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The increasing interest in systems biology has resulted in extensive
experimental data describing networks of interactions (or associations)
between molecules in metabolism, protein–protein interactions and gene
regulation. Comparative analysis of these networks is central to under-
standing biological systems. We report a novel method (PHUNKEE: Pairing
subgrapHs Using NetworK Environment Equivalence) by which similar
subgraphs in a pair of networks can be identified. Like other methods,
PHUNKEE explicitly considers the graphical form of the data and allows for
gaps. However, it is novel in that it includes information about the context
of the subgraph within the adjacent network. We also explore a new
approach to quantifying the statistical significance of matching subgraphs.
We report similar subgraphs in metabolic pathways and in protein–protein
interaction networks. The most similar metabolic subgraphs were generally
found to occur in processes central to all life, such as purine, pyrimidine
and amino acid metabolism. The most similar pairs of subgraphs found in
the protein–protein interaction networks of Drosophila melanogaster and
Saccharomyces cerevisiae also include central processes such as cell division
but, interestingly, also include protein sub–networks involved in pre-
mRNA processing. The inclusion of network context information in the
comparison of protein interaction networks increased the number of similar
subgraphs found consisting of proteins involved in the same functional
process. This could have implications for the prediction of protein function.
© 2007 Elsevier Ltd. All rights reserved.
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Introduction

There is an increasing interest in how molecules
combine in the cell to form complex biological sys-
tems. For many species, we now have an increas-
ingly comprehensive picture of their genes and the
molecules for which each of those genes code. Re-
searchers have been building on this success of
genome sequencing efforts by identifying interac-
tions or functional associations between pairs of
molecules or genes.1 There is now a considerable
amount of such data in the literature with more
being rapidly generated via high-throughput experi-
ments. The complex network of relationships in-
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volved in biological systems such as protein–protein
interactions,2 small-molecule metabolism,3 and gene
regulation,4 can now be studied in increasing detail.
There has been a considerable number of studies
into general biological network properties, such as
their scale-free nature.5,6 However, the development
of methods to compare biological networks has
been quite limited.7–14 This is in stark contrast to the
variety of methods for the comparison of sequences
and the number of ways used to assess the signifi-
cance of a sequence match. Here, we introduce a
novel method by which similar subgraphs in a pair
of networks can be identified.
Most studies of biological networks have concen-

trated on comparing their connectivity properties
to theoretical or other types ofwell-studied graphical
systems.5,6 However, the comparison of biological
networks to one another will yield more evolution-
ary information than simply examining each net-
d.
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†A server based on PHUNKEE can be found at www.
sbg.bio.ic.ac.uk/phunkee

1127Biological Network Comparison
work in isolation. Furthermore, comparing the
network contexts of nodes in different biological
networks may reveal information about the entities
represented by those nodes. For example, the func-
tion of proteins can be predicted from information in
the surrounding interaction network.15 Locating
statistically significant similar subgraphs in different
networks would give greater confidence to assigning
function to uncharacterised proteins or interactions
between proteins within those subgraphs.
Thus far, there have been a number of approaches

to the comparison of biological networks. Several of
these methods compare the general topological
statistics of subgraphs7 or compare the statistical
prevalence of different types of three or four node
connection patterns.8 Particular types of small net-
work structures have been shown to be over-
represented in the transcription regulation networks
of Saccharomyces cerevisiae and Escherichia coli, such
as three node “feed forward loops” and four node
“bi-fan” patterns (where two transcription factors
each regulate the same two genes).16 A more recent
approach locates approximately matching small
motifs.12 Clearly, it would be desirable to be able
to also consider the similarity in higher-order
connectivity patterns in networks. The PATHBLAST
algorithm was used to search for larger similar
subgraphs by first comparing short linear “strings”
of nodes within a pair of protein–protein networks,9

and has since been extended to also search for
similar “dense clusters” of interacting proteins
(NetworkBlast).13 Both approaches allowed for
gaps in similar strings or clusters. These strings
and clusters were then grouped to search for larger
related subgraphs. In the initial study,9 similar
subgraphs (based on short strings) in the protein
interaction networks of S. cerevisiae and H. pylori
were found to be involved with protein synthesis
and cell rescue, protein fate and targeting, cell
envelope and nuclear transport, proteolytic degra-
dation and rRNA transcription. The latter study13

searched for similar subgraphs (based on both
strings and clusters) in multiple species: Drosophila
melanogaster, S. cerevisiae and Caenorhabditis elegans.
The most prevalent processes found in related
subgraphs in this case were protein degradation,
RNA polyadenylation and splicing, protein phos-
phorylation and signal transduction. NetworkBlast
bases its initial search on particular types of
graphical form modelled on signalling pathways
(strings) and protein complexes (clusters). The
Græmlin algorithm extended this approach by
searching efficiently for similar subgraphs of arbi-
trary topology across multiple networks.14 Another
recent approach searched for general graphical
structures by clustering nodes according to their
distance from one another in each network.10 This
technique was used to identify clusters of genes that
code for enzymes that are also clustered in metabolic
networks. This type of arrangement often implies
that the expression of the enzymes involved in that
part of metabolism are co-regulated. Hundreds of
such enzyme clusters were identified for a range of
species. The approach used to produce these clusters
finds regions in each network with many similar
nodes but does not consider explicitly whether those
nodes are connected to one another (and other
nodes) in a similar way. For many types of network
system, one would like a method to consider the
similarity of the edges, as well as the proximity of
nodes, in comparing subgraphs. Such a method has
been demonstrated for the comparison of metabolic
networks.11 Frequently occurring metabolic sub-
graphs were sought across a large number of
species. The most similar subgraphs found partici-
pate in pyrimidine, glutamate and alanine and as-
partate metabolism. However, this approach did not
consider gaps in the network structure. Given that
biological systems often have elements inserted or
deleted in the course of evolution, it is important for
a network comparison method to permit approxi-
mate matches between subgraphs.
Here, we have developed a method (PHUNKEE:

Pairing subgrapHs Using NetworK Environment
Equivalence†) for the comparison of biological
networks that searches for similar subgraphs of
general structure, allowing for gaps, and determines
the statistical significance of the match. The similar-
ity of subgraphs was determined by considering
explicitly the similarity of the edges as well as the
similarity of the nodes. Furthermore, we depart
from previous work in considering the set of all
edges adjoining nodes belonging to a subgraph
(referred to as the network context (Figure 1)), rather
than simply those edges connecting nodes within
the subgraph. We examined whether considering
network context improved subgraph comparison
and applied this technique to the comparison of
pairs of metabolic and protein–protein interaction
networks. We also explored two different methods
for calculating the statistical significance of similar
subgraphs and the suitability of each for analysing
various types of biological networks. In this way, we
identified similar subgraphs in pairs of metabolic
networks and pairs of protein interaction networks
for a number of different species. As expected,
similar subgraphs were found in biological pro-
cesses central to all life, such as amino acid, purine
and pyrimidine metabolism, but also in processes
not expected to be as strongly conserved, such as
pre-mRNA processing.
Our Approach

