
Title: The automatic discovery of structural principles describing

protein fold space

Adrian P. Cootes1,3, Stephen H. Muggleton2,4 and Michael J.E. Sternberg1,3*

Current addresses

1 Imperial College of Science, Technology and Medicine, Department of Biological

Sciences, South Kensington, London, SW7 2AZ, UK.

2 Imperial College of Science, Technology and Medicine, Department of Computing,

South Kensington, London, SW7 2AZ, UK.

Previous addresses

3 Cancer Research UK, Biomolecular Modelling Laboratory, 44 Lincoln’s Inn Fields,

London, WC2A 3PX, UK.

4 University of York, Department of Computer Science, Heslington, York, YO1 5DD,

UK.

a.cootes@ic.ac.uk, s.muggleton@ic.ac.uk, m.sternberg@ic.ac.uk

* corresponding author

Short title

Describing protein fold space



Summary

The study of protein structure has largely been driven by the careful inspection of

experimental data by human experts. However, the rapid production of protein

structures from structural-genomics projects will make it increasingly difficult to

analyse (and determine the principles responsible for) the distribution of proteins in

fold space by inspection alone. Here, we demonstrate a machine-learning strategy that

automatically determines the structural principles describing 45 classes of fold. The

rules learnt were shown to be both statistically significant and meaningful to protein

experts. With the increasing emphasis on high-throughput experimental initiatives,

machine-learning and other automated methods of analysis will become increasingly

important for many biological problems.
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Introduction

Structural-genomics is predicted to enhance the understanding of protein fold space

greatly in the near future through an explosion in the number of

experimentally-determined protein structures. Several hundred different types of fold

have already been observed. Proteins are not distributed evenly amongst these fold

types, many adopting a limited number known as “superfolds” 1. In contrast, the vast

majority of observed folds are adopted by only a small number of proteins. The

distribution of proteins throughout fold space needs to be understood in terms of their

internal structural arrangements and in the wider context of protein folding, function

and evolution. Given the complicated nature of any given proteins three-dimensional

molecular arrangement, the analysis of fold space is a difficult task even with the

current, relatively low, number of known folds. With structural-genomics projects

aiming to rapidly determine all protein folds in biota (predicted to be anywhere from

1000 to 10000 different types1; 2) this will only become more difficult. Such a large

influx of new experimental data will require rapid, automated methods of analysis in

order to understand this complex problem fully.

The first step in understanding complex phenomena in biology has often been

classification. There are currently several classification schemes that group the current

set of known protein structures according to the similarity of their folds. The SCOP3,

CATH4 and FSSP5 databases have been developed using manual, semi-automated and

fully automatic methods of structure comparison respectively. Recently, a method has

also been developed to classify proteins in terms of their proximity to a set of



idealised protein structural units6. Some of these databases have been shown to be

largely similar but, nonetheless, significantly different in their assignment of

structural similarity7. The identification of proteins with similar structure is important,

particularly in highlighting evolutionary relationships not easily identified by

sequence comparison alone. However, in order to understand a biological problem, it

is not enough to simply identify classes of like objects. Classification alone will not

explain why some types of fold are more prevalent than others or why some potential

protein folds are not observed at all. To do so would require an understanding of how

protein folds differ in terms of their fundamental structural properties in the context of

protein folding and function.

Experts usually describe the fold of a protein in terms of the spatial and topological

arrangements of their regular secondary structure elements. The only database

carrying such descriptions in detail for all fold classes (albeit “preliminary” ones for

the α+β main fold class) is the SCOP3 database. The SCOP database, widely used by

the protein structure community, is manually curated and annotated by the protein

expert A. Murzin. While these descriptions give expert-like structural principles

behind each fold class, many of them do not discriminate between that fold and other

fold classes. For example, the SCOP descriptions for the Immunoglobulin,

Prealbumin and Cupredoxin folds are almost identical. Furthermore, these

descriptions are subjective. Given this, and the rapidly expanding number of folds

expected from structural-genomics programs, it would be useful to generate such

descriptions automatically. This would enable the objective identification of features



that make each fold unique and, as a consequence, give the structural principles

underpinning fold space.

