in complex relational domains. To
follow Michie’s characterisation of ultra-strong learning, we aim to show that ILP
learned classification rules can result in operational effectiveness for humans. That
is, given a set of observations in a domain, we need to show that humans are not



Ultra-Strong Machine Learning – Comprehensibility of Programs Learned with ILP 15

able to induce a classification rule but an ILP system can and additionally that the
ILP learned rules can be understood by humans and successfully applied to new
observations.2

4.2.1 Material Imagine you work in a chemical laboratory.
Over the last days you tested several sub-
stances (named aa, ab, and so on) for two
reactions q1(X,Y) and q2(X,Y). For example,
q1(aa,ab) means that aa is a substrate and
ab is a product of reaction q1. A list of all
observations is given below.

Observations:

q1(ab,ac). q2(aa,ac).
q1(ab,ae). q2(aa,ae).
q1(ad,ag). q2(ac,ag).
q1(ad,ai). q2(ac,ai).
q1(ae,aj). q2(af,aj).
q1(ae,al). q2(af,al).
q1(ag,an). q2(af,am).
q1(ag,ao). q2(ah,an).
q1(aj,ap). q2(ah,ao).
q1(aj,aq). q2(ak,ap).

q2(ak,aq).

Today you tested whether a pair of sub-
stances are related to an exothermic re-
action (a chemical reaction that releases
energy by light or heat). For example,
exothermic(ac,an) means that ac and an
are, respectively, substrate and product of
a (chain of) reaction(s) which is exothermic.
You observed the following test results:

Test Results:

exothermic(ac,an). not exothermic(aa,ab).
exothermic(aa,al). not exothermic(ad,ai).
exothermic(ab,ag). not exothermic(ab,aq).
exothermic(ae,ap). not exothermic(aj,ap).
exothermic(aa,ag). not exothermic(an,ac).

You have a new computer program which can
support you in finding rules to characterize
substances. When you presented your obser-
vations to the program, it returned the fol-
lowing rules:

Rules:

exothermic(X,Y) :- q1(X,Z), q1(Z,Y).
exothermic(X,Y) :- q1(X,Z), q2(Z,Y).
exothermic(X,Y) :- q2(X,Z), q2(Z,Y).
exothermic(X,Y) :- q2(X,Z), q1(Z,Y).

Fig. 8: Fictitious chemistry domain.

We focused on the grandparent/2 problem
investigated in the first experiment (see
Fig. 3) and constructed an isomorphic ficti-
tious chemistry domain shown in Figure 8.
TheObservations correspond to the ones
of the private version of the family tree
used in Experiment 1. The Test Results
are four positive and negative examples
which can be used as training examples
for an ILP system such as Metagol. The
Rules are the classification rules induced
by Metagol. For one group of participants
these rules initially are not given and the
participants were required to induce them
by themselves from the same test results.
To assess comprehensibility, an isomorphic
questionnaire to the one used in the first
experiment has been used (see Fig. 4).

4.2.2 Method

Design and Variables. To control for pos-
sible effects of previous involvement with
the problem, we used a pre-test post-test
design as shown in Table 3. In a between-
participants design, participants of one
group were asked to induce a classification
rule by themselves from examples (Rule
Acquisition and Application, RAA), an-
other got immediately presented with the
classification rules analogous to the first
experiment (Rule Application, RA). Com-
prehensibility scores (dependent variable
Score) were assessed for both groups af-
ter the classification rules were presented
(O2). For condition RAA, comprehensibil-
ity additionally has been assessed after
rule induction O1). For this group, participants additionally were asked to define the
classification rule in Prolog or natural language (dependent variable Rule Generation).

2 A detailed description of the material and the results is given in http://www.cogsys.wiai.
uni-bamberg.de/publications/UltraStrExpAnalyses.pdf.
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Table 3: Experimental design with conditions Rule Acquisition and Application
(RAA) and Rule Application (RA), R = randomised, O1 and O2 are measurements
of comprehensibility, X is the presentation of the ILP-learned rule, D is an unrelated
distractor task.

RAA R O1 X O2
RA R D X O2

Empirical Hypothesis. We assume that for this unfamiliar chemistry domain, human
problem solvers are not able to come up with the correct classification rules. However,
an ILP approach such as Metagol can generate rules which are comprehensible to
humans. Consequently, our operational hypothesis is:

H5: Score after simply inspecting training data (O1) is significantly lower than
after having seen a symbolic machine learned definition (O2) regardless whether
participants had first to try to induce the rules themselves or not (no difference
of O2 scores between groups RAA and RA).

