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The study of protein structure has been driven largely by the careful
inspection of experimental data by human experts. However, the rapid
determination of protein structures from structural-genomics projects
will make it increasingly difficult to analyse (and determine the principles
responsible for) the distribution of proteins in fold space by inspection
alone. Here, we demonstrate a machine-learning strategy that automati-
cally determines the structural principles describing 45 folds. The rules
learnt were shown to be both statistically significant and meaningful to
protein experts. With the increasing emphasis on high-throughput exper-
imental initiatives, machine-learning and other automated methods of
analysis will become increasingly important for many biological
problems.
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Introduction

Structural-genomics is predicted to enhance the
understanding of protein fold space greatly in the
near future through an explosion in the number of
experimentally determined protein structures. To
date, several hundred different types of fold have
been observed. Proteins are not distributed evenly
amongst these fold types, many adopting a limited
number known as superfolds.1 In contrast, the vast
majority of observed folds are adopted by only a
small number of proteins. The distribution of pro-
teins throughout fold space needs to be understood

in terms of their internal structural arrangements
and in the wider context of protein folding, func-
tion and evolution. Given the complicated nature
of the 3D molecular arrangement of any protein,
the analysis of fold space is a difficult task even
with the current, relatively low, number of known
folds. With structural-genomics projects aiming to
rapidly determine all protein folds in biota (pre-
dicted to be anywhere from 1000 to 10,000 different
types1,2), this will become more difficult. Such a
large influx of new experimental data will require
rapid, automated methods of analysis in order to
understand this complex problem fully.

The first step in understanding complex
phenomena in biology has often been classification.
There are currently several classification schemes
that group the current set of known protein struc-
tures according to the similarity of their folds. The
SCOP,3 CATH4 and FSSP5 databases have been
developed using manual, semi-automated and
fully automatic methods of structure comparison,
respectively. Recently, a method has been devel-
oped to classify proteins in terms of their proximity
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to a set of idealised protein structural units.6 Some of
these databases have been shown to be largely simi-
lar but, nonetheless, importantly different in their
assignment of structural similarity.7 The identifi-
cation of proteins with similar structure is important,
particularly in highlighting evolutionary relation-
ships not easily identified by sequence comparison
alone. However, in order to understand a biological
problem, it is not enough to simply identify classes
of like objects. Classification alone will not explain
why some types of fold are more prevalent than
others or why some potential protein folds are not
observed at all. To do so would require an under-
standing of how protein folds differ in terms of their
fundamental structural properties in the context of
protein folding and function.

Experts usually describe the fold of a protein in
terms of the spatial and topological arrangements
of their regular secondary structure elements. The
only database carrying such descriptions in detail
for all fold types (albeit “preliminary” ones for the
a þ b main fold class) is the SCOP database.3 The
SCOP database, used widely by the protein struc-
ture community, is manually curated and anno-
tated by the protein expert A. Murzin. While these
descriptions give expert-like structural principles
behind each fold, many of them do not discrimi-
nate between that fold and other folds. For
example, the SCOP descriptions for the immuno-
globulin, prealbumin and cupredoxin folds are
almost identical. Furthermore, these descriptions
are subjective. Given this, and the rapidly expand-
ing number of folds expected from structural-geno-
mics programs, it would be useful to generate such
descriptions automatically. This would enable the
objective identification of features that make each
fold unique and, as a consequence, give the struc-
tural principles underpinning fold space.

Here, we have applied inductive logic program-
ming (ILP),8 – 10 a machine learning technique, to
the problem of automatically generating descrip-
tions for folds in SCOP. In this way, the rules gener-
ated by ILP could be compared to those given in
SCOP. However, the method can be applied to
learn structure principles for any database. ILP
has been applied to many problems in molecular
biology.11 – 15 In a previous application of ILP to the
learning of protein structure principles,16 only
local features of folds (that is, features relating to a
short section of sequence) were identified. It was
noted that insertions and deletions made the learn-
ing of global fold features extremely difficult due
to the large number of exceptions presented. Here,
we circumvent this problem by utilising multiple
structure alignments as well as ILP to obtain global
descriptions. This enabled us for the first time to
learn expert-like rules describing protein structure
folds in an automatic fashion.

The Approach

The overall scheme for learning fold descriptions

is shown in Figure 1. Rules for each fold were
learnt using the Progol-4.4 ILP system.8,10 Progol
learns rules from known examples and back-
ground knowledge. Examples in this study were
defined using the SCOP protein structure
database.3 When learning rules for a given fold,
positive examples were selected from the domains
within the corresponding SCOP fold category,
while negative examples were selected from
domains within all other fold categories in the
same SCOP main fold class (all-a, all-b, a/b or
a þ b). Background knowledge consisted of struc-
tural information for each example considered,
derived from secondary structure and multiple
structure alignment information (as described in
Methods). For each fold category in the four major
main fold classes in SCOP (all-a, all-b, a/b or
a þ b), a multiple structure alignment was con-
structed from selected domains with that fold.
Structurally equivalent secondary structure
elements were identified by the relative degree of
overlap with one another in the alignment. Core
secondary structure elements were then defined as
the elements that had a structurally equivalent
element in a majority of aligned domains. Non-
core elements were subsequently ignored. Thus,
the background knowledge of each domain con-
sisted of the properties of, and relationships
between, only the core secondary structure
elements. Element properties such as the relative
sequence position of a strand in a sheet or the pre-
sence of a glycine or proline residue were con-
sidered. One of the major advantages of ILP over
other forms of machine learning is that relations