Here, we have applied Inductive Logic Programming (ILP)8; 9; 10, a machine learning

technique, to the problem of automatically generating descriptions for fold classes in

SCOP. In this way, the rules generated by ILP could be compared to those given in

SCOP. However, the method can be applied to learn structure principles for any

database. ILP has previously been applied to many problems in molecular biology11; 12;

13; 14; 15. In a previous application of ILP to the learning of protein structure principles16

only local features of folds (that is, features relating to a short section of sequence)

were identified. It was noted that insertions and deletions made the learning of global

fold features extremely difficult due to the large number of exceptions presented.

Here, we circumvent this problem by utilising multiple structure alignments as well as

ILP to obtain global descriptions. This enabled us for the first time to learn expert-like

rules describing protein structure folds in an automatic fashion.

The approach

The overall scheme for learning fold descriptions is shown in Figure 1. Rules for each

fold were learnt using the Progol-4.4 ILP system8; 10. Progol learns rules from known

examples and background knowledge. Examples in this study were defined using the

SCOP protein structure database3. When learning rules for a given fold, positive

examples were selected from the domains within the corresponding SCOP fold

category while negative examples were selected from domains within all other fold



categories in the same SCOP main fold class (all-α, all-β, α/β or α+β). Background

knowledge consisted of structural information for each example considered, derived

from secondary structure and multiple structure alignment information (as described

in the Methods section). For each fold category in the four major main fold classes in

SCOP (all-α, all-β, α/β or α+β), a multiple structure alignment was constructed from

selected domains with that fold. Structurally equivalent secondary structure elements

were identified by the relative degree of overlap with one another in the alignment.

Core secondary structure elements were then defined as those elements that had a

structurally equivalent element in a majority of aligned domains. Non-core elements

were subsequently ignored. Thus, the background knowledge of each domain

consisted of the properties of, and relationships between, only the core secondary

structure elements. Element properties such as the relative sequence position of a

strand in a sheet or the presence of a glycine or proline were considered. One of the

major advantages of ILP over other forms of machine learning is that relations

between objects can be easily represented. Relations between core elements were

included in the background knowledge, such as contacts between core elements in

space and the length of coil between elements adjacent in sequence. The full list of

attributes and relations considered are described in the Methods section.

Progol takes as input both examples and background knowledge represented as logic

programs. Progol builds rules by selecting a positive example and constructing

hypotheses from logic programs that make up that examples background knowledge.

Rules are constructed so as to maximise compression. The measure of compression

used is f, where:



f = p - n – c

p is the number of positive examples covered by the rule, n is the number of negative

examples covered and c is the length of the rule. The parameter c ensures that for

rules with equal coverage of positive and negative examples the shorter one is

favoured. When a rule with maximal compression has been found, the positive

examples matching that rule are removed. Progol then proceeds to learn rules from the

remaining examples in a similar fashion to that described above. This process is

iterated until there are no remaining positive examples.

The rules output by Progol are also expressed as logic programs and can be readily

interpreted by a human expert. For example, the rules for the Rossmann fold were

output as follows:
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and:

fold(A,'NAD(P)-binding Rossmann-fold domains') :-

sheet(A,B,para), helix(A,C,h,g), helix(A,D,h,i),

helix_angle(C,D,para), sheet_top_6(B,3,2,1,4,5,6).

These rules are written in plain English in Table 2 and will be analysed in Results.



Results

Rules were learnt for 45 of the more common protein folds using ILP. The total

number of rules learnt for these folds was 66, an average of ~1.5 rules per fold. The

full list of rules learnt can be found on our website

(http://www.sbg.bio.ic.ac.uk/~cootes/rules.html). 

Cross-validated accuracy

The ILP scheme used here was subjected to a rigorous cross-validation procedure, the

results of which are shown in Table 1. The overall accuracy was high (97%) but

dominated by predictions for one class of example, the negative examples. A large

number of negative examples were included in order to minimise the learning of

spurious rules. Therefore, the accuracy expected if one were to simply predict that

every example was a member of the largest (negative) class was also high (95%).

However, a Pearson’s 2 test indicated that the results were statistically significant

when compared to such a largest class prediction ( 2 = 58.5, p << 0.01).

In order to isolate the performance on the prediction of positive examples, the recall

and precision have been included in Table 1. The recall is the percentage of positive

examples that are predicted to be positive. The precision is the percentage of

examples predicted to be positive that are actually positive examples. For the 45 fold

classes examined here, the overall precision was found to be reasonably high (77%)

although the recall was relatively low (55%). This was largely due to the difficulties



of producing stable multiple structure alignments, particularly for those folds that had

a low number of examples. For the 10 fold classes with the highest number of positive

examples used here, the overall precision and recall were 83% and 69% respectively.

