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Abstract. In this paper we demonstrate that Abductive ILP can gen-
erate plausible and testable food webs from ecological data. In this ap-
proach, unlike previous applications, the abductive predicate ‘eats’ is
entirely undefined before the start of the learning. We also explore a new
approach for estimating probabilities for hypothetical ‘eats’ facts based
on their frequency of occurrence when randomly sampling the hypoth-
esis space. The results of cross-validation tests suggest that the trophic
networks with probabilities have higher predictive accuracies compared
to the networks without probabilities. The proposed trophic networks
have been examined by domain experts and comparison with the litera-
ture shows that many of the links are corroborated by the literature. In
particular, links ascribed with high probability are shown to correspond
well with those having multiple references in the literature. In some cases
novel high probability links are suggested, which could be tested. [EX-
TEND ABSTRACT WITH RESULTS ON FUNC. GROUPS]

1 Introduction

Machine Learning has the potential to address many challenging problems in
ecological sciences [4]. Discovery of trophic links (food chains) which describe
the flow of energy/biomass between species is one of these problems. Networks
of trophic links (food webs) are important for explaining ecosystem structure
and dynamics [2]. However, relatively few ecosystems have been studied through
detailed food webs because finding out the predation relationships between the
many hundreds of species in an ecosystem is difficult and expensive. Hence, any
technique which can automate the discovery of trophic links from ecological data
is highly desirable. Similar problems of network construction have been tackled
in other complex systems, such as metabolic networks (e.g. [8]). In this paper
we demonstrate that Abductive ILP can generate plausible and testable food
webs from ecological data. In this approach the abductive predicate ‘eats’ is
entirely undefined before the start of the learning process. This contrasts with



Fig. 1. A farmland food web. Networks of trophic links (food web) are the primary
routes for translocation of energy/biomass between species at different levels and are
important for explaining ecosystem structure and dynamics.

previous applications of Abductive ILP where partial, non-empty, definitions
exist and the gaps are filled by abduced hypotheses. In this paper we also explore
a new approach for estimating probabilities for hypothetical ‘eats’ facts based on
their frequency of occurrence when random permutations of the training data
(and hence different seeds for defining the hypothesis space) are considered.
We empirically evaluate the hypothetical trophic networks using leave-one-out
cross-validation tests on the observable data. The results of cross-validation tests
for the networks with and without probabilities are presented. The proposed
trophic networks have been also examined by domain experts and the results of
comparison with the literature are presented.

[PARAGRAPH TO EXPLAIN GROUND ABDUCTIVE HYPOTHESES IN
THE CONTEXT OF ML, ILP AND RELATIONAL GRAPH LEARNING]

[TOADD: struct of the paper]

2 Ecological problem and data

Ecosystems are structured by flows of energy/biomass between primary producer
plants (autotrophs) and consumers (heterotrophs), such as invertebrates, mam-
mals and birds. Networks of trophic links (food web) are the primary routes for
translocation of energy/biomass between species at different levels. For example,
Figure 1 shows a food web in a farmland in which the food chains start from
plants, then herbivores then predators which eat herbivores or other predators
and so on.

There is much concern about anthropogenic and natural degradation of
ecosystems worldwide, and the knock-on consequences for ecosystem function-
ing. Much research that seeks to identify mechanisms of ecosystem change and



devise methods for mitigating its effects is being hampered by an inability to
construct food webs efficiently and effectively. Put simply, it takes considerable
time and effort to establish trophic relationships between the many hundreds
of species in an ecosystem - this means that only a relatively few systems have
been studied to any depth making it difficult to produce general theories about
ecosystem change. A method that yields plausible and testable food webs from
already collected field data would be a major step forward in the identification
of rules about how ecosystems react when perturbed.

In this paper we try to answer the following question. Can machine learning
be used to construct food webs from ecological data? We think the answer is
yes and in fact the food web shown in Figure 1 has been learned from ecological
data using Abductive ILP.

The training data we use comes from arable farmland where anthropogenic
disturbance and farm management has led to great increases in crop productiv-
ity, but often at cost to biodiversity. Here, there is concern that the extent of
biodiversity loss that has occurred (Benton, Vickery & Wilson 2003) might pre-
vent ecosystem services, such as pollination and biological control, from being
delivered (Loreau, Mouquet & Gonzalez 2003; Tscharnke et al. 2005). In this
system, management disturbs trophic links, leading to the observed changes in
diversity of the ecosystem (Caron-Lormier et al. 2009; 2011). The hope is that by
evaluating trophic links, and their sensitivity to management, trophic networks
might provide a mechanism for predicting ecosystem change (Macfadyen et al.
2009).