Figure 1. Information flow in ILP, which is driven by
examples and background knowledge to produce new
rules and principles. Examples of a given fold are taken
from the SCOP database. Background knowledge is gen-
erated from structurally aligned protein coordinates and
general structural principles defined by an expert.
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between objects can be represented easily.
Relations between core elements were included in
the background knowledge, such as contacts
between core elements in space and the length of
coil between elements adjacent in sequence. All of
the attributes and relations considered are
described in Methods.

Progol takes as input both examples and back-
ground knowledge represented as logic programs.
Progol builds rules by selecting a positive example
and constructing hypotheses from logic programs
that make up that example’s background knowl-
edge. Rules are constructed so as to maximise
compression. The measure of compression used, f ;
is given by:

f ¼ p 2 n 2 c

where p is the number of positive examples cov-
ered by the rule, n is the number of negative
examples covered and c is the length of the rule.
The parameter c ensures that for rules with equal
coverage of positive and negative examples, the
shorter one is favoured. When a rule with maximal
compression has been found, the positive examples
matching that rule are removed. Progol then pro-
ceeds to learn rules from the remaining examples
in a fashion similar to that described above. This
process is iterated until there are no remaining
positive examples.

The rules output by Progol are expressed also as
logic programs and can be interpreted readily by a
human expert. For example, the rules for the Ross-
mann fold were output as follows:

fold(A,‘NAD(P)-binding Rossmann-fold
domains‘) :-
number_helices(3 ¼ ,(A ¼ ,4)),
helix(A,B,h,b),
contains(B,g,nterm),
contains(B,g,inter).

and:

fold(A,‘NAD(P)-binding Rossmann-fold
domains‘) :-
sheet(A,B,para), helix(A,C,h,g),
helix(A,D,h,i),
helix_angle(C,D,para),
sheet_top_6(B,3,2,1,4,5,6).

These rules are written in plain English in Table 2
and are analysed in Results.

Results

Rules were learnt for 45 of the more common
protein folds using ILP. The total number of rules
learnt for these folds was 66, an average of ,1.5
rules per fold. The full list of rules learnt can be
found on our website†.

Cross-validated accuracy

The ILP scheme used here was subjected to
cross-validation, the results of which are shown in
Table 1. The overall accuracy was high (97%) but
dominated by predictions for one class of example,
the negative examples. A large number of negative
examples were included in order to minimise the
learning of spurious rules. Therefore, the accuracy
expected if one were to simply predict that every
example was a member of the largest (negative)
class was also high (95%). However, a Pearson’s x2

test indicated that the results were statistically sig-
nificant when compared to such a largest class pre-
diction (x2 ¼ 58.5, p ! 0:01).

In order to isolate the performance on the predic-
tion of positive examples, the recall and precision
have been included in Table 1. The recall is the per-
centage of positive examples that are predicted to
be positive. The precision is the percentage of
examples predicted to be positive that are actually
positive examples. For the 45 folds examined here,
the overall precision was found to be reasonably
high (77%), although the recall was relatively low
(55%). This was largely due to the difficulties of
producing stable multiple structure alignments,
particularly for those folds that had a low number
of examples. For the ten fold categories with the
highest number of positive examples used here,
the overall precision and recall were 83% and
69%, respectively.

Fold rules

Several examples of the rules learnt automati-
cally for well-known folds are explored further
here and are shown in Table 2, with corresponding
structures and features of interest shown in Figure
2. These folds were selected for their biological
interest and to highlight improvements in the auto-
matic descriptions of folds and discrepancies with
the current understanding of protein structure.

In order to compare the rules learnt with ILP to
those of a protein structure expert, the ILP rules
were compared to the corresponding SCOP
descriptions. A rigorous comparison of rules is dif-
ficult, given that the SCOP descriptions were gen-
erated manually and use a glossary of terms
different from that used in this study. However,
inspection of the rules reveals that the principles
learnt automatically using ILP are often similar to
those given by the expert responsible for SCOP.
Table 2 lists several examples of folds, the corre-
sponding ILP rules learnt in this study and the
SCOP description for that fold.

The rules learnt in this study were compared
also with those of a previous study that did not uti-
lise multiple structure alignments.16 As different
sets of protein folds were considered in these
studies, a rigorous comparison is also difficult in
this case. However, for those fold examples listed
in Table 2 that were considered in the previous† http://www.sbg.bio.ic.ac.uk/~cootes/rules.html
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study, the corresponding rules are listed in Table 3
for the purposes of comparison by inspection.