Fold rules

Several examples of the rules learnt automatically for well-known folds are explored

further here and are shown in Table 2, with corresponding structures and features of

interest shown in Figure 2. These folds were selected for their biological interest and

also to highlight improvements in the automatic descriptions of folds and

discrepancies with the current understanding of protein structure. 

In order to compare the rules learnt with ILP to those of a protein structure expert, the

ILP rules were compared to the corresponding SCOP descriptions. A rigorous

comparison of rules is difficult given that the SCOP descriptions were manually

generated and use a different glossary of terms to that used in this study. However,

inspection of the rules reveals that the principles learnt automatically using ILP are

often similar to those given by the expert responsible for SCOP. Table 2 lists several

examples of folds, the corresponding ILP rules learnt in this study and the SCOP

description for that fold.

The rules learnt in this study were also compared with those of a previous study16 that

did not utilise multiple structure alignments. As different sets of protein folds were

considered in these studies, a rigorous comparison is also difficult in this case.



However, for those fold examples listed in Table 2 that were also considered in the

previous study, the corresponding rules are listed in Table 3 for the purposes of

comparison by inspection. 

Global fold descriptions

In contrast to the previous study16 referred to above, the incorporation of structural

superpositions into the background knowledge has enabled important global, as well

as local, fold properties to be automatically identified. In particular, descriptors giving

the size and topology of β-sheets, and those describing the total number of helices in a

fold, were among the most prevalent found in the rules generated (Table 5). For

example, the 321456 topology of the Rossmann fold parallel sheet was identified

(Figure 2b) as well as the topologies of both antiparallel sheets making up the

Immunoglobulin sandwich structure (Figure 2c). The TIM-barrel fold is identified as

having an 8-stranded parallel β-sheet (Figure 2a). Without structural superpositions16,

the rules learnt previously (Table 3) described such features as a short loop between

the first helix and the following strand in the Rossmann fold, part of the NADH

binding motif, and the loop between the fifth and sixth strands of the Immunoglobulin

fold. No meaningful rule was found for the TIM-barrel fold previously.

Clearly, the reduction in the number of exceptions due to insertions and deletions

enables ILP to learn global fold properties but it remains to be seen if those properties

can be recognised by protein experts as the important features of the fold.



Comparison to a manual standard (SCOP)

Rossmann fold

In many cases, ILP recalls those properties that are noted by the curators of SCOP.

For example, the ILP rules found for the Rossmann fold and SCOP description both

give the topology of the main parallel β-sheet as an important feature. ILP also

describes a helix at core position “b” (the second core element in the sequence)

containing glycines in the middle and n-terminal sections. This is part of a conserved

G-X-G-X-X-G sequence motif17 involved in binding nucleotide groups. While SCOP

mentions nucleotide binding in its description of the Rossmann fold, it does not

explicitly detail the features involved in binding.

Immunoglobulin fold

For some folds, ILP rules describe the folds in more detail than the SCOP database.

SCOP describes Immunoglobulin folds as having 7 strands in 2 sheets, with some

variation. This is very similar to the descriptions for a number of other folds in the

same main fold class (all-β), including the Prealbumin-like fold (see Table 2). While

these descriptions match each fold class, they do not identify the features that

distinguish them from one another. In contrast, the rules learnt for the core of the

Immunoglobulin fold using ILP include a level of detail necessary to distinguish it

from other fold classes. The ILP rule given in Table 2 describes an Immunoglobulin

fold as having two antiparallel sheets, one with 4 strands and the other with 3 strands,



in agreement with SCOP. However, it also includes the topology of those sheets

(2134 and 123, respectively). This clearly distinguishes this fold from the Prealbumin

fold, which contains a sheet with 3 core strands that is mixed and has the first strand

in the centre of the sheet (topology 213). The Immunoglobulin fold class is known to

contain substantial variation between individual structures18. Even with the use of

multiple structure alignments, ILP finds several rules (including the rule discussed

above) describing the core structure of this fold

(http://www.sbg.bio.ic.ac.uk/~cootes/rules.html). While the variation amongst

Immunoglobulin structures is referred to by the SCOP description (see Table 2),

explicit details are not given. The expert responsible for the classifications

construction is likely to know these details but has not clearly articulated them for the

non-expert to analyse. While such details may yet be included in subsequent versions

of SCOP, providing such levels of detail manually will become increasingly difficult

as large numbers of structures are produced by structural genomics projects.