That is, measurement O1 addresses unaided human comprehension of examples and
O2 addresses machine-aided human comprehension as introduced in Section 3. Addi-
tionally, we assume that participants are not able to formulate correct classification
rules in Prolog or natural language.
Participants and Procedure. The experiment has been conducted in December 2016
at University of Osnabrück. Participants were 43 undergraduate students of cognitive
science (20 female, 23 male, mean age = 22.12 years, sd = 2.51) with a good
background in Prolog and in logic but no background in inductive logic programming.

The participants were randomly assigned to one of the following two conditions:
Rule Acquisition and Application (RAA, n = 22, 12 male, 10 female, mean age =
22.09 years, sd = 2.56) or Rule Application (RA, n = 21, 11 male, 10 female,
mean age = 22.14 years, sd = 2.52). For both conditions, participants had to solve
comprehensibility problems (O1 only for RAA, O2 for both RAA and RA, see
Figure 4). The participants were tested in class as part of a lecture. The experiment
again was realised with soscisurvey.de and participants used their own computers.

After a general introduction, for the RA condition an unrelated task (D in Table 3)
was presented to control for length of time and mental effort. Both experimental
groups first received an example problem (a blocks-world domain concept) to get
acquainted with the experimental task. Then, the participants of the RAA condition
were presented with the examples of the chemical domain—but not with the four rules
giving the relational concept. Instead, they were asked to describe the concept either
in natural language or as Prolog rules. Next, they had to solve the comprehensibility
test (O1 in Table 3). From there on, the procedure for the RAA and RA group was
identical: Participants were presented with the ILP-learned rules which characterise
the searched-for concept and had to solve the second comprehensibility test (O2 in
Table 3) which consists of tasks isomorphic to the first test. Afterwards, demographic
data were obtained. The experiment took about 20 minutes.
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4.2.3 Results Participant 327: too specific

exothermic if the substrate appears as a
substrate and the product appears as a
product in the same type of q. if they
are both substrates or both products,

or if they appear like that but in
different q’s, then it’s not exothermic

Participant 314: too specific

exothermic(X,Y) :- q2(X,Z), q1(Z,Y).

Participant 295: too general

not_exothermic(X,Y) :- q2(X,Z), q1(Y,Z).
not_exothermic(X,Y) :- q1(X,Y).
exothermic(X,Y) :- not(not_exothermic(X,Y)).

Fig. 9: Examples for erroneous rules.

Rule Generation. The 22 participants of
the RAA condition had to formulate the
rules which characterise the target concept
exothermic. 13 participants tried to formu-
late the rules. Of these, 11 wrote Prolog
code, 2 gave a natural language descrip-
tion. Only one participant gave the correct
rules (in Prolog). All other participants
gave erroneous rules, often either too spe-
cific (not covering all of the given positive
examples) or too general (covering some
negative examples). Some example solu-
tions are given in Figure 9. The results
support our assumption that the fictitious
chemistry domain is too complex for hu-
mans to be able to acquire the correct
relational concept from examples.

**** n.s.n.s.n.s.n.s.
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Fig. 10: Mean comprehensibility
scores for rule acquisition and applica-
tion (RAA) vs. rule application (RA)
condition (details see text).

Scores. To evaluate the comprehensibil-
ity scores, we excluded the one partici-
pant who could formulate the correct rela-
tional concept. This participant also had
maximum score values for both compre-
hensibility tests. Participants of the RAA
condition had very low comprehensibility
scores at the first testing time (n = 21,
mean = 1.76, sd = 2.07). However, their
scores significantly improved for the sec-
ond testing time (t-test for dependent sam-
ples, t(21) = 7.63, p < 0.001), that is, after
they were presented with the ILP-learned
rules (n = 21, mean = 5.24, sd = 1.92).
Participants of the RA condition who im-
mediately were presented the ILP-learned
rules performed slightly worse (n = 21,
mean = 4.33, sd = 2.39), but not significantly so (Wilcoxon rank sum test with
continuity correction, W = 267, p = 0.119). The results are summarised in Figure
10. They clearly support our hypothesis that white box machine learning approaches
such as ILP can support humans to identify relational concepts in complex domains.

4.3 Discussion

Our findings show that presenting programs in relation to a public name space
facilitates comprehension. Contrary to our expectations, being instructed to first think
about a meaningful name for a program before answering questions in general does not
facilitate generation of answers. We would have expected that having a (denotational)
semantic interpretation for a predicate supports working on classification and variable
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Table 4: Hypotheses concerning comprehensibility, meaningful names, and predicate
invention. Conf. stands for Confrimation, C means confirmed, P partially confirmed.