Global fold descriptions

In contrast to the previous study referred to
above,16 the incorporation of structural superposi-
tions into the background knowledge has enabled

important global, as well as local, fold properties
to be identified automatically. In particular,
descriptors giving the size and topology of b-
sheets, and those describing the total number of
helices in a fold, were among the most prevalent
found in the rules generated (Table 5). For
example, the 321456 topology of the Rossmann
fold parallel sheet was identified (Figure 2(b)), as

Table 1. Cross-validated accuracy for fold rules

Fold category þ 2 Accuracy (%) Expected (%) Precision (%) Recall (%)

Long a-hairpin 7 146 95 95 50 29
DNA/RNA-binding three-helical bundle 30 123 97 80 96 90
Four-helical up-and-down bundle 10 143 96 93 75 60
EF hand-like 9 144 95 94 56 56
SAM domain-like 10 143 95 93 100 20
a/a Toroid 5 148 97 97 0 0
a-a Superhelix 8 145 93 95 33 25
Multiheme cytochromes 4 149 97 97 0 0
All-a class 83 1141 96 93 76 53

Immunoglobulin-like b-sandwich 16 129 90 89 53 62
Diphtheria toxin/transcription factors/cytochrome f 7 138 97 95 100 29
Prealbumin-like 4 141 99 97 100 75
Crystallins/protein S/yeast killer toxin 4 141 98 97 100 25
Galactose-binding domain-like 7 138 95 95 50 14
ConA-like lectins/glucanases 5 140 92 97 12 20
SH3-like barrel 7 138 94 95 40 29
OB-fold 12 133 97 92 100 58
b-Trefoil 6 139 97 96 100 33
Reductase/isomerase/elongation factor 7 138 97 95 100 43
PH domain-like 4 141 99 97 80 100
Seven-bladed b-propeller 6 139 97 96 100 33
Double-stranded b-helix 5 140 97 97 50 20
Barrel-sandwich hybrid 4 141 98 97 60 75
All-b class 94 1936 96 95 64 45

TIM b/a-barrel 30 135 91 82 80 67
NAD (P)-binding Rossmann-fold domains 6 159 99 96 100 83
Flavodoxin-like 15 150 95 91 82 60
Ferredoxin reductase-like 4 161 99 98 100 50
Adenine nucleotide a-hydrolase 4 161 96 98 0 0
Biotin carboxylase N-terminal domain-like 5 160 98 97 67 40
DHS-like NAD/FAD-binding domain 4 161 97 98 0 0
Thiamin-binding 4 161 98 98 0 0
Thioredoxin fold 6 159 98 96 67 67
Restriction endonuclease-like 4 161 97 98 33 25
Ribonuclease H-like motif 5 160 97 97 50 20
S-Ado-L-Met-dependent methyltransferases 5 160 98 97 100 20
PLP-dependent transferases 5 160 100 97 100 100
a/b-Hydrolases 17 148 96 90 92 71
a/b Class 114 2196 97 95 78 54

Lysozyme-like 5 156 98 97 100 20
b-Grasp (ubiquitin-like) 8 153 98 95 75 75
FAD-linked reductases, C-terminal domain 6 155 99 96 100 67
Cystatin-like 7 154 99 96 100 86
Ferredoxin-like 32 129 96 80 96 84
Zincin-like 7 154 99 96 100 86
T-fold 4 157 98 98 50 25
TBP-like 5 156 98 97 100 40
ATP-grasp 4 157 99 98 100 50
a þ b Class 78 1371 98 95 93 71

Total 369 6644 97 95 77 55

The number of positive examples (þ ), number of negative examples (2), accuracy, expected accuracy, precision and recall statistics
are given for each fold. The expected accuracy is the accuracy that would be obtained if every example were predicted to be a negative
example. Recall is the percentage of positive examples that have been correctly predicted to have that fold. Precision is the percentage
of examples predicted to have that fold that have been predicted correctly. The overall accuracy for these 45 folds was found to be stat-
istically significant ðp ! 0:01Þ according to a x2 test.
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well as the topologies of both antiparallel sheets
making up the immunoglobulin sandwich struc-
ture (Figure 2(c)). The TIM-barrel fold is identified
as having an eight-stranded parallel b-sheet
(Figure 2(a)). Without structural superpositions,16

the rules learnt previously (Table 3) described
such features as a short loop between the first
helix and the following strand in the Rossmann
fold, part of the NADH binding motif, and the
loop between the fifth and sixth strands of the
immunoglobulin fold. No meaningful rule was
found for the TIM-barrel fold previously.

Clearly, the reduction in the number of excep-
tions due to insertions and deletions enables ILP
to learn global fold properties but it remains to be
seen if those properties can be recognised by pro-
tein experts as the important features of the fold.