The data set was sampled from 257 fields across the UK in the Farm Scale
Evaluations (FSE) of GM, herbicide tolerant (GMHT) crops. This national-scale
experiment evaluated the change in weed plants and invertebrates between the
current, conventional herbicide management of spring-sown Maize, Beet and
Oilseed Rape and winter-sown Oilseed Rape, and the herbicide management of
GMHT varieties of the same crops using a split-field design. We use data from
the Vortis suction sampling protocol for epigeal invertebrates [6, 1] to calculate
a treatment effect ratio. The counts from each conventional and GMHT half-
field pair were converted to multiplicative treatment ratio, R, and as in [6, 1]
treatment ratio values of R < 0.67 and R > 1.5 were regarded as important
changes in count with direction of down (decreased) and up (increased), respec-
tively. This information on up and down abundances is regarded as our primary
observational data for the learning.

3 Machine learning of trophic links using Abductive ILP

The main role of abductive reasoning in machine learning and its use in the
development of scientific theories [5] is to provide hypothetical explanations of
the empirical observations. Then based on these explanations we try to inject
back into the current scientific theory, new information that helps complete the
theory. This process of generating abductive explanations and then updating in
some way the theory with them can be repeated several times when new observa-
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Fig. 2. Hypothetical trophic network (food web) constructed by A/ILP. Thickness of trophic links represent probabilities which are
estimated based on the frequency of occurrence from 10 random permutations of the training data.



Fig. 3. Learning trophic links from ecological data using Abductive ILP.

tional data is made available. In many implementation of abductive reasoning,
such as that of Progol 5 [7], which is used in this paper, the approach taken
is to choose an explanation that best generalises under some form of inductive
reasoning (e.g. simplest explanation approximated by compressibility). We refer
to this approach as Abductive ILP (A/ILP). We believe that ecological data
in this study fulfil the conditions for the use of A/ILP: firstly, the given back-
ground knowledge is incomplete; and secondly, the problem requires learning in
the circumstance in which the hypothesis language is disjoint from the observa-
tion language. In our problem, the set of observable data can be represented by
predicate abundance(X, S, up) (or abundance(X, S, down)) expressing the fact
that the abundance of X at site S is up (or down). This information is compiled
from FSE data as described in Section 2. The knowledge gap that we initially
aim to fill is a predation relationship between species. Thus, we declare abducible
predicate eats(X, Y ) capturing the hypothesis that species X eats species Y . In
order to use abduction, we also need to provide the rules which describe the
observable predicate in terms of the abducible predicate. An example of such a
rule is shown below.

abundance(X, S, up):-
predator(X),
co occurs(S, X, Y),
bigger than(X, Y),
abundance(Y, S, up),
eats(X, Y).

Similarly, a rule for abundance(X, S, down) can be defined. This Prolog rule
expresses the inference that following a perturbation in the eco-system (caused
by the management), the increased (or decreased) abundance of species X at site
S can be explained by the fact that X eats species Y which is further down in



the food chain and the abundance of species Y is increased (or decreased). It also
includes additional conditions to constraint the search for abducible predicate
eats(X, Y ), i.e. X should be a predator, X and Y should co-occur and that
X should be bigger than Y . Predicates predator(X), co occurs(S, X, Y ) and
bigger than(X, Y ) are provided as part of the background knowledge. Given
this model and the observable data, Progol 5 generates a set of ground abductive
hypotheses in the form of ‘eats’ relations between species as shown in Figire ??.

This set of ground hypotheses can be visualised as a network of trophic links
(food webs) as shown in Figure 2. In this network a ground fact eats(a, b) is
represented by a trophic link from b to a.

[ADD TEXT FOR FUNCTIONAL GROUPS FOOD WEB]

Fig. 4. Food web between functional groups. Each node is represented by a species
which can be viewed as an archetype for the functional group.