A brief description of PHUNKEE (Figure 2) is
given here and a more detailed description is given
in Materials and Methods.
PHUNKEE consists of two basic steps. First,

corresponding (shared) nodes and edges were
identified. Second, the most similar network regions
of a given, user-defined size were sought, allowing
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Figure 1. Network context and the similarity of
subgraphs. A pair of networks from two species (one
coloured red, the other blue, features common to both
species are coloured green) are represented. Nodes
(circles) represent a biological entity, such as a protein or
an enzyme function. Edges (lines) joining nodes represent
an interaction or association between those entities.
Corresponding nodes are indicated in green and have
the same label. Green edges are shared between the two
networks. Blue and red nodes and edges are not shared
between the species. Here, the similarity of subgraphs
containing nodes AC is shown. When determining the
similarity of the subgraphs, all edges adjoining these
nodes (edges with a thick outline) are considered. This set
of edges is referred to as the network context. Internal
edges (thick outline) and external edges (thin outline) are
weighted differently. An internal edge is any edge
connecting nodes that are both members of the subgraph
(the A-C edges in this Figure). An external edge is any
edge connecting a subgraph node and another node that
is not a member of the subgraph (for example, the A-I and
C-J edges in this Figure). Internal and external edges are
given weights wi and we respectively. The similarity of the
subgraphs is given by the shared-edge ratio. The shared-
edge ratio is the weighted proportion of highlighted edges
that are shared between species. In this case, there are two
internal edges (two shared) and ten external edges (four
shared). In the simplest scenario, where wi=we=1, the
resulting shared-edge ratio is 6/12 (0.5).

Figure 2. Locating similar subgraphs in a pair of
networks. A pair of networks from two species are
represented in a fashion similar to that in Figure 1. In
general, there may be many relationships of different
weights (arrows) between nodes in the different networks
(a) (for example, protein interaction networks). For pairs
of networks where there is already a one-to-one node
correspondence between nodes (for example, identical
compounds in metabolic networks), then only the steps
contained within dotted lines (b), (c) and (d) are necessary.
For the general case, a matching scheme is used to assign
an optimal one-to-one correspondence between nodes (b).
Nodes are then grouped so as to optimise the shared-edge
ratio. All shared nodes within a user-defined radius are
considered for grouping. For simplicity, let us give ex-
ternal and internal edges each a weight of 1 (wi=we=1). In
(c), the shared node A is grouped with shared node B via
the shortest path in each species (including the unshared
node G). In this case, the shared-edge ratio is 6/15 (0.4).
However, if A is grouped with C (d), the shared-edge
ratio is 6/12 (0.5). The ratio is higher in the latter case;
therefore, the AC subgraph will be selected and the
grouping of a further node will be conducted in a fashion
similar to that above. This process of grouping nodes is
continued until the size of the subgraph reaches a limit set
by the user.
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for gaps and considering explicitly the similarity of
edges as well as nodes.
In order to find shared nodes, we first considered

relationships between nodes in different networks.
For some types of biological network, there is a clear
one-to-one correspondence between nodes. For
example, a node that represents a particular com-
pound in the metabolic network of a given species
will correspond to the node representing that
compound in another species. However, other
types of biological networks have a many-to-many
relationship between nodes. For instance, a protein
in an interaction network may be similar in sequence
to many proteins in another network. In this study,
we employed two different methods to determine
corresponding nodes in a pair of protein interaction
networks. Firstly, we applied a graph-matching
scheme (known as the Hungarian method17) to
find the optimal correspondence between nodes
according to their sequence similarity. A drawback
of this method was that a small proportion of cor-
responding node pairs were found to have different
functions (according to the COG database).18,19 An
alternative scheme determined corresponding
nodes by finding the most sequence-similar proteins
with the same function (known in this study as the
COG function-matching method). This approach
found a smaller number of corresponding node
pairs but ensured that they had the same function.
For both of these approaches, nodes with a cor-
responding node in the other species were deemed
to be shared nodes. Edges of the same type (for
example, representing the same metabolic function)
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connecting the same pair of shared nodes in both
species were deemed to be shared edges.
PHUNKEE then searched for pairs of subgraphs

with similar network contexts (see Figure 1). The
network context of a subgraph is the set of all edges
that adjoin all nodes that belong to that subgraph.
The similarity in network context of a pair of
subgraphs was measured using the shared-edge
ratio. The shared-edge ratio was the weighted
proportion of the adjoining edges of the subgraph
pair that were shared. Edges were weighted by wi if
they were “internal” edges (an edge connecting two
nodes both belonging to the subgraph) and by we if
they were “external” edges (an edge connecting a
node belonging to the subgraph to one that does not).
Weights wi and we were defined by the user. By
considering the similarity of the network context,
subgraph pairs with equally similar internal connec-
tions can be distinguished on the basis of their
connections to the rest of the network. This approach
differs from simply considering external nodes part
of a larger subgraph because connections between
external nodes are not considered and connections
between internal and external nodes may be
weighted differently to internal connections. A pair
of subgraphs with similar internal connections and
similar connections to its external neighbours may
have quite different connections between those
neighbours. Including external edges also has the
advantage of automatically introducing a gap pen-
alty. The inclusion of an unshared node will increase
the number of unshared edges and hence lower the
shared-edge ratio.
Each pair of corresponding nodes acted in turn as

the starting point for a subgraph pair search. Other
corresponding node pairs were grouped progres-
sively in such a way as to maximise the shared-edge
ratio of the resulting subgraph pair until one (or
both) reached a user-defined maximum size.
The standard method (for example, see Network-

Blast13) of calculating the statistical significance of
the similarity of a subgraph pair is by comparison to
similar subgraphs found by the same algorithm in a
pair of randomised networks. The randomised
networks have the same connectivity as the net-
works of interest but have all node and edge labels
reassigned randomly. We refer to this measure of
significance as the “global” significance of the
subgraph match (see Materials and Methods for
more details). However, in pairs of biological
networks that are known to be very similar overall,
very many subgraphs will be significant according
to this test. In this case, we may be more interested
to know whether local network regions are sig-
nificantly more similar than regions within the
networks are generally. In order to do this, we
developed a novel measure of significance that we
label the “local” significance of subgraph match. The
local statistical significance of the subgraph pair
similarity was determined by generating subgraph
pairs randomly from the same pair of networks
without permuting the connectivity or the identities
of the nodes and edges. In this way, the subgraph
pair similarity will be determined to be locally
significant if it is much greater than the overall
similarity of the networks. This approach is appro-
priate for assessing the significance of local varia-
tions and allows for the peculiar connectivity
properties of biological networks.
Results for Metabolic Networks