Comparison to a manual standard (SCOP)

Rossmann fold

In many cases, ILP recalls the properties that are
noted by the curators of SCOP. For example, the
ILP rules found for the Rossmann fold and SCOP
description both give the topology of the main par-
allel b-sheet as an important feature. ILP also
describes a helix at core position b (the second
core element in the sequence) containing glycine
residues in the middle and N-terminal sections.
This is part of a conserved G-X-G-X-X-G sequence
motif17 involved in binding nucleotide groups.
This feature is not described in detail by SCOP
but the text descriptions given in SCOP do not gen-
erally include information regarding sequence

Table 2. Comparison of ILP rules to SCOP descriptions for several folds

SCOP (version 1.50) fold category Rule type Rule

Immunoglobulin (1 002 001) SCOP Sandwich; seven strands in two sheets; greek-key; some
members of the fold have additional strands

ILP Has antiparallel sheets B and C; B has three strands,
topology 123; C has four strands, topology 2134

Prealbumin-like (1 002 003) SCOP Sandwich; seven strands in two sheets, greek-key; vari-
ations: some members have additional one or two strands
to common fold

ILP Has a mixed sheet B. B has three strands with topology
213

TIM barrel (1 003 001) SCOP Contains parallel b-sheet barrel, closed; n ¼ 8; S ¼ 8;
strand order 12345678; the first six superfamilies have
similar phosphate-binding sites

ILP Has between five and nine helices; Has a parallel sheet of
eight strands

Rossmann-like (1 003 002) SCOP Core: three layers, a/b/a; parallel b-sheet of six strands,
order 321456; The nucleotide-binding modes of this and
the next two folds/superfamilies (1 003 003 and 1 003
004) are similar

ILP Has between three and four helices; Has a-helix B as the
second core element in the sequence; B contains a glycine
residue in both its middle and N-terminal regions
OR
Has a parallel sheet B of six strands with topology
321456; Has a-helices C and D as the seventh and the
ninth core elements in the sequence respectively; C and D
are in contact and parallel

SH3 (1 002 001) SCOP Barrel, partly opened; np ¼ 4; Sp ¼ 8; meander; the last
strand is interrupted by a turn of 310 helix

ILP Has an antiparallel sheet B. C and D are the first and
fourth strands in the sheet B, respectively. C and D are
the end strands of B and are 4.360(^2.18) Å apart. D
contains a proline residuein the C-terminal end.

Barrel-sandwich hybrid (1 002 079) SCOP Sandwich of half-barrel-shaped b-sheets
ILP Has an antiparallel sheet B. B has four strands with

topology 3214. C and D are the first and fourth strands in
B, respectively. C and D are in contact. C contains a
glycine residue in the N-terminal end

Long a-hairpin (1 001 002) SCOP Two helices; antiparallel hairpin, left-handed twist
ILP Has a total of two helices. a-Helices B and C are the first

and second core elements in the sequence, respectively. B
and C are in contact, the closest points are the middle of
B and the middle of C. B and C are antiparallel
(180 ^ 458) to one another. C contains a glycine residue in
the middle region

Some of the rules learnt using ILP are compared to the expert-like descriptions of those folds taken from the SCOP database
(SCOP). The ILP rules are written in English for ease of comparison with the manual SCOP descriptions.
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properties. Sequence properties that are peculiar to
a given fold may give valuable insight into the
relationship between sequence, structure and func-
tion. While this sequence motif is known to be
associated with the Rossmann fold, ILP offers the
potential to automatically identify key residues.

Immunoglobulin fold

For some folds, ILP rules describe the folds in
more detail than the SCOP database. SCOP
describes immunoglobulin folds as having seven
strands in two sheets, with some variation. This is
very similar to the descriptions for a number of
other folds in the same main fold class (all-b),
including the prealbumin-like fold (see Table 2).
While these descriptions match each fold, they do
not identify the features that distinguish them
from one another. In contrast, the rules learnt for
the core of the immunoglobulin fold using ILP
include a level of detail necessary to distinguish it
from other folds. The ILP rule given in Table 2
describes an immunoglobulin fold as having two
antiparallel sheets, one with four strands and the
other with three strands, in agreement with SCOP.
However, it includes the topology of those sheets
(2134 and 123, respectively). This clearly dis-
tinguishes this fold from the prealbumin fold,
which contains a sheet with three core strands
that is mixed and has the first strand in the centre
of the sheet (topology 213). The immunoglobulin
fold is known to contain substantial variation
between individual structures.18 Even with the use
of multiple structure alignments, ILP finds several
rules (including the rule discussed above) describ-
ing the core structure of this fold†. While the vari-
ation amongst immunoglobulin structures is
referred to by the SCOP description (see Table 2),
explicit details are not given. The expert respon-

sible for the classifications construction is likely to
know these details but has not articulated them
clearly for the non-expert to analyse. While such
details may yet be included in subsequent versions
of SCOP, providing such levels of detail manually
will become increasingly difficult as large numbers
of structures are produced by structural-genomics
projects.

TIM-barrel fold

For other cases, ILP rules do not reflect the same
level of detail contained in the corresponding
SCOP description. For example, the ILP rule
describing the TIM barrel fold given in Table 2
includes the size of the main parallel sheet and
the total number of core helices (not described by
SCOP). However, the ILP rules give no information
about the topology of the b-sheet and do not ident-
ify the sheet as a closed barrel (both described by
SCOP). In contrast to the SCOP description, a
recent study has shown that a large number of
TIM barrels are not in fact fully closed barrel
structures.19 Thus, we might expect an objective
description to include both open and closed barrel
structures. The end_strand_distance predicate (see
Tables 4 and 5) was included in this study to try
and detect such open barrels, in which the sheet is
highly curved with the end strands close together
in space but not in contact. However, no rules
were learnt describing such open barrels either.
The reason that such features were not learnt for
the TIM-barrel lies in the way that ILP generates
fold rules. ILP searches for the shortest rule that
distinguishes the fold of interest from all other
folds in the same main fold class. Very few proteins
in the a/b main fold class have parallel sheets con-
sisting of eight core strands (data not shown) apart
from the TIM-barrels. Hence, a rule describing a
TIM-barrel as an eight-stranded parallel sheet
does not need to include many more details in
order to explain why that fold is unique.