TIM-barrel fold

For other cases, ILP rules do not reflect the same level of detail contained in the

corresponding SCOP description. For example, the ILP rule describing the TIM barrel

fold given in Table 2 includes the size of the main parallel sheet and the total number

of core helices (not described by SCOP). However, the ILP rules give no information

about the topology of the β-sheet and do not identify the sheet as a closed barrel (both

described by SCOP). In contrast to the SCOP description, a recent study has shown

that a large number of TIM barrels are not in fact fully closed barrel structures19.



Thus, we might expect an objective description to include both “open” and closed

barrel structures. The end_strand_distance predicate (see Table 4) was included in this

study to try and detect such “open” barrels, in which the sheet is highly curved with

the end strands close together in space but not in contact. However, no rules were

learnt describing such “open” barrels either. The reason that such features were not

learnt for the TIM-barrel lies in the way that ILP generates fold rules. ILP searches for

the shortest rule that distinguishes the fold of interest from all other folds in the same

main fold class. Very few proteins in the α/β main fold class have parallel sheets

consisting of 8 core strands (data not shown) apart from the TIM-barrels. Hence, a

rule describing a TIM-barrel as an 8-stranded parallel sheet does not need to include

many more details in order to explain why that fold is unique.

SH3 fold

Included among the structural properties that folds were examined for were the

presence of glycines and prolines in secondary structure elements. These residues are

particularly interesting in terms of structure in that they greatly increase and decrease

backbone conformational freedom respectively. It might be expected that there are

some structural contexts in which these residues are strongly preferred in order for a

protein to adopt a given fold.

One such fold may be the SH3 fold. The rule learnt automatically using ILP in this

study described this fold as including a four-stranded antiparallel sheet, with the first

and fourth strands at the end of the sheet being close together in space so that the



sheet formed an open barrel structure (Table 2). These features are also described, or

indirectly implied, by the corresponding SCOP description. However, the Progol rule

also describes the presence of a proline at the end of the fourth strand (Figure 2d) that

is not given by the SCOP description. This proline occurs just before the 3-10 helix

interrupting the fourth strand in the sheet (referred to by the SCOP description) in

SH3 domains from three different superfamilies. The proline, with its peculiar

property of highly restricted backbone conformational freedom, might be strongly

preferred in order to form the break in the regular secondary structure of the fourth

strand. It might also play a role in ensuring that the SH3 barrel is an open one, as a

proline cannot contribute to hydrogen bonding to two neighbouring strands (which

would be required in order for the barrel to be closed).

Barrel-sandwich hybrid fold

For other folds, a glycine may be required in order to give protein chain the necessary

conformational freedom to form the required structure. The rule learnt in this study

for the Barrel-sandwich hybrid fold describes an antiparallel sheet with topology

3214, in which the n-terminal portion of the first strand contains a glycine. This

feature is found in domains with this fold from three different superfamilies. Example

domains from two of these superfamilies exhibit phi/psi angles for the glycine of

interest that are outside the normal range for a residue within a beta-strand (-60 < phi

< -150, 90 < psi < 180). This indicates that a glycine might be preferred at this

structural position in order to achieve an unusual bend in the strand and sheet. SCOP

does not describe the presence of this glycine or indeed the topology of the sheet.



Long alpha-hairpin fold

The presence of a particular residue that ILP has indicated to be important is more

difficult to interpret structurally for other folds. One such example is the Long

alpha-hairpin fold, in which the derived rule indicated that a glycine in the middle of

the second of two helices is an important feature for this fold. Domains from four

different superfamilies in this fold class exhibit this feature, implying that the glycine

is important structurally. However, the glycines have phi/psi angles in the normal

range for a residue in an alpha-helix (-60 < phi < -150, -45 < psi < -60) indicating that

backbone conformational freedom is not required in order to form this fold.

The rule learnt in this study also describes the way in which the alpha-helices are

arranged with respect to one another in a little more detail than SCOP. It does not

describe the left-handed twist of the helices referred to SCOP as no attempt was made

to learn this type of feature.

