Learning structure and parameters of Stochastic
Logic Programs

S. Muggleton

Department of Computing,
Imperial College,
London,

United Kingdom.

Abstract. Previous papers have studied learning of Stochastic Logic
Programs (SLPs) either as a purely parametric estimation problem or
separated structure learning and parameter estimation into separate
phases. In this paper we consider ways in which both the structure and
the parameters of an SLP can be learned simultaneously. The paper as-
sumes an ILP algorithm, such as Progol or FOIL, in which clauses are
constructed independently. We derive analytical and numerical meth-
ods for efficient computation of the optimal probability parameters for a
single clause choice within such a search.

Keywords: Stochastic logic programs, generalisation, analytical methods, numer-
ical methods.

1 Introduction

Stochastic Logic Programs (SLPs) [11] were introduced originally as a way of
lifting stochastic grammars to the level of first-order Logic Programs (LPs). Later
Cussens [1] showed that SLPs can be used to represent undirected Bayes’ nets.
SLPs have been used [9] to define distributions for sampling within Inductive
Logic Programming (ILP) [7].

Previous papers have studied learning of Stochastic Logic Programs (SLPs)
either as a purely parametric estimation problem [2] or separated structure learn-
ing and parameter estimation into separate phases [12]. In this paper we consider
ways in which both the structure and the parameters of an SLP can be learned
simultaneously. We assume an ILP algorithm, such as Progol [6] or FOIL [14], in
which clauses are constructed independently. Analytical and numerical methods
are derived for efficient computation of the optimal probability label for a single
clause choice within such a search.

The paper is arranged as follows. Section 2 gives a general introduction to
SLPs. The generalisation model for SLPs described in [12] is reviewed in Section
3. Section 4 describes the problem of choosing the probability label for a single
new clause, assuming all other clauses and probability labels in the SLP remain
fixed. Equations for the general case are derived using calculus in Section 4.1.

A closed form solution for the case in which exactly two examples are present
is described in Section 4.2. Iterative numerical methods for solving the general
case are described in Section 4.3. Related work is then discussed in Section 5.
Section 6 describes provides conclusions and a description of further work.

2 Stochastic logic programs

2.1 Syntax of SLPs

An SLP S is a set of labelled clauses p:C' where p is a probability (ie. a number in
the range [0, 1]) and C is a first-order range-restricted definite clause!. The subset
Sp of clauses in S with predicate symbol p in the head is called the definition
of p. For each definition S, the sum of probability labels 7, must be at most 1.
S is said to be complete if 7, = 1 for each p and incomplete otherwise. P(S)
represents the definite program consisting of all the clauses in S, with labels
removed.

Ezxample 1. Unbiased coin. The following SLP is complete and represents a
coin which comes up either heads or tails with probability 0.5.

g — 0.5 : coin(head) +
17 00.5 : coin(tail) +

S1 is a simple example of a sampling distribution

Example 2. Pet example. The following SLP is incomplete.

g, — 0.3: likes(X,Y) « pet(Y, X), pet(Z, X),
2= cat(Y'), mouse(Z)
Sy shows how statements of the form Pr(P(x)|Q(y)) = p can be encoded within
an SLP, in this case Pr(likes(X,Y)|...)) = 0.3.

2.2 Proof for SLPs

A Stochastic SLD (SSLD) refutation is a sequence Dg g = (1:G, p1:C1, .., pn:Ch)
in which G is a goal, each p;:C; € S and Dp(s),¢ = (G,Ci,..,Cp) is an SLD
refutation from P(S). SSLD refutation represents the repeated application of
the SSLD inference rule. This takes a goal p:G and a labelled clause ¢:C' and
produces the labelled goal pq:R, where R is the SLD resolvent of G and C. The
answer probability of Dg g is Q(Ds,q) = [[i, pi- The incomplete probability
of any ground atom a with respect to S is Q(alS) = EDS,(H) Q(Ds,(+q))- We
can state this as S Fssrp Q(a|S) < Pr(a|S) <1, where Pr(a|S) represents the
conditional probability of a given S.

! Cussens [1] considers a less restricted definition of SLPs.