SH3 fold

Included among the structural properties that
folds were examined for were the presence of gly-
cine and proline residues in secondary structure
elements. These residues are particularly interest-
ing in terms of structure, in that they greatly
increase and decrease backbone conformational
freedom, respectively. It might be expected that
there are some structural contexts in which these
residues are strongly preferred in order for a pro-
tein to adopt a given fold.

One such fold may be the SH3 fold. The rule
learnt automatically using ILP in this study
described this fold as including a four-stranded
antiparallel sheet, with the first and fourth strands
at the end of the sheet being close together in
space so that the sheet formed an open barrel
structure (Table 2). These features are described,
or implied, by the corresponding SCOP description.

Table 3. Rules learnt with ILP in the absence of multiple
structure alignments

SCOP fold cat-
egory Rule

Immunoglobulin There is at most one helix, the loop between
the fifth and sixth strands is three to seven
residues long

TIM barrel No rule given. There was no rule with
.30% coverage found in the previous study

Rossmann-like The first strand is followed by a helix, the
two elements are separated by a coil of
about one residue. The sixth strand is fol-
lowed by a helix

SH3 There are four to six strands, the loop
between the third and fourth strand is one
to three residues long.

The rule corresponding to each fold in Table 2 is taken
directly from Turcotte et al.16 (where available). Several folds in
Table 2 were not considered in the previous study and are
absent from this Table.

† http://www.sbg.bio.ic.ac.uk/~cootes/rules.html
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Interestingly, the Progol rule describes the presence
of a proline residue at the end of the fourth strand
(Figure 2(d)). This proline residue occurs just
before the 310 helix interrupting the fourth strand
in the sheet (referred to by the SCOP description)

in SH3 domains from three different superfamilies.
The proline residue, with its peculiar property of
greatly restricting backbone conformational free-
dom, might be strongly preferred in order to form
the break in the regular secondary structure of the

Figure 2. Structures demonstrating features learnt using ILP. The features highlighted correspond to the rules learnt
using ILP in this study, given in Table 2. The numbering of strands shows sheet topology, relevant glycine residues are
highlighted in green and proline residues in red. The structures shown have the following folds: (a) TIM barrel-like; (b)
immunoglobulin-like; (c) Rossmann-like; (d) SH3-like; (e) barrel-sandwich hybrid; and (f) long a-hairpin.

Describing Protein Fold Space 845



fourth strand. It might play a role in ensuring that
the SH3 barrel is an open one, as a proline residue
cannot contribute to hydrogen bonding to two
neighbouring strands (which would be required in
order for the barrel to be closed).

Barrel-sandwich hybrid fold

For other folds, a glycine residue may be
required in order to give the protein chain the
necessary conformational freedom to form the
required structure. The rule learnt in this study for
the barrel-sandwich hybrid fold describes an anti-

parallel sheet with topology 3214, in which the
N-terminal portion of the first strand contains a
glycine residue. This feature is found in domains
with this fold from three different superfamilies.
Example domains from two of these superfamilies
exhibit phi/psi angles for the glycine of interest
that are well outside (by as much as 508 in several
cases) of the expected range for a residue within a
b-strand (2608 , phi , 21508,908 , psi , 1808).
This indicates that a glycine residue would be
very strongly preferred at this structural position
in order to achieve an unusual bend in the strand
and sheet. SCOP does not describe the presence of
this glycine residue or indeed the topology of the
sheet.

Long alpha-hairpin fold

The presence of a particular residue that ILP has
indicated to be important is more difficult to inter-
pret structurally for other folds. One such example
is the long alpha-hairpin fold, in which the derived
rule indicated that a glycine residue in the middle
of the second of two helices is an important feature
for this fold. Domains from four different super-
families in this fold category exhibit this feature,
implying that the glycine residue is important
structurally. However, glycine residues have
phi/psi angles within, or close to (within 158
of), the expected range for a residue in an a-helix
(2608 , phi , 21508,2458 , psi , 2608), indicat-
ing that backbone conformational freedom is not
required in order to form this fold.