Using the approach outlined in the previous
section, we first compared the metabolic networks
of four organisms (E. coli, S. cerevisiae, Helicobacter
pylori and Homo sapiens). Nodes in each network
represented a metabolite. Each edge linking a pair
of metabolites represented an enzyme that cataly-
ses a reaction involving those compounds. In this
study, we searched for subgraphs of similar function
rather than similar evolutionary history. Unrelated
enzymes may exist in the two species that never-
theless perform the same function. Hence, each edge
was labelled with the Enzyme Classification (EC)
number of the enzyme. Each pair of metabolite
nodes may be linked by a number of edges labelled
with different enzyme functions.
We searched for similar subgraphs consisting of

ten shared nodes for each possible pairwise network
comparison of the four organisms listed above.

Statistical significance

First, the global statistical significance of resulting
subgraph pairs was examined. In this case, all
subgraph pairs found for each possible pair of
species were deemed to be significant (data not
shown). The shared-edge ratios of subgraph pairs
were often very high for metabolic networks (some-
times close to 1.0), probably due to many enzymes in
KEGG being assigned to reactions via comparison to
model species. However, this result was also due to
the generated random networks (with randomised
node and edge labels) used to measure global
significance having few, if any, shared edges. This
was probably due to the specificity of the edge labels
(enzymatic functions) in metabolic networks. In
other types of networks with unlabelled edges (for
example, protein interaction networks), edges are
shared if they simply connect pairs of nodes with the
same label. For metabolic networks, we are also
interested in the types of enzyme that catalyse
reactions between metabolites, and we label each
edge accordingly. In this case, shared edges have to
meet the additional constraint of having identical
edge labels. Clearly, this constraint makes it less
likely that shared edges will be found in randomised
networks.
The metabolic networks compared here are clearly

very similar, and all subgraphs found were deemed
to be globally significant. However, the similarity
between the networks was not necessarily uniform.
To test this, and to determine which subgraph pairs
(if any) were significantly more similar than the
networks were generally, we employed the test of
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local significance (described previously) in the
following analysis of metabolic networks.

The influence of external edges

To examine the effect of including network con-
text in assessing subgraph similarity, external edge
weights of we=0 and we=0.1 were used in two
separate searches. When discounting external
edges (we=0), no locally significant similar sub-
graphs of ten shared nodes could be found for any
pair of species considered. However, the inclusion
of external edges (we=0.1) revealed many locally
significant similar subgraphs for each species pair.
For the comparison of S. cerevisiae and E. coli, 205
of 617 (33%) searches resulted in subgraph pairs
with a p value of <0.01. Many of these resulting
205 subgraph pairs overlapped to some extent or
were identical. Therefore, we considered the num-
ber of non-redundant significant subgraph pairs
(those with <25% of nodes in common with other
significant subgraphs). Eleven such non-redundant
similar subgraphs were found for S. cerevisiae and
E. coli. One of the subgraph pairs with the highest
shared-edge ratio (1.0) involved in purine meta-
bolism can be seen in Figure 3. For the comparison
of E. coli and H. pylori, only 65 of 371 (18%) pairs
had p values <0.01, four of which were non-re-
dundant. This was despite the subgraph pairs
having relatively high shared-edge ratios (the
highest being 0.99). Thus, the networks were
very similar overall but had few regions with un-
usually high levels of local similarity. Over all
species comparisons, 18–33% of searches resulted
in locally significant similar subgraphs with p
values of <0.01 when accounting for edges ex-
ternal to the subgraphs. These searches revealed
between four and 11 non-redundant significant
similar subgraphs. Thus, the comparison of meta-
bolic networks was enhanced by considering the
external network context of a pair of subgraphs as
well as their internal connectivities.
Figure 3. Similar subgraphs
from a comparison of E. coli and
S. cerevisiae metabolic networks.
Nodes correspond to metabolites
and edges correspond to enzymes
that catalyse reactions involving
those metabolites. The name of the
metabolite corresponding to each
node label is listed. The edge labels
give the EC numbers of the func-
tions. Only edges connecting nodes
belonging to the subgraph are
shown. This was one of the most
similar subgraph pairs found in
E. coli and S. cerevisiae with ten
shared nodes, we=0.1 and wi=0.1.
The subgraph pair had a shared-
edge ratio of 1.00 and a p value of
1.66×10−4. The subgraphs corre-
spond to part of the purine meta-
bolism pathway.
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The biological function of resulting subgraphs

Metabolism is often discussed in terms of path-
ways of enzymatic reactions that correspond to key
biochemical processes (for example, purine metabo-
lism). We examined the pathways (as defined by
KEGG) in which the most similar subgraphs of
functions found above participate (Table 1). The
KEGG pathways are defined manually; however,
they give a general indication of which overall
biological processes a given set of enzymes are
involved in. Predominantly, the most similar sub-
graph pairs consist of functions involved in purine,
pyrimidine and amino acid metabolism pathways.
This is perhaps unsurprising, given the importance
of these processes to all organisms. In general, the
subgraph pairs located did not always neatly
correspond to part of a single KEGG pathway.
Surprisingly, when comparing S. cerevisiae and
E. coli, some of the most similar subgraphs were
involved with porphyrin metabolism.
Table 1. Biochemical pathway composition of the most
similar ten-node subgraphs in pairs of species