Remark 1. Incomplete probabilities. If a is a ground atom with predicate
symbol p and the definition S, in SLP S is incomplete then Q(a|S) < mp.
Proof. Suppose the probability labels on clausesin S, are p1, .., pn, then Q(a|S) =
p1q1 + -- + pngn where each g; is a sum of products for which 0 < ¢; < 1. Thus
Q(alS) < p1 + .. + pn = 7.

3 Generalisation model

We assume an ILP framework in which we are provided with a background SLP
S which corresponds to the underlying logic program B = P(S). It is further
assumed that S is complete. In addition we are given a set of ground unit positive
examples E. The aim is to construct a labelled definite clause z : H which when
added to S gives the SLP S’. The clause H must be such that

BAHEE.

Suppose z : H is placed within definition S(’I. By replacing all other labels y; in
S, by (1 —) in S; we can ensure that 7, remains 1. The label z is chosen to
maximise the likelihood p(E|S’) where

pES) =1 > Il (1)

e€EpeSS(e,S') 1 in p

and SS(e, S") represents the set of SSLD derivations of e from S’.

4 Optimal parameter choice

Remark 2. Assuming that S is non-recursive, the term Hlepl either has the form

c (where c is a constant) if proof p does not involve a q clause,
cx if proof p involves x : H or
c(1-x) if proof p involves a clause other than z : H in q.

If we vary the probability label z then p(E|S’) is maximal when

d p(E|S")
dx

Unfortunately the term-size of a differential of a product of sums of products
increases rapidly in the number of summed terms due to the form of the product
rule. We take the alternative route of differentiating In p(E|S’). The following
theorem allows us to identify the solution of Equation (2) with the solution for
the maximum of In p(E|S").

=0 2)

Theorem 1. Every differentiable function f(x) is mazimal when dinfo) _ 0.

dzx
Proof. Let g(z) = % and h(z) = d’fﬁxf‘“ = f(lx)dz{;w) = %)) From
0

calculus f(x) is mazimal when g(x) = 0. In this case h(zx) = 7y = 0 when

f(z) #0.

4.1 General case

Given the assurances of Theorem 1 we now log transform Equation (1) as follows.

In p(E|S") Zln Z Hl

ecE peSS(e,S") lep

= Z In Ue, x)
ecE

dInp(E|S") Z dln Ule,x)
dz B dz

ecE

B 1 dU(ex)

B CEZE Ule,z) dz 3)

From Remark 2 above we get the following.
Ul,z)=z(cr+ca+..)+ (1 —2z)(dl +d2+...) +c(e) 4)

where ¢;, d; are products of probability labels from S and ¢(e) is a sum of prod-
ucts of labels from S. We can now simplify Equation (4) as follows.

Ule,z) = zky(e) + ka(e) (5)

wherec=ci+cy...,d=di+d>..., ki(e) = (c—d), k2(e) = d+c(e). Combining
Equation (4) and (5) gives the following.

dIn p(E|S") _ ki (e)
dz N Z wkl(e) + ka(e)

ecE

= Z kzg(e)

ecE ¥ + kl(e)

— - - 6
gfx-l-k(e) (6)

where k(e) = :i’—gg

The following theorem defines the general case for finding the value of z
which maximises p(E|S").

Theorem 2. If p(E|S) # 0 then p(E|S") is mazimal when x takes a value
defined by) . ﬁk(e) =0
Proof. Follows trivially from Theorem 1 and Equation (6).

4.2 Analytical solution for two example case

We now demonstrate how the general equation from Theorem 2 can be solved
analytically for the case in which E contains only two examples, e; and e;. In

terms of ILP this corresponds to the case of finding the probability label for the
least general generalisation of two examples. In this case

1
Zx—i—k(e) =0

eckE
= (x+k(er)) + (z+ k(e2)) =0

o [k(el) + k(eg)] |

2
We demonstrate this analytical solution below by way of an example.
Ezample 3. Let S’ be

(z: p(X,Y)+q(X,2),r(Z,Y)[A]
1—.Z'Zp(X,Y)(—7‘(X,Z),S(Y,Z) [B]

0.3: g¢(a,b) «+ [C]

04: q(bd) + [D]

Sy 03: gqlce) « [E]
0.4: r(b,d) « [F]

06: r(ed) + (G]

09: s(d,d) [H]

(0.1: s(e,d) +]

and F be
p(ca d) <« [62]
Now the proofs for e; and e, are as follows.