The rule learnt in this study describes the way in

Table 4. Predicates describing protein fold properties

Predicate Description

number_helices(Lo # D # Hi) The number of helices in domain D
sheet(D, A, Stype) Domain D has a b-sheet A of type Stype, where Stype could be antiparallel, parallel

or mixed
helix(D, B, Htype, Core) Domain D has a helix B at core position Core. B is of type Htype, where Htype can

be an a-helix or a 310 helix
strand_position(A, B, N) b-Sheet A has a b-strand B that is the Nth strand in that sheet
adjacent(B, C) Secondary structure elements B and C are adjacent in sequence
coil(B, C, N) Elements B and C are adjacent in sequence, separated by a coil of N residues
contact(B, C) Elements B and C are in contact in space
antiparallel(B, C) b-Strands B and C are antiparallel
parallel(B, C) b-Strands B and C are parallel
end_strand_distance(A, B, C, Dist) Strands B and C are the end strands of sheet A and are separated by distance Dist in

space
pair(B, C, Bloc, Cloc) Helices B and C are in contact. The parts (N-terminal, C-terminal or middle) of the

helices B and C in contact are Bloc and Cloc respectively
helix_angle(B, C, Angle) Helices B and C are in contact. B and C make angle Angle with each other, where

Angle could be antiparallel, parallel or perpendicular
has_n_strands(A, N) Sheet A has a total of N strands
barrel(A) Sheet A is a barrel
bifurcated(A) Sheet A contains a bifurcation
sheet_top_X(A, N1, N2,…, NX) Sheet A contains X strands, with topology N1N2…NX (i.e. the N give the relative

sequence order of the strands that are spatially adjacent in the sheet)
contains(B, AA, Loc) Element B contains amino acid AA at location Loc, where AA can be either glycine

or proline and Loc can be the N-terminal, C-terminal or middle of the element
contains(B, AA) As above, but independent of location

Each predicate is a logic expression in Prolog describing attributes of, or relationships between, core secondary structure elements
in a protein domain.

Table 5. Occurrence of predicates in rules

Predicate No. occurrences

sheet 56
helix 53
strand_position 37
sheet_top_X 31
number_helices 24
contact 24
helix_angle 11
contains 10
pair 7
end_strand_distance 5
coil 4
has_n_strands 4
antiparallel 2
parallel 2
barrel 1
adjacent 0
bifurcated 0

Total 271
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which the a-helices are arranged with respect to
one another in a little more detail than SCOP. It
does not describe the left-handed twist of the
helices referred to by SCOP, as no attempt was
made to learn this type of feature.

False positives

Despite considerable agreement between differ-
ent structure classification schemes, differences do
exist,7 suggesting that misclassifications can occur.
The rules that have been learnt automatically in
this study may prove useful in finding where, if
any, those misclassifications have occurred. False
positives predicted by the rules learnt using ILP
represent an automatically generated list of poten-
tial candidates for reclassification. This approach
offers the advantage of having the reasons for the
false positive being deemed to belong to the fold
category of interest clearly articulated by the ILP
rule.

For example, the two rules that were learnt for
the Rossmann fold in this study match a small
number of domains that are not classified as Ross-
mann folds within the SCOP hierarchy. The first of
the two rules describing Rossmann folds requires
that the structure contain between three and four
core helices with two glycine residues in the helix
at core position b. This rule matches false positives
from five SCOP sequence families. In two of these
families, these glycine residues correspond to a G-
X-G-X-X-G sequence motif in the matched
domains. These domains are d1b6ra2 (SCOP fold
biotin carboxylase N-terminal domain-like) and
d1uag_1 (SCOP fold N-terminal domain of MurD
(UDP-N-acetylmuramoyl-L-alanine:D-glutamate
ligase)). Apart from containing a Rossmann fold-
like sequence motif, the parallel sheet topologies
of these two domains (312 and 32145, respectively)
are sub-topologies of the sheet topology described
in the second Rossmann fold rule (321456). The
text description accompanying the SCOP fold cat-
egory of the first domain mentions that the fold is
a “possible rudiment form of Rossmann-fold
domain”. The SCOP text description in the latter
case makes no such reference in the version of
SCOP used here, but in a later version (1.61) the
fold is described as an “incomplete Rossmann
fold”. Interestingly, these domains are classified as
belonging to the Rossmann fold category at the
topology level of CATH v2.4.

The second rule describing Rossmann folds as
those containing a parallel sheet with topology
321456 and helices at core positions g and i in con-
tact and parallel also locates a false positive, the
domain d1fsz_ in the SCOP fold category ‘tubulin,
GTPase domain’. Apart from matching this rule,
the domain contains a G-X-G-X-X-G sequence
motif, with two of the glycine residues in the helix
at core position b, part of the first Rossmann fold
rule discussed earlier. However, this domain does
not match the first rule due to a different number

of core helices. However, the presence of this
motif may support the ILP rule asserting that this
domain could be considered a Rossmann fold.
This domain is classified as a Rossmann fold at
the topology level in CATH v2.4.

The above examples indicate that the ILP rules
sometimes locate domains that could be con-
sidered potential misclassifications. However, in
other situations, false positives reveal limitations
in the fold rules. Consider, for example, the ILP
rule describing TIM barrels as containing eight
core strands in a parallel sheet and between five
and nine core helices. This rule matches two
domains (d1c3pa_ and d1d0ba) from other fold
categories in SCOP (arginase/deacetylase and leu-
cine-rich repeat, LRR (right-handed beta-alpha
superhelix), respectively). However, protein
experts would not consider either of these struc-
tures to be TIM barrels, due to their sheets being
relatively flat in space. The ILP rule for the TIM
barrel sheet does not describe the curvature of the
sheet as a consequence of achieving fold discrimi-
nation with as few, short rules as possible (as dis-
cussed earlier in the section TIM-barrel fold).
However, this omission means that false positives
found in this case are not the result of
misclassification.