Species
compared

Subgraph
number KEGG pathways

S. cerevisiae
and E. coli

1 Purine metabolism
2 Cyanoamino acid metabolism

Taurine and hypotaurine
metabolism

Cysteine metabolism
3 Porphyrin and chlorophyll

metabolism
E. coli and

H. pylori
1 Phenylalanine, tyrosine and

tryptophan biosynthesis
Cysteine metabolism

Aminoacyl-tRNA biosynthesis
Glycine, serine and threonine

metabolism
Sulfur metabolism

E. coli and
H. sapiens

1 Pyrimidine metabolism
2 Purine metabolism

H. sapiens and
H. pylori

1 Selenoamino acid metabolism
Aminoacyl-tRNA biosynthesis

Methionine metabolism
S. cerevisiae and

H. pylori
1 Phenylalanine, tyrosine and

tryptophan biosynthesis
Tryptophan metabolism

Aminoacyl-tRNA biosynthesis
S. cerevisiae and

H. sapiens
1 Purine metabolism
2 Pyrimidine metabolism

Fructose and mannose metabolism
Purine metabolism

3 Selenoamino acid metabolism
Aminoacyl-tRNA biosynthesis

Methionine metabolism

The subgraph pairs listed were those with the highest shared-
edge ratio for a given pair of species using edge weightswi =1 and
we=0.1. Each subgraph pair consisted of 20 shared nodes and no
unshared node in total. For several of the species comparisons,
more than one subgraph pair had the equal highest shared-edge
ratio. For example, three types of subgraph pair had equal highest
score for S. cerevisiae and E. coli. Subgraph pairs are listed with
their overlapping KEGG pathways. Each compound may belong
to a number of pathways. Only those pathways with at least
one pair of connected nodes within the subgraph pair are listed.
All subgraph pairs represented here had (“local” significance)
p values<0.05.
Results for Protein–protein Interaction
Networks

Protein–protein interaction networks were com-
pared for D. melanogaster and S. cerevisiae. The
network nodes represented proteins and edges
represented physical interactions between pairs of
proteins. The interaction networks compared here
are the largest in the DIP20 database and contained
7066 proteins for D. melanogaster and 4733 proteins
for S. cerevisiae. This represents significant coverage
of the D. melanogaster21 and S. cerevisiae22 genomes
(13854 and 5749 protein-coding genes respectively).

Node matching using the Hungarian method

In the first comparison of these networks, we de-
termined corresponding nodes using the Hungarian
method. A total of 1743 corresponding node pairs
was found for the D. melanogaster and S. cerevisiae
interaction networks. Of the 1057 of these pairs with
both proteins function defined by COG,18,19 871
(82%) had the same function. Incorporating the
sequence similarity of the network neighbours of
prospective corresponding nodes yielded no sig-
nificant increase in this figure (data not shown).
Searches were then conducted for subgraph pairs
with a maximum of four shared and four unshared
nodes with internal edge weight wi=1 and external
edge weights we=0, 0.1, 0.5 and 1.0. Searching for
relatively small subgraphs with up to four unshared
nodes (gaps) ensured that a reasonable number of
significant subgraphs were found. We examined
whether the external network context influenced the
composition of protein functions within the sub-
graphs. In particular, we tested whether the sub-
graphs found contained proteins involved in the
same biological processes. In order to do this, the
function of each protein in the D. melanogaster and
S. cerevisiae interaction networks was taken from the
COG database.18,19 Each specific COG function also
belongs to at least one of 23 more general functional
classes (for example, RNA processing and modifi-
cation). Here, we defined significant subgraph pairs
with >50% of nodes belonging to the same COG
functional class to be functionally consistent. For
each subgraph search, we determined the number
of functionally consistent subgraph pairs found
(Table 2). Given that subgraphs located in different
searches often overlap, we considered also the
number of non-redundant, functionally consistent
subgraph pairs (those with <25% of nodes in
common with other functionally consistent sub-
graphs). We also determined the number of nodes
in each interaction network that belonged to at least
one non-redundant, functionally consistent sub-
graph pair.

The influence of external network context

Clearly, a greater number of functionally consis-
tent subgraph pairs are found with an external edge



Table 2. The influence of external edges on determining similar subgraphs

we

Measure of
statistical significance

Number of significant
functionally consistent

similar subgraphs

Number of non-redundant
significant functionally-

consistent similar subgraphs

Number of nodes found in non-redundant
significant functionally-consistent similar

subgraphs / COG functional classes

0 Local 125 23 225 / 10
Global 108 15 137 / 8

0.1 Local 161 22 226 / 10
Global 155 20 202 / 9

0.5 Local 164 17 182 / 7
Global 164 17 182 / 7

1 Local 115 11 125 / 6
Global 117 13 150 / 6

All Local 557 28 276 / 9
Global 532 26 258 / 9

The number of significant similar subgraphs found and the function composition of those subgraphs varied with the relative values of
external edge weight we to internal edge weight wi. Similar subgraphs were sought in the D. melanogaster and S. cerevisiae protein
interaction networks with a maximum of four shared and four unshared nodes with wi=1 and we=0, 0.1, 0.5 and 1. The individual
searches and the combined results (labelled All) are shown here. Corresponding nodes were determined using the Hungarian method.
Listed here are the total number of functionally consistent significant similar subgraphs found and the number of non-redundant
functionally consistent similar subgraphs. “Global” and “local” significance was determined as described in Materials and Methods.
Subgraph pairs were deemed to be functionally consistent if >50% of node function classes (for example, RNA processing and
modification) were common. Also listed are the number of different nodes and the number of COG functional classes covered by the non-
redundant functionally consistent similar subgraphs.
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weight we=0.1 than when external edges are not
considered (we=0). However, this is not the case
when considering only non-redundant, functionally
consistent subgraphs. The number of significant
non-redundant, functionally consistent subgraphs
was similar for the global and local measures of
significance overall. There was a small increase in
the number of non-redundant, functionally consis-
tent subgraphs for we=0.1 of global significance.
The number of functionally consistent subgraph
pairs decreases when we=0.5 and we=1, probably
because external edges dominate the subgraph com-
parison (the subgraph pairs studied here typically
had an order of magnitude more external than inter-
nal edges).
Combining the subgraph searches with different

external edge weights (as described in Materials and
Methods) resulted in a higher number of significant
subgraph pairs than the subgraph search consider-
ing only internal edges (we=0). While subgraph
searches conducted with we>0 did not each find
larger numbers of significant subgraph pairs, they
clearly found subgraphs different from the sub-
graph search considering only internal edges.
Clearly, considering network context locates signifi-
cant functionally consistent subgraphs that would
otherwise be missed.
The above results show that including the net-

work context of subgraphs locates more meaningful
function units within interaction networks than
comparing only internal interactions. This has clear
implications for the prediction of protein function.
Recent work has shown that a protein found in a
pair of similar subgraphs, containing a large number
of other proteins performing a given function, can
be inferred to also perform that function.13 The
increased number of functionally consistent sub-
graphs found by considering we>0 suggests that
considering the external network context in sub-
graph comparison may assist in predicting protein
function from interaction networks.
The shared-edge ratios for the protein interaction

