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Abstract. Inductive Logic Programming (ILP) [9, 11] is the area
of AI which deals with the induction of hypothesised predicate def-
initions from examples and background knowledge. Logic programs
are used as a single representation for examples, background knowl-
edge and hypotheses. ILP is differentiated from most other forms
of Machine Learning (ML) both by its use of an expressive repre-
sentation language and its ability to make use of logically encoded
background knowledge. This has allowed successful applications of
ILP [1] in areas such as molecular biology [12, 10, 6, 5] and natu-
ral language [7, 3, 2] which both have rich sources of background
knowledge and both benefit from the use of an expressive concept
representation languages. For instance, the ILP system Progol has
recently been used to generate comprehensible descriptions of the
23 most populated fold classes of proteins [14], where no such de-
scriptions had previously been formulated manually. In the natural
language area ILP has not only been shown to have higher accura-
cies than various other ML approaches in learning the past tense of
English [8] but also shown to be capable of learning accurate gram-
mars which translate sentences into deductive database queries [15].
In both cases, follow up studies [13, 4] have shown that these ILP
approaches to natural language problems extend with relative ease to
various languages other than English.

The area of Learning Language in Logic (LLL) is producing a
number of challenges to existing ILP theory and implementations.
In particular, language applications of ILP require revision and ex-
tension of a hierarchically defined set of predicates in which the ex-
amples are typically only provided for predicates at the top of the
hierarchy. New predicates often need to be invented, and complex re-
cursion is usually involved. Similarly the term structure of semantic
objects is far more complex than in other applications of ILP. Ad-
vances in ILP theory and implementation related to the challenges
of LLL are already producing beneficial advances in other sequence-
oriented applications of ILP. In addition LLL is starting to develop its
own character as a sub-discipline of AI involving the confluence of
computational linguistics, machine learning and logic programming.
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