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Abstract. We propose a new framework, Decision-theoretic Logic Pro-
grams (DTLPs), in the paper. DTLPs extend Probabilistic ILP models
by integrating desicion-making features developed in Statistical Decision
Theory area. Both decision-theoretic knowledge (eg. utilities) and proba-
bilistic knowledge (eg. probabilities) can be represented and dealt with in
DTLPs. An implementation of DTLPs using Stochastic Logic Programs
is introduced and a DTLP parameter learning algorithm is discussed
accordingly. The representation and methods are tested by performing
regression on the traditional mutagenesis dataset.

1 Introduction

There is currently considerable interest within Inductive Logic Programming
(ILP) community in Probabilistic Inductive Logic Programming (PILP) [5] and
closely allied area of Statistical Relational Learning [7] and Structured Machine
Learning [6]. PILP naturally extends traditional ILP [13] by introducing prob-
abilities that can explicitly deal with uncertainty such as missing and noisy
information. Although an increasing number of systems and applications have
been published [5, 7, 3], there are still many challenges in the PILP research [6].
A new framework, Decision-Theoretic Logic Programs (DTLP), is introduced
in this paper which extends PILP to Statistical Decision Theory [1, 8] area by
introducing some decision-theoretic features that can explicitly represent and
compute expected utilities/rewards/losses happened in people’s decision making
behaviours.

Statistical decision theory is concerned with the making of decisions in the
presence of statistical/probabilistic knowledge which sheds light on some of the
uncertainties involved in the decision problem [1]. It simulates the process where
a decision-maker chooses outcomes of an act given the background information
(about the states of the world) that the decision-maker has. It is common to
divide decisions into categories based on the scale of the knowledge, ie. decisions
under certainty if the information are deterministic, decisions under risk when
the decision-maker has complete probabilistic knowledge and decisions under
uncertaity when the probabilistic knowledge are partially known. The dominat-
ing approach to decision-making with probabilities is expected utility theory, in
which utilities are the numerial values the decision-maker has set for the out-
comes of an act. The basic decision-rule in the theory is as simple as: choose the
outcome with the highest expected utility.



(a) rain no rain

umbrella 10(dry,heavy) 10(dry,heavy)

no umbrella 0(wet,light) 15(dry,light)

(b) 0.4::coin(head). 0.6::coin(tail).
sequence([]]).
sequence([H|T]):-coin(H),sequence(T).

Table 1. (a) Decision matrix of ‘umbrella & rain‘ example; (b) An SLP example.

The motivation of DTLPs is shown by an example in Table 1(a), which
demonstrates making a decision of whether to bring the umbrella or not at a
certain day based on the statistical information of whether it rains or not on
the day. DTLPs are a framework that can encode such kind of decision-making
problems where both utilities and probabilities are involved and handled. An
implementation of DTLPs using Stochastic Logic Programs (SLPs) has been
developed in the paper, based on which a method of learning probabilities and
utilities for a given decision-theoretic logic program is introduced. The method
has been tested and evaluted by revisiting the traditional mutagenesis regression
problem. The experiment results show that the settings and learning method of
DTLPs not only successfully integrate decision-theoretic features into PILP, but
also provide a way of performing regression using PILP.

2 Decision-Theoretic Logic Programs

2.1 Background

Expected utility theory plays a central role in decision theory.

Definition 1 (Expected utility theory). Let f be an act and x1, x2, · · · , xN

be the states of the world (n ≥ 1) that might influence the outcome of f . Let
oi (1 ≤ i ≤ N) be an outcome f will have if xi is the true state. Let Pr be
a probability function defined on {xi} and U a utility function defined on {oi}.
The expected utility of f , relative to Pr and U , is EU(f) =

∑N
i=1 Pr(xi)U(oi).

Theorem 1 (Decision-rule theorem). if a decision-maker’s preferences sat-
isfy certain qualitative conditions then there exists a Pr and a U such that, for
all acts f and g, the decision-maker prefers f to g iff EU(f) > EU(g).

Expected utility could, more precisely, be called “probability-weighted utility
theory”. When appling the above theory and theorem to the example in Ta-
ble 1(a), the decisions are made based on Pr(rain), the probabilities of rain.
For example, if Pr(rain)=0.2 (eg. on 1st June), then a rational person will pre-
fer not bringing the umbrella, as EU(no umbrella)=12 > EU(umbrella)=10; if
Pr(rain)=0.4 (eg. on 1st May), then a rational person might have to bring the
umbrella (although it may result in carrying a heavy bag), as EU(umbrella)=10
> EU(umbrella)=9.