subgraph pairs found here were much lower than
those found for metabolic networks. The highest
shared-edge ratio for subgraph pairs found with
external edge weight we=0.1 was 0.34. The low
number of shared edges in the pair of protein–
protein interaction networks is perhaps due to rela-
tively poor data.23,24 This has been observed also
in a previous network comparison study.9 Despite
noisy data, this study and previous studies7–13 have
demonstrated significant similarities between pro-
tein interaction networks. Figure 4 shows four of
the most similar functionally consistent subgraph
pairs in the D. melanogaster and S. cerevisiae protein–
protein interaction networks (from four different
function classes) found in this study. The function of
each protein represented in Figure 4 is given in
Table 3. The proteins in the most significant sub-
graph pair are largely involved in pre-mRNA pro-
cessing25,26 (Figure 4(a)). This is perhaps a
surprising result, given that S. cerevisiae genes have
relatively few introns compared to D. melanogaster.
Hence, it might be expected that the protein
interactions within the pre-mRNA splicing machin-
ery would be quite different in these two species
relative to other parts of their interaction networks.
However, RNA processing subgraphs have also
been found in a previous network comparison
study.13 A number of other processes were found
associated with functionally consistent subgraph
pairs. For example, Figure 4(b) shows a pair of
subgraphs containing proteins involved in cell
division. Specifically, these proteins are part of the
mitotic checkpoint, which ensures that chromosomes
segregate properly during mitosis. Importantly, a
method that allowed for gaps was required to find
this subgraph pair. Figure 4(c) and (d) show similar



Figure 4. Four pairs of similar subgraphs from a
comparison of D. melanogaster and S. cerevisiae protein–
protein interaction networks. Nodes correspond to pro-
teins, and edges correspond to physical interactions
between proteins in each species. Only interactions
between the subgraph members are shown. Green nodes
and edges are common to subgraphs in both species. Blue
features in the D. melanogaster network are not found in
the S. cerevisiae subgraph. Red features in the S. cerevisiae
network are not found in the D. melanogaster subgraph.
Corresponding nodes have the same label. The function
of each protein (according to COG) is listed in Table 3.
Four of the most similar subgraph pairs found in the
D. melanogaster and S. cerevisiae protein–protein interaction
networks with corresponding nodes determined by the
Hungarian method are shown. Subgraph pairs containing
four shared nodes each were found using parameters
we=0.1 and wi=1. (a) A pair of subgraphs involved in
RNA processing (with a shared-edge ratio of 0.34). (b) A
pair of subgraphs involved in cell division (with a shared-
edge ratio of 0.22). The pair of subgraphs in (c) represent
chaperones (with a shared-edge ratio of 0.22) and (d)
contains a pair of subgraphs involved in DNA repair (with
a shared-edge ratio of 0.20). All subgraph pairs shown
here had a p value<5.9×10−5.
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subgraphs involved with chaperone activity and
DNA repair, respectively. Both of these systems are
clearly important to these organisms, Hsp90 is an
essential chaperone for eukaryotes and base excision
repair is required to remove incorrect or damaged
nucleotides from DNA. The subgraph pairs shown
in Figure 4(a) and (b) each have 100% of nodes, and
the pairs in Figure 4(c) and (d) each have 60% of
nodes, within a single COG functional class. In all,
functionally consistent subgraph pairs were found
corresponding to sections of nine different COG
functional classes.

Node matching using COG functions

One possible impediment to finding similar sub-
graphs in protein interaction networks is the
incorrect assignment of corresponding nodes. In
order to ascertain the impact of incorrect assign-
ments, we determined corresponding nodes using
the COG function matching method described
previously. While fewer correspondences could be
determined in this way, it ensured that all corre-
sponding nodes had the same functions. To the
authors' knowledge, this approach to evaluating
node matching in network comparison is novel.
A total of 951 corresponding node pairs were

found for the D. melanogaster and S. cerevisiae
interaction networks using the COG function
matching method. As before, searches were con-
ducted for subgraph pairs with a maximum of four
shared and four unshared nodes with internal edge
weight wi=1 and external edge weights we=0, 0.1,
0.5 and 1.0. The number of significant and function-
ally consistent subgraph pairs found showed a
similar dependence on we to that found previously.
That is, a value of we=0.1 resulted in the largest
number of significant and functionally consistent
subgraph pairs according to the global measure of
significance (data not shown). The number of non-
redundant, functionally consistent subgraphs in this
case was 16, covering a total of 168 different nodes in
D. melanogaster and S. cerevisiae, fewer than that
found with the Hungarian method of node match-
ing (Table 2). The subgraph pairs found were often
similar to those found with the Hungarian method.
The highest scoring functionally consistent sub-
graph pair was identical with that found for the
Hungarian approach (Figure 4(a)), involved with
pre-mRNA splicing. Subgraph pairs representing
Hsp90 chaperones and DNA repair proteins were
similar to those found with the Hungarian method
(Figure 4(c) and 4(d), respectively). However, there
were some important differences. For example, a
subgraph pair representing SNARE and SNAP
proteins involved with vesicular transport was
found to be significant using this approach. Also,
no functionally consistent subgraph pair was found
representing processes involved in cell division,
unlike the Hungarian method (Figure 4(b)). This
was probably because the subgraph pairs found
with the Hungarian method had two protein pairs
with the same function, of which only one could be



Table 3. Functions of proteins in Figure 4

D. melanogaster S. cerevisiae

Symbol COG class Symbol COG class

(a) DA U6 snRNA-associated Sm-like protein DA U6 snRNA-associated Sm-like protein
APN Small nuclear ribonucleoprotein (snRNP)

Sm core protein
APN Small nuclear ribonucleoprotein (snRNP)

Sm core protein
AGK Small nuclear ribonucleoprotein F AGK Small nuclear ribonucleoprotein F
AVK Small Nuclear ribonucleoprotein splicing factor AVK Small Nuclear ribonucleoprotein splicing factor

(b) TN Mitotic spindle checkpoint protein BUB3,
WD repeat superfamily

TN Mitotic spindle checkpoint protein BUB3,
WD repeat superfamily

BDP Mitotic checkpoint serine/threonine protein kinase BDP Mitotic checkpoint serine/threonine protein kinase
AYS Mitotic checkpoint serine/threonine protein kinase AYS Mitotic checkpoint serine/threonine protein kinase
ADW Cyclin B and related kinase-activating proteins ADW Cyclin B and related kinase-activating proteins

YFJL Anaphase promoting complex, Cdc20, Cdh1,
and Ama1 subunits

(c) LJ Hsp90 co-chaperone CNS1 (contains TPR repeats) LJ Hsp90 co-chaperone CNS1 (contains TPR repeats)
BLQ Molecular chaperone (HSP90 family) BLQ Molecular chaperone (HSP90 family)
AHI Molecular co-chaperone STI1 AHI Molecular co-chaperone STI1
BLG Mannosyltransferase BLG Mannosyltransferase
XDNE – LK Ubiquitin activating enzyme UBA1