Hypothesis Conf.

H1 Comprehensibility manifests itself in high scores and fast solution times. C
H2 Comprehensibility means to be able to give a meaningful name to a program. C
H3 Predicate invention helps comprehensibility if it reduces textual complexity P

of the program.
H4 If coming up with a meaningful name needs a long time, it will probably P

be the false concept.
H5 ILP can generate classification rules which fulfil the ultra-strong learning C

criterion.

bindings of new material from a given domain because mental evaluation of a program
can be—at least partially—avoided. Furthermore, as expected, the use of additional
(invented) predicates does not facilitate program comprehension in general but only
under specific conditions which are discussed below (H3).

Results concerning our hypotheses are summarised in Table 4. Hypothesis H1
is confirmed by our empirical data: if a person comprehends a program, she or he
can come up with correct answers in short time. Hypothesis H2 is also confirmed:
participants who can give a meaningful name to a program give more correct answers
than participants who give incorrect answers or state that they do not know the
answer. In addition, participants who give a correct name give answers faster. As
hypothesis H3 we assumed that predicate invention supports comprehensibility if it
reduces the textual complexity of a program. For the four problems we investigated,
the reduction in complexity is greatest for greatgrandparent/2. Here we get a partial
confirmation: predicate invention results in more correct answers for the private name
space and if the instruction for naming was given after question answering. This
experimental condition is the most challenging, because comprehensibility is not
supported by public names and because participants were not encouraged to think
about the meaning of the presented predicate before they had to answer questions
about it.

Finally, we assumed that persons who have problems to come up with a meaningful
name for a predicate spend a longer amount of time to come up with an (incorrect
or no) answer (H4). Results show that this is the case—with the exception of the
ancestor/2 problem. However, the differences are only significant under specific
conditions. The observation that long answering time can indicate a problem with
comprehensibility could be exploited for the design of the interaction of a person with
an ILP system: if a person does not come up quickly with a name for a predicate,
the system could offer examples of the predicates behaviour. For example, for the
ancestor/2 problem, pairs for which this predicate is true could be highlighted in the
given tree.

In a second experiment we demonstrated that there are complex domains where
humans are not able to induce the underlying relational concept but that they can
correctly apply an explicit, rule-based representation of the relational concept (H5).
All together, our empirical results indicate that inductive logic programming can be
used to help humans to make sense of complex data.
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5 Conclusions and Further Work

In this paper we provide an operational definition of comprehensibility of a logic
program (Section 3) and use this within within two experiments.

In the first experiment we identify factors which affect comprehension. These
factors include the time required to inspect the program, the accuracy with which a
partcipant can recognise a predicate to one already known and the textual complexity
of the program. As expected, the four problems presented in the first differ with
respect to comprehensibility. The problem most participants had difficulty with is
the recursive ancestor/2. For this problem less than half of the participants (32)
gave the correct meaningful name and for this problem participants have the lowest
scores. However, since this problem was positioned last in the sequence, the results
might also be due to loss of motivation or exhaustion. Interestingly, ancestor/2 is
also the only one of the four problems where participants reached the highest score
in the private naming condition without predicate invention. The kinship predicates
presented to human participants in the first experiment are all ones which could be
expected to be equivalent to ones already known to the participants. In the second
experiment we studied te effects of human users being presented with definitions of
predicates which are novel to the user.

The second experiment tested whether humans can improve their performance on
unseen data when shown a program genearated by a symbolic machine learning system
compared with their predictions based only on unaided study of the training data.
The experimental support of hypothesis H5 represents to a world first demonstration
of the existence of Ultra-strong Machine Learning in the sense introduced by Michie
[21]. However, for further work we note that H5 will only hold in the case that the
Machine Learning is effective.

In our opinion, explanation is a signature not of intelligence, but of being human.
It is possible to imagine the neural network of a snail being trained to play expert
level Go, but such a snail will never be able to explain to itself or other snails how to
play well. Human explanation represents a novel evolutionary development which
allows signalling between individuals using abstract languages. Human science can
be viewed as a collection of powerful and predictive explanations of the world. Black
box learning is an acceptable approach for forming intelligent individual agents, but
not for forming intelligent societies which incorporate human beings. This paper
demonstrates that good explanations learned by machines can have the power to
mibue individuals with improved performance which would fail to achieve even when
provided with large numbers of examples.

In closing we believe the operational definition of comprehensibility has enormous
potential to both clarify one of the central concepts of AI research as well as to
provide a bridge to the study of factors affecting the design of AI systems which
improve human understanding.
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