Conclusion

The structural principles underpinning much of fold space can be automatically

described using ILP. Such rules are objective and are discriminatory with respect to

different fold classes by construction. Furthermore, the rules produced can be readily

interpreted and analysed by human experts in protein structure. In contrast to previous



work16, the incorporation of structural superpositions into the background knowledge

employed here has enabled the global properties of a fold to be captured effectively.

Using this approach, the rules obtained often reflect the principles given in the manual

fold descriptions of the SCOP database but are derived in a completely objective way.

In some cases, folds in the SCOP database with ambiguous or non-discriminating

descriptions (for example, the Immunoglobulin and Prealbumin-like folds) can be

distinguished using the rules learnt with ILP.

This study has concentrated on automatically learning structural principles from the

manually curated SCOP database. However, the approach used here can be applied

generally to any classification of protein structure. Several classification schemes

already exist that employ semi-4 or fully-automated5 methods of protein structure

comparison. While these schemes and SCOP are largely similar, they have also been

shown to differ significantly7. The application of the ILP scheme used in this study to

different classification schemes would enable the principles behind their respective

fold categories to be compared objectively using language comprehensible to a

protein expert. More importantly, ILP could be used as part of a two-step, fully

automatic approach to derive the principles of protein structure from coordinates

produced by structural genomics. The first step of fully automated protein structure

classification can be achieved with schemes such as DALI5. Here, the challenging

second step, of objectively deriving the structural principles behind such a

classification, has been demonstrated using ILP. More generally, given the increasing

emphasis on high-throughput experimental projects, machine-learning techniques

such as ILP are going to become crucial to learning principles from biological data.



Methods

Data set

The set of protein domains used for each fold category were obtained from the SCOP

database3, release number 1.50. For learning rules, a list of domains for each of the

four main fold classes (all α, all β, α/β and α+β) were selected using the ASTRAL20

database, selecting one domain per protein/species. This list of domains thus included

some related domains (that is, domains from the same SCOP sequence family).

However, their inclusion was found to improve both the multiple structure alignments

and the quality of the rules learnt as determined by our protein expert (M. Sternberg).

When testing the rules, one representative domain per SCOP sequence family was

selected randomly in order to eliminate bias.

The 45 folds considered in this study correspond to those SCOP fold categories in

which protein domains from 4 or more sequence families could be clustered in a

multiple structure alignment (see next section). Two fold categories (TIM barrels and

Immunoglobulins) have a very large number of examples from the ASTRAL set. For

these folds, 50 positive examples were selected randomly with a weighting to ensure

equal preference for each sequence family.



Multiple structure alignment 

A brief outline of the techniques used to generate multiple structure alignments and

define the core secondary structure elements is given in this and the next section. A

more detailed explanation of these methods can be found elsewhere21.

Multiple alignments were constructed by clustering pairwise alignments of domains

with the same fold. Pairwise alignments were generated for each possible pair of

domains in that category using the SSAP program22. The pairwise alignments in each

fold category were then clustered with respect to their Root Mean Square Distance

(RMSD), in a similar manner to that of a previous publication23, to give the final

multiple structure alignment. Firstly, a master domain was selected by finding the

domain with the lowest average pairwise RMSD to all other domains in that SCOP

fold category. The master domain then acted as a seed for the subsequent alignment of

the remaining domains. To eliminate outliers, any domains that had a pairwise

alignment with the master domain with RMSD > 6 Å were firstly eliminated from

further consideration. Also, in order to avoid corrupting the multiple alignment with

misaligned pairwise alignments, domains for which less than 2/3 of the residues

participated in the multiple alignment at any given step were eliminated from

consideration. For most fold categories considered here, only a few domains were

eliminated in this way.

Core secondary structure element definition



The multiple structure alignment indicates which residues in each structure can be

considered structurally equivalent. However, to learn rules for protein structure in

terms of conserved (core) secondary structure elements (α-helical or β-strand) the

elements that can be deemed equivalent have to be identified. To do this, the

secondary structure for each protein in the multiple structure alignment was defined

using the PROMOTIF24 program. Then a simple matching scheme was employed to

match secondary structures units in the different domains based on the extent to which

their constituent residues are structurally equivalent, as determined by the multiple

alignment for that fold category. Those elements that are equivalent to another

element in the majority of aligned domains are considered to be a core element. The

groups of equivalent, core secondary structure elements were labelled according to

their relative position in the sequence (that is, the first group were labelled “a”, the

second “b” and so on). 