Stochastic Logic Programs (SLPs) [9] are one of the developed PILP frame-
works that provide a natural way of associating probabilities with logical rules
and have been applied in some real applications [2, 3]. An SLP S is a definite
logic program, where each clause C is a first-order range-restricted definite clause



10 : umbrella(A):−rain(A,y).
10 : umbrella(A):−rain(A,n).
0 : no umbrella(A):−rain(A,y).

15 : no umbrella(A):−rain(A,n).
0.4 :: rain(’01/05’,y).
0.6 :: rain(’01/05’,n).
0.2 :: rain(’01/06’,y).
0.8 :: rain(’01/06’,n). (a)

-1.91 : mut(A):−active(A,1).
-2.32 : mut(A):−active(A,2).
-1.99 : mut(A):−active(A,3).
-1.32 : mut(A):−inactive(A).
0.47:: active(A,1):−logp(A,B),gteq(B,4.18).
0.32:: active(A,2):−lumo(A,B),lteq(B,-1.937).
0.21:: active(A,3):−logp(A,B),gteq(B,2.74),

ring size 5(A,C).
inactive(A):−not(active(A,1)),

not(active(A,2)),not(active(A,3)).
(b) logp(’d63’,2.79).lumo(’d63’,-3.768).. . .

Table 2. (a) a SLP-based DTLP for the ‘umbrella & rain‘ example (Table 1(a)), where
the variable A stands for a certain date; (b) a SLP-based DTLP for the mutagenesis
data set learned in section 4, where A is a compound, B is a real number and C is a
structure.

and some of the definite clauses are labelled/parameterised with non-negative
numbers, l :: C. In a pure normalised SLP, each choice for a clause C has a
parameter attached and the parameters sum to one, so they can therefore be
interpreted as probabilities. Normalised SLPs are defined such that each param-
eter l denotes the probability that C is the next clause used in a derivation given
that its head C+ has the correct predicate symbol. Table 1(b)) shows an impure
normalized SLP that represents a sequence of tossed coin each of which comes
up either head (with probability 0.4) or tail (with probability 0.6).

Generally speaking, an SLP S has a distribution semantics [10], that is one
which assigns a probability distribution to the atoms of each predicate in the
Herbrand base of the clauses in S. Learning SLPs has been studied in [4], which
solves the parameter estimation problem by developing failure-adjusted maximi-
sation (FAM) algorithm, and in [11], which presents a preliminary approach
to structure learning. FAM is designed to deal with SLP parameter learning
from incomplete or ambiguous data in which the atoms in the data have more
than one refutation that can yield them. It is an adjustment to the standard
EM algorithm where the adjustment is explicitly expressed in terms of failure
derivation.

2.2 DTLPs

Definition 2 (Decision-theoretic logic programs). A DTLP D is a definite
logic program that consists of three types of first-order range-restricted definite
clauses {C}: a set of deterministic clauses {C+ :− C−}, where C+ is the head
of C and C− is the body of C; a set of probabilistic clauses, {p :: C+ :− C−},
where p stands for conditional probability Pr(C+|C−) (based on some probability
function); and a set of decision-theoretic clauses, {u : C+ :− C−}, where u is a
utility value (defined by some utility function) of making a decision C+. Conse-
quently, three types of predicates are defined in D: deterministic predicates that
specify non-probabilistic facts; decision-theoretic predicates that represent deci-
sions (outcomes of acts); and probabilistic predicates that represent the states



of world affecting decisions. The subset Dq of clauses in D whose head share the
same predicate symbol q is called the definition of q. For each q, if q is a proba-
bilistic predicate, we assume the sum of the probabilities of the clauses in Dq is
normalized to 1. We also restrict that no decision-theoretic predicates will occur
in the body of probabilistic and deterministic clauses, and only probabilistic and
deterministic predicates could occur in the body of decision-theoretic clauses.

Definition 2 implies a hierarchical framework of building a DTLP, where
decision-theoretic predicates are on top of and made up of probabilistic and
deterministic predicates that are made up of other probabilistic and determin-
istic predicates. The setting is such that DTLPs could be built upon any PILP
model that can define and manipulate probabilistic and determistic knowledge.
A DTLP built upon SLPs representing the “umbrella & rain” example is listed
in Table 2(a). Therefore, the semantics of a PILP-built DTLP closely depend on
the semantics of PILP model that express and interpret probabilities.