(d) RS – RS Uncharacterised conserved protein, contains
WD40 repeats

BJQ Structure-specific endonuclease ERCC1-XPF,
ERCC1 component

BJQ Structure-specific endonuclease ERCC1-XPF,
ERCC1 component

CAN DNA excision repair protein XPA/XPAC/RAD14 ACN DNA excision repair protein XPA/XPAC/RAD14
AWL Structure-specific endonuclease ERCC1-XPF,

catalytic component XPF/ERCC4
AWL Structure-specific endonuclease ERCC1-XPF,

catalytic component XPF/ERCC4
XEQX Uncharacterised conserved protein H4 YFPT Nucleotide excision repair complex XPC-HR23B,

subunit XPC/DPB11
GZ Protein kinase PCTAIRE and related kinases

The function of each protein represented in Figure 4 is listed here. For (a)–(d), the symbols in Figure 4 in each species are listed next to
their function according to the COG database. Dashes indicate that COG lists no function for that protein.
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matched with the COG function-matching method.
Overall, using existing function data produces a
smaller number of functionally consistent similar
subgraphs than using sequence similarity alone for
the systems studied here. Also, this approach does
not necessarily remove all ambiguities and, as
function data are not available for all proteins, will
ignore some network similarities in general. It is
anticipated that more sophisticated node-matching
techniques, incorporating information from the local
network environment as well as the node pair of
interest, will improve subgraph similarity matching.
The techniques used and discussed in this study,
however, represent an important first step.

Larger subgraphs

While PHUNKEE generalises to searching for
larger subgraphs in protein interaction networks,
few functionally consistent subgraphs are found.
Similar subgraph pairs of eight shared nodes
describing part of the pre-mRNA splicing complex
(Figure 5) were one of the few larger functional
systems found consistently. As more accurate data
become available, PHUNKEE could be used to find
larger similar subgraphs within protein interaction
networks.

Comparison to NetworkBlast

We compared the results of PHUNKEE to that of
the publicly available NetworkBlast software.13
NetworkBlast locates similar short strings (paths)
of nodes in a pair of networks as well as similar
densely interacting clusters. We applied Network-
Blast to the comparison of the D. melanogaster and S.
cerevisiae protein interaction networks and identified
significant functionally consistent paths and clus-
ters. To assess the number of independent sub-
graphs found and network coverage, redundant
paths and clusters were removed in a fashion similar
to that described above for the PHUNKEE method.
NetworkBlast identified two significant function-

ally consistent clusters and 26 functionally consis-
tent paths (four of these paths are shown in Figure 6
(Table 4)). Of these, both functionally consistent
clusters and 13 of the functionally consistent paths
were considered to be non-redundant. Overall, the
non-redundant, functionally consistent paths and
clusters belonged to seven different COG func-
tional classes, two less than the four node sub-
graphs found by PHUNKEE. Unlike NetworkBlast,
PHUNKEE identified similar subgraphs involved
with transcription, the cytoskeleton and replication,
recombination and repair. However, NetworkBlast
identified paths involved with intracellular traf-
ficking and PHUNKEE did not. Similar paths
and clusters found by NetworkBlast often over-
lapped with subgraphs identified by PHUNKEE.
NetworkBlast paths and clusters covered 134
nodes in total, which is fewer than those found by
PHUNKEE (Table 2). However, it should be noted
that NetworkBlast does not list nodes that form
part of the gaps in identified paths and clusters,



Figure 5. A pair of similar sub-
graphs from a comparison of D.
melanogaster and S. cerevisiae pro-
tein–protein interaction networks.
Subgraphs are represented as in
Figure 4. The function of each
protein (according to COG) is listed.
One of the most similar subgraph
pairs found in the D. melanogaster
and S. cerevisiae protein–protein
interaction networks with corre-
sponding nodes determined by the
COG function matching method is
shown. Subgraph pairs containing
eight shared nodes each were found
using parameters we=0.1 andwi=1.
The pair of subgraphs is involved in
RNA processing (with a shared-
edge ratio of 0.30 and a p value of
<5.9×10−5).
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and hence were not included in the calculated
number of nodes covered. Also, the clusters identi-
fied by NetworkBlast were considerably bigger
than the subgraphs found by PHUNKEE, the larger
of the subgraphs being 15 nodes for both non-
redundant, functionally consistent clusters. It is
clearly more difficult to find larger functionally con-
sistent subgraphs. The two functionally consistent
clusters found were part of the pre-mRNA splicing
complex and part of the proteasome regulatory
complex. These overlap, to some extent, with two
of the larger eight node subgraphs identified by
PHUNKEE, but PHUNKEE did not find function-
ally consistent subgraphs with 15 shared nodes.
The reason that PHUNKEE finds more subgraphs

of size four nodes than NetworkBlast finds paths of
length four nodes is probably due to the nature of
the respective searches. Any significant subgraph
that is branched in its structure (such as those shown
in Figure 4(a)–(c)) cannot be identified as a
significant path by NetworkBlast. They may, how-
ever, be identified as part of a significant densely
interacting cluster or by subsequent further cluster-
ing of paths. By also considering the similarity of a
subgraphs external network context, PHUNKEE can
find additional similar subgraphs that NetworkBlast
may not. However, NetworkBlast finds similar
subgraphs missed by PHUNKEE and is able to
find larger subgraphs. This is possibly because
NetworkBlast sifts through all possible matches
between sequence-similar proteins as it locates
similar paths and clusters. PHUNKEE, however,
first uses the Hungarian algorithm to allocate one-
to-one node matches that form the basis of the
subsequent search for similar subgraphs. Correct
node matches may be missed if they are not part of
the initial sequence-based global node matching.
Incorporating all possible node matches during the
subgraph search in a way similar to NetworkBlast
could improve subsequent versions of the PHUN-
KEE algorithm. Clearly, the NetworkBlast and
PHUNKEE algorithms each have advantageous
features relative to one another, and offer comple-
mentary approaches to biological network compar-
ison. To demonstrate this point, the four (we=0, 0.1,
0.5, 1) PHUNKEE four node similar subgraph
searches conducted before were combined with
the NetworkBlast similar four node path search
described above. Using the same approach to
determining significance as the combination of
PHUNKEE subgraph searches discussed previously
(see Materials and Methods), the combined PHUN-
KEE/NetworkBlast subgraph searches yielded a
total of 30 non-redundant, functionally consistent
subgraph pairs (with either global or local signifi-
cance measures used for PHUNKEE). Thus, the
combination of PHUNKEE and NetworkBlast
(paths only) resulted in a larger number of similar
subgraphs than either approach in isolation.
Conclusion

Given the increasing amount of biological net-
work data being generated, automated methods of
locating similarities in networks are going to become
increasingly useful. Here, we have constructed a
novel (and general) network comparison algorithm
and introduced the new concept of network context.
PHUNKEE is able to find significant matches
between subgraphs in protein–protein interaction
and metabolic networks. Their similar network
context implies that these processes have been
relatively well maintained during the course of



Figure 6. Four pairs of similar paths found by
NetworkBlast from a comparison of D. melanogaster and
S. cerevisiae protein–protein interaction networks. Sub-
graphs are represented as in Figure 4. The function of each
protein (according to COG) is listed in Table 4. All paths
presented were significantly similar (p<0.01). Paths were
found in such processes as signal transduction (a), cell
division (b), RNA processing (c) and vesicular transport
(d).