Outliers

In the process of constructing multiple structure
alignments for each fold, domains were sometimes
removed from consideration in order to ensure
alignments were consistent and to avoid misalign-
ments. These domains, which have been more dif-
ficult to align, may represent cases that are more
difficult to classify (and the more interesting, in
terms of searching for misclassifications). Overall,
the results are still statistically significant if outliers
are included in testing. Even if all outliers are
included in testing as false negatives (that is, the
outliers are all considered to be incorrect without
any attempt to realign them and test them against
the ILP rules) the overall accuracy is still 97% and
the results remain statistically significant
(x2 ¼ 43.4, p ! 0:01).

If outliers that were removed from consideration
originally are subsequently added to the multiple
structure alignment without the original restric-
tions (as described in Methods), it is possible to
then test these for consistency with ILP rules. In
some cases, these outliers match the ILP rules for
that fold. For the Rossmann fold, one SCOP
sequence family did not have any example
domains in the original multiple structure align-
ment. Upon subsequent alignment, several
domains from this family matched the correspond-
ing ILP rules. However, for other folds, this process
tended to reveal reasons for which these outlier
domains were originally removed. Many outlier
structures failed to match their corresponding ILP
rules upon subsequent alignment due to missing
or poorly defined secondary structures or due to
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misalignment with the domain in the multiple
structure alignment. In some cases, the structures
are only fragments of a given fold. However, some
outliers did not match ILP rules despite realigning
well. The ILP rule for the SH3-barrel fold describes
a four-strand open barrel with a proline in the
fourth strand. Outlier domains from one SH3-bar-
rel sequence family had all four core strands when
realigned but did not have a proline residue in the
fourth strand.

Conclusion

The structural principles underpinning much of
fold space can be described automatically using
ILP. Such rules are objective and are discriminatory
with respect to different fold categories by con-
struction. Furthermore, the rules produced can be
interpreted readily and analysed by human experts
in protein structure. In contrast to previous work,16

the incorporation of structural superpositions into
the background knowledge employed here has
enabled the global properties of a fold to be cap-
tured effectively. Using this approach, the rules
obtained often reflect the principles given in the
manual fold descriptions of the SCOP database
but are derived in a completely objective way. In
some cases, folds in the SCOP database with
ambiguous or non-discriminating descriptions (for
example, the immunoglobulin and prealbumin-
like folds) can be distinguished using the rules
learnt with ILP.

In this work, rules have been learnt automati-
cally for 45 of the more common types of protein
fold. In principle, the process outlined here could
be applied to the remaining, relatively rare folds.
However, as has been shown here, the accuracy of
prediction decreases with the inclusion of rules
learnt for folds that contain only a few indepen-
dent examples. There are two main reasons for
this. Firstly, it is more difficult to learn general
principles from a small number of examples. Sec-
ondly, the definition of core elements is less reliable
when using multiple structure alignments gener-
ated from only a few structures. In the most
extreme case, a fold with only one known example,
multiple structure alignments cannot be generated
at all. However, future work may be able to over-
come this by employing machine learning tech-
niques to predict core secondary structure
elements in the absence of structure alignments.
That is, rules for core elements could be learnt
from multiple structure alignments that are
known to be reliable and then used to predict core
elements in individual structures for which there
is no reliable multiple structure alignment. It
might be reasonable to expect that elements with
particular physical properties are less likely to be
conserved across a fold class. For example, second-
ary structure elements that are short or that make
few physical contacts with the rest of the proteins
structure might be less likely to be core. Such an

approach may prove to be more reliable than
using multiple structure alignments for rare folds.
Having predicted core regions, one would then
proceed using the strategy described here.

This study has concentrated on automatically
learning structural principles from the manually
curated SCOP database. However, the approach
used here can be applied generally to any classifi-
cation of protein structure. Several classification
schemes already exist that employ semi-4 or fully-
automated5 methods of protein structure compari-
son. While these schemes and SCOP are largely
similar, they have been shown to differ.7 The appli-
cation of the ILP scheme used in this study to
different classification schemes would enable the
principles behind their respective fold categories
to be compared objectively using language com-
prehensible to a protein expert. More importantly,
ILP could be used as part of a two-step, fully auto-
matic approach to derive the principles of protein
structure from coordinates produced by structural
genomics. The first step of fully automated protein
structure classification can be achieved with
schemes such as DALI.5 Here, the challenging
second step, of objectively deriving the structural
principles behind such a classification, has been
demonstrated using ILP. More generally, given the
increasing emphasis on high-throughput exper-
imental projects, machine-learning techniques
such as ILP are going to become crucial to learning
principles from biological data.

Methods

Data set

The set of protein domains used for each fold category
were obtained from the SCOP database, release number
1.50.3 For learning rules, a list of domains for each of the
four main fold classes (all-a, all-b, a/b and a þ b) were
selected using the ASTRAL database,20 selecting one
domain per protein/species. This list of domains thus
included some related domains (that is, domains from
the same SCOP sequence family). However, their
inclusion was found to improve both the multiple struc-
ture alignments and the quality of the rules learnt as
determined by our protein expert (M. Sternberg). When
testing the rules, one representative domain per SCOP
sequence family was selected randomly in order to elim-
inate bias.