Learning rules with Progol

Rules were learnt using the Progol-4.4 ILP system8; 10. The positive examples for a

given fold were those domains that were clustered to form the multiple structure

alignment for that SCOP fold category. The negative examples were those domains

that formed the multiple structure alignments in all other fold categories in the same

SCOP main fold class (all-α, all-β, α/β or α+β). Thus, rules were learnt to

discriminate between the fold type of interest and the most similar, yet distinct, types

of fold. Background information for each example was generated from the



PROMOTIF output for those secondary structure elements that were defined to be

core (Table 4).

Progol parameters

The maximum number of nodes (or hypotheses) tested for an individual search was

set to 1000. The noise parameter was set to 20% (that is, up to 20% of examples

covered by a rule could be false positives). The inflate parameter was set to 200%

(that is, positive examples were given a weighting twice that of the negative

examples). In addition to these parameters, a constraint was applied to force the rules

to include information about each secondary structure element other than its relative

position in the sequence. For example, a rule stating “Fold A has an α-helix B at core

position ‘b’ and an α-helix C at core position ‘c’.” would not be considered a viable

rule. However, a rule stating “Fold A has an α-helix B at core position ‘b’ and an

α-helix C at core position ‘c’, B and C are in contact.” would be considered valid.

This constraint was applied to enrich the rules in terms of their biological description

and insight.

Cross-validation testing

5-fold cross-validation was carried out on all 45 folds considered in this study.

Domains for each fold category were divided into learning and test sets such that no

domain in the test set was related to (that is, in the same SCOP sequence family as)

any domain in the learning set. Rules were learnt on the learning set as described



above. The test set was then included and the multiple structure alignment

re-calculated. One example per sequence family was randomly selected from the

aligned members of the test set for testing. If no example from a sequence family was

aligned, this sequence family was ignored. However, even if these test examples that

could not be aligned were included as false negatives, the overall result for the 45

folds was still statistically significant (data not shown).
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Figure captions

Figure 1. Information flow in ILP. ILP is driven by examples and background

knowledge to produce new rules and principles. Examples of a given fold are taken

from the SCOP database. Background knowledge is generated from structurally

aligned protein coordinates and general structural principles defined by an expert.

Figure 2. Structures demonstrating features learnt using ILP. The features highlighted

correspond to the rules learnt using ILP in this study, given in Table 2. The

numbering of strands shows sheet topology, relevant glycines are highlighted in green



and prolines in red. The structures shown have the following folds: (a) TIM

barrel-like, (b) Immunoglobulin-like, (c) Rossmann-like, (d) SH3-like, (e)

Barrel-sandwich hybrid and (f) Long alpha-hairpin.
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Table 1. Cross-validated accuracy for fold rules. The number of positive

examples (+), number of negative examples (-), accuracy, expected accuracy,

precision and recall statistics are given for each fold. The expected accuracy is the

accuracy that would be obtained if every example were predicted to be a negative

example. Recall is the percentage of positive examples that have been correctly

predicted to have that fold. Precision is the percentage of examples predicted to

have that fold that have been predicted correctly. The overall accuracy for these

45 folds was found to be statistically significant (p << 0.01) according to a 2 test.

Fold class + - Accuracy Expected Precisio

n

Recal

l

Long alpha-hairpin 7 146 95% 95% 50% 29%
DNA/RNA-binding 3-helical bundle 30 123 97% 80% 96% 90%

Four-helical up-and-down bundle 10 143 96% 93% 75% 60%
EF Hand-like 9 144 95% 94% 56% 56%

SAM domain-like 10 143 95% 93% 100% 20%
Alpha/alpha toroid 5 148 97% 97% 0% 0%

Alpha-alpha superhelix 8 145 93% 95% 33% 25%
Multiheme cytochromes 4 149 97% 97% 0% 0%

All-α class 83 1141 96% 93% 76% 53%

Immunoglobulin-like beta-sandwich 16 129 90% 89% 53% 62%
Diptheria toxin/transcription factors/cytochrome f 7 138 97% 95% 100% 29%