1136 Biological Network Comparison
evolution and that the relationship of these sub-
graphs with the rest of the network have also
remained relatively unaltered. The comparison of
network context, rather than of internal edges only,
aids the discrimination of significant similar sub-
graphs. By including information from external
edges, PHUNKEE can locate more subgraph pairs
with constituent nodes involved in the same
functional processes. This has the potential to assist
the prediction of protein function. In addition, we
found that PHUNKEE could locate significant
functionally consistent subgraphs that are not
identified by NetworkBlast, a popular network
comparison method.
Materials and Methods

Metabolic network data

Metabolic network data wee taken from a relational
database, developed in a previous study,27 which draws
on information from the KEGG database.28,29 Small-
molecule metabolism of each species was modelled as a
network of metabolites. Each node in the network was a
metabolite and each edge was an enzyme function
(defined by its EC number) of one or more enzymes in
that species. An edge connecting two metabolites repre-
sents an enzyme that catalyses a reaction with one of the
metabolites as a reactant and the other as a product.
Molecules that participate in a very large number of
reactions (for example, H2O) were removed from the
networks.

Protein–protein interaction data

For protein–protein interaction networks, the nodes
represented proteins, and edges represented physical
interactions between pairs of proteins, as determined by
experiment. The correspondences between proteins in
different networks were determined using sequence simi-
larity relationships, calculated by the program BLAST,30,31

or using sequence similarity in conjunction with func-
tion information taken from the COG database.18,19

Protein–protein interaction data was taken from the DIP
database.20

Matching nodes

The approach used to locate similar subgraphs in this
study is as follows (Figure 2). First, the correspondence
between nodes in a pair of networks was determined.
Relationships between nodes in different networks can be
represented as a weighted bipartite graph (Figure 2(a)). A
bipartite graph is one in which the nodes can be divided
into two sets such that no edge exists between any pair of
nodes in the same set. The weighted edges between nodes
in different networks indicate the degree of similarity
between them. Nodes in a pair of biological networks may
be similar to more than one node in the opposite network.
For example, a protein in a protein interaction network
may have an orthologue in another network but that
orthologue may be difficult to distinguish from any
paralogues that may exist. For protein–protein interaction
networks, two methods were used to find corresponding
nodes. A weighted bipartite graph-matching algorithm
(the Hungarian method17) was used to determine an
optimal one-to-one correspondence of nodes (Figure 2(b)).
An alternative method determined corresponding nodes
by finding the most sequence-similar pair of proteins with
the same COG function (referred to here as the COG
function-matching method).
For both of these methods, sequence similarity relation-

ships between proteins in opposite networks were
determined using BLAST sequence comparisons.30,31

There were many BLAST hits between some proteins
(Figure 2(a)) with differing sequence similarity. The
weight assigned to each BLAST hit with an E-value of E
between a pair of proteins was defined as -log(E) (or as
1000 if E=0.0). The weight assigned to the correspondence
between each pair of proteins was the sum of the weights
corresponding to BLAST hits in each direction. Firstly, the
one-to-one node correspondence was calculated using the



Table 4. Functions of proteins in Figure 6

D. melanogaster S. cerevisiae

Symbol COG class Symbol COG class

(a) A – A –
B MAPKKK (MAP kinase kinase kinase) SSK2 and

related serine/threonine protein kinases
B –

C – C cAMP-dependent protein kinase catalytic subunit (PKA)
D Serine/threonine protein kinase D cAMP-dependent protein kinase catalytic subunit (PKA)

(b) A Mitotic checkpoint serine/threonine protein kinase A Mitotic checkpoint serine/threonine protein kinase
B Mitotic checkpoint serine/threonine protein kinase B Mitotic checkpoint serine/threonine protein kinase
C Mitotic checkpoint serine/threonine protein kinase C Mitotic checkpoint serine/threonine protein kinase
D Cyclin B and related kinase-activating proteins D Cyclin B and related kinase-activating proteins

(c) A – A Small nuclear ribonucleoprotein (snRNP) SMF
B Small nuclear ribonucleoprotein F B Small nuclear ribonucleoprotein F
C U6 snRNA-associated Sm-like protein C U6 snRNA-associated Sm-like protein
D Small nuclear ribonucleoprotein (snRNP)

Sm core protein
D Small nuclear ribonucleoprotein (snRNP)

Sm core protein
(d) A Protein required for fusion of vesicles in vesicular

transport, alpha-SNAP
A Protein required for fusion of vesicles in vesicular

transport, alpha-SNAP
B Vacuolar sorting protein VPS45/Stt10 (Sec1 family) B Vacuolar sorting protein VPS45/Stt10 (Sec1 family)
C SNARE protein Syntaxin 1 and related proteins C SNARE protein PEP12/VAM3/Syntaxin 7/Syntaxin 17
D SNARE protein TLG2/Syntaxin 16 D SNARE protein TLG2/Syntaxin 16

The function of each protein represented in Figure 6 is listed here. For (a)–(d), the symbols in Figure 6 in each species are listed next to
their function according to the COG database. Dashes indicate that COG lists no function for that protein.
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Hungarian method.17 The code used to perform the
Hungarian algorithm was a slight modification of that
found in Knuth's GraphBase.32 Any final correspondence
in which the E-value in either direction was >0.001 was
removed from consideration. Secondly, the one-to-one
node correspondence was calculated using the COG
function-matching method. In this case, for each COG
functional category, the protein pair with the highest
weight was deemed to be a pair of corresponding nodes.
In this way, all corresponding node pairs had the same
function. However, as COG does not define functions for
all sequence-similar proteins, and only one corresponding
node pair was selected for each function, there were fewer
corresponding nodes overall (951).
For the comparison of metabolic networks, the corre-

sponding nodes were simply those that represented the
same compound. Thus, it was not necessary to use a node-
matching step in PHUNKEE to achieve a one-to-one
correspondence between nodes in the pair of metabolic
networks (Figure 2(a)).
Shared-edge ratio