The 45 folds considered in this study correspond to
those SCOP fold categories in which protein domains
from four or more sequence families could be clustered
in a multiple structure alignment (see the next section).
Two fold categories (TIM barrels and immunoglobulins)
have a very large number of examples from the ASTRAL
set. For these folds, 50 positive examples were selected
randomly with a weighting to ensure equal preference
for each sequence family.

Multiple structure alignment

A brief outline of the techniques used to generate mul-
tiple structure alignments and define the core secondary
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structure elements is given in this and the next section. A
more detailed explanation of these methods can be
found elsewhere.21

Multiple alignments were constructed by clustering
pair-wise alignments of domains with the same fold.
Pairwise alignments were generated for each possible
pair of domains in that category using the SSAP
program.22 The pair-wise alignments in each fold cat-
egory were then clustered with respect to their root
mean square distance (RMSD), in a manner similar to
that of a previous publication,23 to give the final multiple
structure alignment. Firstly, a master domain was
selected by finding the domain with the lowest average
pair-wise RMSD to all other domains in that SCOP fold
category. The master domain then acted as a seed for
the subsequent alignment of the remaining domains. To
eliminate outliers, any domains that had a pair-wise
alignment with the master domain with RMSD .10 Å
were firstly eliminated from further consideration. Also,
in order to avoid corrupting the multiple alignment
with misaligned pair-wise alignments, domains for
which less than two-thirds of the residues participated
in the multiple alignment at any given step were elimi-
nated from consideration. For most fold categories
considered here, only a few domains were eliminated in
this way.

Core secondary structure element definition

The multiple structure alignment indicates which resi-
dues in each structure can be considered structurally
equivalent. However, to learn rules for protein structure
in terms of conserved (core) secondary structure
elements (a-helical or b-strand), the elements that can
be deemed equivalent have to be identified. To do this,
the secondary structure for each protein in the multiple
structure alignment was defined using the PROMOTIF
program.24 Then a simple matching scheme was
employed to match secondary structures units in the
different domains on the basis of the extent to which
their constituent residues are structurally equivalent, as
determined by the multiple alignment for that fold cat-
egory. Those elements that are equivalent to another
element in the majority of aligned domains are con-
sidered to be a core element. The groups of equivalent,
core secondary structure elements were labelled accord-
ing to their relative position in the sequence (that is, the
first group was labelled a, the second group was labelled
b, and so on).

Learning rules with Progol

Rules were learnt using the Progol-4.4 ILP system.8,10

The positive examples for a given fold were the domains
that were clustered to form the multiple structure align-
ment for that SCOP fold category. The negative examples
were the domains that formed the multiple structure
alignments in all other fold categories in the same SCOP
main fold class (all-a, all-b, a/b or a þ b). Thus, rules
were learnt to discriminate between the fold type of
interest and the most similar, yet distinct, types of fold.
Background information for each example was gener-
ated from the PROMOTIF output for those secondary
structure elements that were defined to be core (Table 4).

Progol parameters

The maximum number of nodes (or hypotheses)

tested for an individual search was set to 1000. The
noise parameter was set to 20% (that is, up to 20% of
examples covered by a rule could be false positives).
The inflate parameter was set to 200% (that is, positive
examples were given a weighting twice that of the nega-
tive examples). In addition to these parameters, a con-
straint was applied to force the rules to include
information about each secondary structure element
other than its relative position in the sequence. For
example, a rule stating “Fold A has an a-helix B at core
position b and an a-helix C at core position c” would
not be considered a viable rule. However, a rule stating
“Fold A has an a-helix B at core position b and an a-
helix C at core position c, B and C are in contact” would
be considered valid. This constraint was applied to
enrich the rules in terms of their biological description
and insight.

Cross-validation testing

Fivefold cross-validation was carried out on all 45
folds considered in this study. Domains for each fold cat-
egory were divided into learning and test sets such that
no domain in the test set was related to (that is, in the
same SCOP sequence family as) any domain in the learn-
ing set. Rules were learnt on the learning set as described
above. The test set was then included and the multiple
structure alignment recalculated. One example per
sequence family was selected randomly from the aligned
members of the test set for testing. If no example from a
sequence family was aligned, this sequence family was
ignored. However, even if these test examples that
could not be aligned were included as false negatives,
the overall result for the 45 folds was still statistically sig-
nificant (data not shown).

Subsequent alignment of outliers for testing

In order to evaluate rules learnt on those domains
initially removed as outliers (as described above), out-
liers were aligned to the closest domain in the original
multiple structure alignment calculated for that fold,
irrespective of the conditions applied earlier. Core
elements were then defined in the outlier domain by
finding pair-wise matches between elements in the out-
lier and core elements in the closest domain already
aligned. This was determined by the relative overlap of
the elements in the pair-wise alignment in a similar
fashion to the matching of elements in the definition of
core elements performed earlier. Background knowledge
was then determined for the outlier in terms of the
defined core elements as before. Rules learnt for the cor-
responding fold were then tested for their consistency
with the outlier domains background knowledge.
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