Prealbumin-like 4 141 99% 97% 100% 75%
Crystallins/protein S/yeast killer toxin 4 141 98% 97% 100% 25%

Galactose-binding domain-like 7 138 95% 95% 50% 14%
ConA-like lectins/glucanases 5 140 92% 97% 12% 20%

SH3-like barrel 7 138 94% 95% 40% 29%
OB-fold 12 133 97% 92% 100% 58%

Beta-Trefoil 6 139 97% 96% 100% 33%
Reductase/isomerase/elongation factor 7 138 97% 95% 100% 43%

PH domain-like 4 141 99% 97% 80% 100%
7-bladed beta-propeller 6 139 97% 96% 100% 33%

Double-stranded beta-helix 5 140 97% 97% 50% 20%
Barrel-sandwich hybrid 4 141 98% 97% 60% 75%

All-β class 94 1936 96% 95% 64% 45%

TIM beta/alpha-barrel 30 135 91% 82% 80% 67%
NAD(P)-binding Rossmann-fold domains 6 159 99% 96% 100% 83%

Flavodoxin-like 15 150 95% 91% 82% 60%
Ferredoxin reductase-like 4 161 99% 98% 100% 50%

Adenine nucleotide alpha hydrolase 4 161 96% 98% 0% 0%



Biotin carboxylase N-terminal domain-like 5 160 98% 97% 67% 40%
DHS-like NAD/FAD-binding domain 4 161 97% 98% 0% 0%

Thiamin-binding 4 161 98% 98% 0% 0%
Thioredoxin fold 6 159 98% 96% 67% 67%

Restriction endonuclease-like 4 161 97% 98% 33% 25%
Ribonuclease H-like motif 5 160 97% 97% 50% 20%

S-aden.-L-meth.-dependent methyltransferases 5 160 98% 97% 100% 20%
PLP-dependent transferases 5 160 100% 97% 100% 100%

Alpha/beta-Hydrolases 17 148 96% 90% 92% 71%
α/β class 114 2196 97% 95% 78% 54%

Lysozyme-like 5 156 98% 97% 100% 20%
Beta-Grasp (ubiquitin-like) 8 153 98% 95% 75% 75%

FAD-linked reductases, C-terminal domain 6 155 99% 96% 100% 67%
Cystatin-like 7 154 99% 96% 100% 86%

Ferredoxin-like 32 129 96% 80% 96% 84%
Zincin-like 7 154 99% 96% 100% 86%

T-fold 4 157 98% 98% 50% 25%
TBP-like 5 156 98% 97% 100% 40%

ATP-grasp 4 157 99% 98% 100% 50%
α+β class 78 1371 98% 95% 93% 71%

Total 369 6644 97% 95% 77% 55%



Table 2. Comparison of ILP rules to SCOP descriptions for several folds. Some of the

rules learnt using ILP are compared to the expert-like descriptions of those folds taken

from the SCOP database (SCOP). The ILP rules are written in English for ease of

comparison with the manual SCOP descriptions.

SCOP fold

class (version

1.50)

Rule

type

Rule

Immunoglobu

lin

(1 002 001)

SCOP sandwich; 7 strands in 2 sheets; greek-key; some

members of the fold have additional strands
ILP Has antiparallel sheets B and C; B has 3 strands, topology

123; C has 4 strands, topology 2134.
Prealbumin-

like

(1 002 003)

SCOP Sandwich; 7 strands in 2 sheets, greek-key; variations:

some members have additional 1-2 strands to common

fold
ILP Has a mixed sheet B. B has 3 strands with topology 213.

TIM barrel

(1 003 001)

SCOP contains parallel beta-sheet barrel, closed; n=8, S=8;

strand order 12345678; the first six superfamilies have

similar phosphate-binding sites
ILP Has between 5 and 9 helices; Has a parallel sheet of 8

strands.



Rossmann-lik

e

(1 003 002)

SCOP core: 3 layers, a/b/a; parallel beta-sheet of 6 strands, order

321456; The nucleotide-binding modes of this and the

next two folds/superfamilies (1 003 003 and 1 003 004)

are similar
ILP Has between 3 and 4 helices; Has α-helix B as the second

core element in the sequence; B contains a glycine in both

its middle and n-terminal regions.