SSLD(eI:S) = {<AaD:F>7<B:FaH)}
SSLD(es, S) = {{4,E,G),{(B,G,I)}

_ {p(@ d) ¢ [e1]

Given these proofs the likelihood function is as follows.
p(E|S) = [2(0.4)(0.4) + (1 — 2)(0.4)(0.9)] * [2(0.3)(0.6) + (1 — 2)(0.6)(0.1)]
This function is plotted in Figure 1. Now for e; we have the following.

Uler,z) =x(cr+ca+...)+ (1 —2z)(di +da +...) + c(er)
c=c¢ = (0.4)(0.4) =0.16
d = d; = (0.4)(0.9) = 0.36

c(er) =0
kl(el) = (C - d) =—0.20
kg(el) = (d+ c(el)) =0.36

k(el) _ kg(el) _ 0.36 —_18

kl(el) o —0.20 -

By similar reasoning we have the following for es.

kg(ez) . 0.06 _

=—=05
kl(ez) 0.12

k(e2) =

Thus according to Equation (7) the optimal value for z is as follows.

k(e1) + k(ez)
2

=0.65

0.032

0.03

0.028

0.026

P(EIS)

0.024

0.022

0.02 | | | |

X

Fig. 1. Likelihood function for Example 3

4.3 Iterative numerical method for n example case

It is in fact possible to find analytical solutions for numbers of examples n =
3,4,.... This is done by solving quadratic, cubic and higher-order equations.
However, the size of the functions to be solved grows exponentially in n, and
some of the roots are imaginary. As an alternative to this approach we can use
numerical techniques to solve roots of the general equation found in Theorem 2.
Standard methods here include Newton’s method and the iteration method?. In
practice the author has found that the following variant of the iteration method
appears to converge rapidly.

Variant of iteration method Suppose that you can put an equation g(x)=0
into the form x = f(x). Start with an approximation xo of the root. Calculate

% See http://www.ping.be/math/root.htm

To,Z1,---,Zn, - such that

w4 f@)
Tit1 = ——H

The sequence converges to the root as long as the initial approximation is suffi-
ciently close. The following is a derivation from the general equation of Theorem
2 of a suitable function f(z).

1
2 e "

ecE

I O o]

e€E\e1
1
z=-— [k(el) + —]

YecB\e1 THE)

= f(z)
Ezample 4. We revisit example 3.
1
flz)=—1-18+ —1]
EeinE\q z+k(e)
=—[-1.84 (2 +0.5)]
=18-05—=x
=13—2z

Choosing ¢ = 0.5 as the initial guess the sequence converges as follows.

g = 0.5
1 = 0.65
z2 = 0.65

5 Discussion of related work

This section describes some of the related approaches which have been taken to
learning probabilistic logic representations.

5.1 Learning PRMS

PRMs share the underlying probabilistic semantics and local independence as-
sumptions of Bayesian Networks. This has allowed many of the Bayesian net
learning techniques to be extended to PRMs. For instance, Koller and Pfeffer
[5] have used EM (Expectation Maximisation [3]) to estimate the parameters 6
of a PRM for which the dependency structure is known. Unlike the algorithms

described in the present paper, EM is not guaranteed to converge to optimal val-
ues. However, the multi-variate parameter estimation problem being attacked by
Koller and Pfeffer using EM is considerably harder than the univariate problem
considered here. More recently Friedman et al. [4] have also attacked the more
difficult problem of learning the dependency structure S directly from data.