The corresponding nodes determined by the above
process were deemed to be equivalent (Figure 2(b)).
When comparing subgraphs, a distinction was made
between internal and external nodes. A node was
defined to be internal if it belonged to one of the pair
of subgraphs and external if it did not. Corresponding
nodes that are both internal or both external are called
shared nodes. Corresponding nodes consisting of one
internal and one external node, and nodes with no cor-
responding node in the other species, are called unshared
nodes. If a pair of shared nodes is connected by the same
type of edge (for example, if the edges represented the
same enzyme function) in both species then that edge is
called a shared edge. All other edges are called unshared
edges.
The measure of similarity of a pair of subgraphs is the

shared-edge ratio (Figure 1), which is the weighted
proportion of edges adjoining all nodes in a subgraph
pair that are shared edges. Internal and external edges are
weighted by the user-defined parameters wi and we,
respectively. An internal edge is any edge connecting two
internal nodes. An external edge is any edge connecting an
internal node and an external node. Thus, the shared-edge
ratio (SER) is given by:

SER ¼

P

edges
dsharedw
P

edges
w

where δshared=1 if the edge is shared and δshared=0 is the
edge is unshared and where w=wi if the edge is internal
and w=we if the edge is external.

Searching for similar subgraphs

A grouping algorithm is then employed to find the most
similar subgraphs in the two networks. A pair of
corresponding nodes were selected to be the start of a
trial pair of subgraphs (the nodes labelled A in Figure
2(b)). Nodes were then progressively grouped to this
subgraph according to the shared-edge ratio that would
occur in the new subgraph that would result (the nodes
labelled B in Figure 2(c) and those labelled C in Figure
2(d)). Pairs of corresponding nodes considered for group-
ing are those within a user-definedmaximum distance of a
node within the current subgraph. Distances between
pairs of nodes in each network were precalculated using
the Floyd-Warshall algorithm.33 Only distances from
shared nodes within the current subgraph were consid-
ered, due to memory considerations. Any unshared nodes
(and adjoining edges) that lie on the shortest path between
the current subgraph and the corresponding node pair
being considered would also form part of the new
subgraph (for example, the node G in Figure 2(c)). For
each potential new subgraph, the shared-edge ratio was
calculated and the subgraph with the highest ratio was
chosen to be the new current subgraph. In the event of
more than one potential new subgraph having the highest
shared-edge ratio, the first one found was selected. This
process was repeated until the subgraph reached a user-
defined maximum number of nodes or edges.
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Similar pairs of subgraphs were searched for, using all
possible corresponding node pairs as the initial subgraph
pair.

Non-redundant subgraphs

To eliminate redundant subgraphs, a simple clustering
procedure was employed. The list of subgraphs was first
ordered by descending shared-edge ratio. Then, any
subgraph pair with >25% nodes in common with the
subgraph pair at the top of the list was eliminated. This
procedure was repeated for the next subgraph pair
remaining on the list and so on until no more subgraph
pairs could be eliminated.

Statistical significance

Two different measures of statistical significance of
subgraph matches were used in this study, the global and
the local significance. Common to both measures was the
random generation of a large number of subgraph pairs
and their corresponding shared-edge ratios. This distribu-
tion of shared-edge ratios was used to measure the sig-
nificance of the subgraph match. The significance p value
was taken as the proportion of that distribution with a
greater shared-edge ratio than that of the subgraph pair
of interest. The difference between the global and the
local significance measures was the manner in which the
random subgraph pairs were generated.

Local significance

For this measure, a large number of random subgraph
pair searches were conducted on the pair of networks of
interest. To generate a random subgraph pair, the process
described in the Searching for similar subgraphs section
was followed with one exception: instead of selecting the
new subgraph with the highest shared-edge ratio when
extending the current subgraph, one of the new subgraphs
was simply chosen at random. Any random pair of
subgraphs that did not reach the user-defined subgraph
size was not considered. For the comparison of protein-
protein interaction networks from D. melanogaster and
S. cerevisiae, ten random subgraph pairs were generated
for each corresponding node pair. Where corresponding
nodes were determined using the Hungarian method, a
total of 13,350 random subgraphs resulted. For the COG
function-matching method, 8220 random trials were
generated. For metabolic network comparison, 25 random
subgraph pairs were generated for each corresponding
node pair (giving a total number between 4450 and 12,025
for the species compared in this study).
‡Available at the website chianti.ucsd.edu/NetworkBlast/
Global significance

For this measure, a large number of subgraph pair
searches were conducted on random networks. The
random networks were generated by randomly reassign-
ing node and edge labels for the networks of interest. The
random subgraph pairs were then generated by applying
the search algorithm described in the Searching for similar
subgraphs section to pairs of random networks. Once
again, any random pair of subgraphs that did not reach
the user-defined subgraph size was not considered. For
the comparison of protein–protein interaction networks
from D. melanogaster and S. cerevisiae, random subgraph
pairs were generated for each corresponding node pair in
ten pairs of random networks. Where corresponding
nodes were determined using the Hungarian method, a
total of 16,610 random subgraphs resulted. For the COG
function-matching method, 8991 random trials were
generated. For metabolic network comparison, random
subgraph pairs were generated for each corresponding
node pair in 25 pairs of random networks (giving a total
number between 5160 and 12,433 for the species compared
in this study).

NetworkBLAST

The D. melanogaster and S. cerevisiae protein interaction
networks were also compared using the NetworkBLAST
program‡.13 Similar pairs of clusters and paths (four
nodes long) were identified. The statistical significance of
each resulting cluster and path was determined using
clusters and paths generated from 100 random simula-
tions. In each case, the p value was given by the pro-
portion of scores from the random simulations that were
more favourable than the score of the cluster/path of
interest.

Combining subgraph searches

Subgraph searches were combined to determine
whether this would result in a larger number of significant
subgraph pairs than an isolated subgraph search. A
modified level of statistical significance was required
to account for the fact that finding subgraph pairs of
p value=0.01 simply by chance is more likely in multiple
searches than in a single search. Therefore, we adjusted the
p value required for significance in each of theN combined
runs to p=0.01/N. For example, when combining four
PHUNKEE runs with different external edge weights
(we=0, 0.1, 0.5, 1) we selected subgraph pairs from each
search with p<0.0025. We applied a similar approach
when comparing single PHUNKEE and single Network-
Blast searches to a combination of four PHUNKEE
searches and one NetworkBlast search, selecting subgraph
pairs with a significance p value<0.002 in each search.
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