As in PILP, two types of probability semanntics could be encoded in DTLPs,
ie. possible worlds probabilistic structure and domain-frequency probabilistic
structure [12, 3]. With possible worlds semantics (encoded in most PILP models
except SLPs), for a decision-theoretic predicate, a set of utilities are assigned
on its defintion, which is made up of a set of exclusive possible worlds. In this
case, the expected utility of a decision should be computed by considering all
the possible worlds. For example, in the DTLP shown in Table 2(a), utilities are
assigned on the definitions of the two decision-theoretic predicates, umbrella(A)
and no umbrella(A), in which two possible worlds (it rains or it does not rain)
are specified respectively. With domain-frequency semantics (eg. in SLPs), for
a decision-theoretic predicate, a set of utilities are assigned on its definition
that is made up of a set of domain features. As in SLPs, the domain features
could be partially overlapped between each other such that an object/example
is ambiguous in the sense that it could have more than one yields in its proof [4].
In this case, the expected utility of a decision could be computed by considering
one or more domain features. For instance, in the SLP-based DTLP example
shown in Table 2(b), the mutagenic status of a compound A could be either
active or inactive. If A is active, then A could be probabilistically categorised
into one or more active types, eg. active(A,1), active(A,2) and active(A,3).

In addition to the proof settings and probability computation of PILP mod-
els used to build DTLPs, the calculation of expected utilities for a decision
is a distinct step in DTLPs. If possible worlds semantics are encoded, the ex-
pected utility rule defined in Defintion 1 should be followed. On the other hand,
if domain-frequency semantics are the case, the expected utility of a decision
should be the weighted mean of utilities of clauses involved in decision-making,
ie. EU(f) =

PM
i=1 Pr(xi)U(oi)PM

i=1 Pr(xi)
, (Equation 2.2), where M ∈ [1, N ] is the number

of clauses that can yield decision f in its proof.

3 Learning DTLPs

SLPs are used as the base PILP model to build DTLPs in this paper. SLPs
are also used to simulate DTLPs with possible worlds probabilistic structure as



for each fold in an n-fold cross-validation
1.Estimate parameters for S using FAM from train set;
2.Compute posterior probability Pr(e|S) given S for each example e in train set;
3.for each decision-theoretic clause C in D

Compute EU(C) =
P

i Pr(ei|S)U(ei)/
P

i Pr(ei), where ei is predicted by C−;
4.Compute EU(f) for each example f in test set using Equation 2.2;
5.Compute mean squared error (MSE) by comparing EU(f) and U(f) for all f .

Table 3. DTLP parameter learning algorithm

Background Knowledge B1 B2 B3 B4

Mean Squared Error 0.265 0.192 0.174 0.170
Standard Error 0.098 0.099 0.086 0.084
Progol Predictive Accuracy 0.76 0.81 0.83 0.88

Table 4. Experiment results

shown in the example of Table 2(a). With the help of SLP learning, we develop
a DTLP parameter learning method in which both probabilities and utilities
could be estimated for a given definite logic program. This implies a three-stage
DTLP learning strategy: (1)learning a logic program LP by an ILP system (eg.
Progol [15]); (2)building an SLP S with LP and learning parameters for S by
performing FAM algorithm [4]; (3)building a DTLP D on top of S, estimating
utilities for the decision-theoretic clauses in D from train datasets, and evaluating
D by predicting expected utilities for test datasets. The last stage also suggests
the possibility of performing regression which could not be done by proper ILP
and PILP systems. A detailed algorithm of stage 3 is listed in Table 3.

4 Experiments

The DTLP learning algorithms developed in the paper have been tested by per-
forming regression for the mutagenesis dataset and the four sets of logic theories
obtained by early Prolog implementation of Progol [16], which were learned
based on four incremented sets of backround knowledge with different predic-
tive accuracies. Non-structural feature LUMO (Lowest Unoccupied Molecular
Orbital) is amenable for regression. The experiment results are listed in Table 4
in terms of mean squared error (MSE) and standard error (SE) of regression,
which show the methods work for the regression with target feature LUMO.
A learned DTLP with background knowledge base B4 is listed in Table 2(b).
A similar regression task performing for the same dataset using support vector
ILP reported a MSE of 0.574 for predicting toxicity values [14].

5 Conclusions and Future work

A preliminary DTLP framework is developed in the paper as well as its learn-
ing scheme that has been tested by experiments. The DTLP parameter learning



method also make it possible to perform regression rather than classification.
The future work include integration of more rich decision-theoretic features (eg.
risks and rewards), further discussion of the semantics of DTLPs, further devel-
opment of DTLP learning methods (eg. learning utility functions), and testing
the methods using other datasets.
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