5.2 Learning SLPs

The task of learning SLPs, like that of learning PRMs, has previously been
divided into that of parameter estimation and structure learning. Cussens [2]
presents an algorithm called Failure-Adjusted Maximisation (FAM) which esti-
mates from data the parameters of an SLP for which the underlying logic pro-
gram is given. FAM is an instance of the EM algorithm that applies specifically
to normalised SLPs. Recently the author [12] presented a two-phase algorithm
for learning both the parameters of an SLP and the underlying logic program
from data. The algorithm is based on maximising Bayes’ posterior probability,
and has been demonstrated on problems involving learning an animal taxonomy
and a simple English grammar.

6 Conclusions and further work

In this paper we have considered ways in which both the structure and the pa-
rameters of an SLP can be learned simultaneously. The paper assumes an ILP
algorithm, such as Progol or FOIL, in which clauses are constructed indepen-
dently. We have derive analytical and numerical methods for efficient computa-
tion of the optimal probability parameters for a single clause choice within such
a search.

Further analysis is required for some of the approaches described in this
paper. For instance, the simplifying assumption made in Remark 2 that S be non-
recursive may be overly-restrictive in some cases, though it is almost identical
to the C-derivation assumption used in relative least generalisation [13, 10]. Also
the convergence rate of the iteration method described in Section 4.3 needs to
be analysed, and compared to alternatives approaches. In particular, empirical
comparisons should be made against Cussen’s FAM algorithm [2] when the latter
is restricted to the case of single label estimation.

Further work is required to implement and test the approach described in this
paper. The intention is to incorporate the iterative numerical method described
in Section 4.3 within a version of Progol. The performance of this new version
of Progol can then be compared with the two stage implementation described in
[8]. The author believes that the new approach has the potential to improve on
that described in [8] in terms of both efficiency and accuracy of the generated
result.

Acknowledgements

Many thanks are due to my wife, Thirza and daughter Clare for the support and
happiness they give me. This work was supported partly by the ESPRIT IST
project “Application of Probabilistic Inductive Logic Programming (APRIL)”,
the EPSRC grant “Closed Loop Machine Learning” and the BBSRC/EPSRC
Bio-informatics and E-Science Programme, “Studying Biochemical networks us-
ing probabilistic knowledge discovery”.

References

1.

10.

11.

12.

13.

14.

J. Cussens. Loglinear models for first-order probabilistic reasoning. In Proceedings
of the 15th Annual Conference on Uncertainty in Artificial Intelligence, pages 126—
133, San Francisco, 1999. Kaufmann.

. J. Cussens. Parameter estimation in stochastic logic programs. Machine Learning,

2000. In press.

. A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data

via the em algorithm. Journal of the Royal Statistical Society, Series B, 39:1-38,
1977.

. N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic rela-

tional models. In IJCAI-99: Proceedings of the Sizteenth International Joint Con-
ference on Artificial Intelligence, pages 1300-1309, San Mateo, CA:, 1999. Morgan-
Kaufmann.

. D. Koller and A. Pfeffer. Learning probabilities for noisy first-order rules. In

IJCAI-97: Proceedings of the Fifteenth International Joint Conference on Artificial
Intelligence, pages 1316-1321, San Mateo, CA:, 1997. Morgan-Kaufmann.

. S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13:245—

286, 1995.

. S. Muggleton. Inductive logic programming: issues, results and the LLL challenge.

Artificial Intelligence, 114(1-2):283-296, December 1999.

. S. Muggleton. Learning stochastic logic programs. FElectronic Transactions in

Artificial Intelligence, 5(041), 2000.

. S. Muggleton. Learning from positive data. Machine Learning, 2001. Accepted

subject to revision.

S. Muggleton and C. Feng. Efficient induction of logic programs. In Proceedings
of the First Conference on Algorithmic Learning Theory, pages 368-381, Tokyo,
1990. Ohmsha.

S.H. Muggleton. Stochastic logic programs. In L. de Raedt, editor, Advances in
Inductive Logic Programming, pages 254-264. I0S Press, 1996.

S.H. Muggleton. Learning stochastic logic programs. In Lise Getoor and David
Jensen, editors, Proceedings of the AAAI2000 workshop on Learning Statistical
Models from Relational Data. AAAT, 2000.

G. Plotkin. A further note on inductive generalization. In Machine Intelligence,
volume 6. Edinburgh University Press, 1971.

J.R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239—
266, 1990.