OR

Has a parallel sheet B of six strands with topology

321456; Has α-helices C and D as the seventh and the

ninth core elements in the sequence respectively; C and D

are in contact and parallel.
SH3

(1 002 001)

SCOP barrel, partly opened; n*=4, S*=8; meander 

the last strand is interrupted by a turn of 3-10 helix
ILP Has an antiparallel sheet B. C and D are the 1st and 4th

strands in the sheet B respectively. C and D are the end

strands of B and are 4.360 (+/- 2.18) angstroms apart. D

contains a proline in the c-terminal end. 
Barrel-

sandwich

hybrid

(1 002 079)

SCOP sandwich of half-barrel shaped beta-sheets

ILP Has an antiparallel sheet B. B has 4 strands with topology

3214. C and D are the 1st and 4th strands in B respectively.

C and D are in contact. C contains a glycine in the n-

terminal end. 



Long

alpha-hairpin

(1 001 002)

SCOP 2 helices; antiparallel hairpin, left-handed twist

ILP Has a total number of 2 helices. α-helices B and C are the

1st and 2nd core elements in the sequence respectively. B

and C are in contact, the closest points are the middle of

B and the middle of C. B and C are antiparallel (180 +/-

45 degrees) to one another. C contains a glycine in the

middle region.



Table 3. Rules learnt with ILP in the absence of multiple structure alignments. The

rule corresponding to each fold in Table 2 is taken directly from a previous

publication16 (where available). Several folds in Table 2 were not considered in the

previous study and are absent from the table below.

SCOP fold

class 

Rule

Immunoglobu

lin

There is at most one helix, the loop between the 5th and 6th strands

is three to seven residues long.

TIM barrel No rule given. There was no rule with > 30% coverage found in

the previous study.

Rossmann-lik

e

The 1st strand is followed by a helix, the two elements are

separated by a coil of about one residue. The 6th strand is followed

by a helix.

SH3 There are four to six strands, the loop between the 3rd and 4th strand

is one to three residues long.



Table 4. Predicates describing protein fold properties. Each predicate is a logic

expression in Prolog describing attributes of, or relationships between, core secondary

structure elements in a protein domain.

Predicate Description

number_helices(Lo =< D =< Hi) The number of helices in domain D.
sheet(D, A, Stype) Domain D has a β-sheet A of type

Stype, where Stype could be
antiparallel, parallel or mixed.

helix(D, B, Htype, Core) Domain D has a helix B at core position
Core. B is of type Htype, where Htype
can be an α -helix or a 3-10-helix.

strand_position(A, B, N) β-Sheet A has a β-strand B which is the
Nth strand in that sheet. 

adjacent(B, C) Secondary structure elements B and C
are adjacent in sequence.

coil(B, C, N) Elements B and C are adjacent in
sequence, separated by a coil of N
residues.

contact(B, C) Elements B and C are in contact in
space.

antiparallel(B, C) β-strands B and C are antiparallel.
parallel(B, C) β-strands B and C are parallel.
end_strand_distance(A, B, C, Dist) Strands B and C are the end strands of

sheet A and are separated by distance
Dist in space.

pair(B, C, Bloc, Cloc) Helices B and C are in contact. The
parts (N-terminal, C-terminal or middle)
of the helices B and C in contact are
Bloc and Cloc respectively.

helix_angle(B, C, Angle) Helices B and C are in contact. B and C
make angle Angle with each other,
where Angle could be antiparallel,
parallel or perpendicular.

has_n_strands(A, N) Sheet A has a total of N strands.
barrel(A) Sheet A is a barrel.
bifurcated(A) Sheet A contains a bifurcation.
sheet_top_X(A, N1, N2,…., NX) Sheet A contains X strands, with

topology N1N2…..NX (i.e. the N's give
the relative sequence order of the strands
that are spatially adjacent in the sheet).



contains(B, AA, Loc) Element B contains amino acid AA at
location Loc, where AA can be either
glycine or proline and Loc can be the
N-terminal, C-terminal or middle of the
element.

contains(B, AA) As above, but independent of location.  

Table 5. Occurrence of predicates in rules.

Predicate Number
 of 

occurrences

sheet 56
helix 53

strand_position 37
sheet_top_X 31

number_helices 24
contact 24

helix_angle 11
contains 10

pair 7
end_strand_distance 5

coil 4
has_n_strands 4

antiparallel 2
parallel 2
barrel 1

adjacent 0
bifurcated 0

total 271