4 Hypothesis Frequency Estimation (HFE)

In order to get probability estimates for hypotheses, we use a technique which
is based on direct sampling from the hypotheses space. In some ILP systems,
including Progol, training examples also act as seeds to define the hypothe-
ses space (e.g. a most specific clause is build from the next positive example).
Hence, different permutations of the training examples define different parts
of the hypothesis space. We use this property to sample from the hypothesis
space by random permutations of the training data. Probability of ground hy-
potheses can be estimated based on the frequency of occurrence when random
permutations of the training data (and hence different seeds for defining the
hypothesis space) are considered. Using this technique, the thickness of trophic
links in Figure 2 represent probabilities which are estimated based on the fre-
quency of occurrence from 10 random permutations of the training data. This



probabilistic trophic network can be also represented using standard probabilis-
tic representations in ILP such as Stochastic Logic Programs (SLPs) [?]slp) or
ProbLog [?]problog). For this we can use relative frequencies in the same way
probabilities are used in SLPs or ProbLog. We can then use the probabilistic
inferences based on these representations to estimate probabilities. For example,
the probability p(abundance(a, s, up)) can be estimated by relative frequency of
hypotheses which imply a at site s is up. Similarly, p(abundance(a, s, down))
can be estimated and by comparing these probabilities we can decide to predict
whether the abundance is up or down. We have used this method in leave-one-
out experiments in Section 5 to measure the predictive accuracies of probabilistic
thropic networks.

Fig. 5. Probabilistic representation and inference.

5 Empirical evaluation

The purpose of the experiments in this section is to empirically evaluate hypo-
thetical trophic networks constructed from real ecological data using the methods
described in the previous sections. In these experiments, firstly we determine if
trophic networks can be learned from real ecological data such that their pre-
dictive accuracies on unseen data are higher than the default accuracy of the
majority class. Secondly, we examine if using probabilities estimated by the
permutation based HFE method (see Section 4) leads to increased predictive
accuracy and also if our probability estimation method is comparable with a
state-of-the-art probability estimation method from probabilistic ILP (i.e. LeP-
robLog[]). Thirdly, we examine if we can improve the predictive accuracies by
generalising over trophic interactions between individual species into trophic in-
teractions between functional groups (see Section 3).



for t in [1..300] do

for j=1 to n do

Tstj = a randomly selected example from Et

Trtj = Et − Tstj

for i in (25,50,75,100) do

Trtji = i training example randomly sampled from Trtj

end

end

end

for t in [1..300] do

for j=1 to n do

for i in (25,50,75,100) do

Htji = learned hypotheses using the training set Trtji

Atji = predictive accuracy of Htji on the test set Tstj

end

end

end

for i in (25,50,75,100) do

Plot average of Atji versus i (j ∈ [1..n] and t ∈ [1..300])

Fig. 6. Experimental method. Et is the set of abundance data at site t and in this ex-
periment n = 10. Variable i = (25, 50, 75, 100) represents the varying size of a randomly
chosen training set in a leave-one-out test strategy. [INCOMPLETE]

5.1 Experiment 1

Null hypothesis 1: A trophic network with predictive accuracy more than the
default accuracy cannot be constructed from ecological data using Abductive
ILP.

Materials and methods In this experiment Progol 5.0 4 is used to generate
abductive hypotheses (i.e. ‘eats’ relations between species) from observable data
(i.e. up/down abundance of species at different sites). The observable data has
been compiled from FSE data as described in Section 2. The up/down abundance
of species at different sites are then encoded as predicates abundance(X, S, up)
and abundance(X, S, down). The background knowledge includes information
about sites and species and Prolog rules for abundance as well as predicates
predator(X), co occurs(S, X, Y ) and bigger than(X, Y ) as described in Section
3. In order to empirically evaluate the hypothetical trophic networks, we use
leave-one-out cross-validation test on the observable data for species in the net-
work. This cross-validation test has been done by leaving out the abundance of
each predator at each site and then trying to predict whether the abundance is
up or down, given the trophic network generated from the rest of the data. This
experimental method is detailed in Figure 6.

4 Available from: http://www.doc.ic.ac.uk/e shm/Software/progol5.0/
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Fig. 7. Predictive accuracies of probabilistic trophic network vs. non-probabilistic net-
works from leave-one-out cross-validation tests.

Results and discussion Figure 7 compares the predictive accuracy of non-
probabilistic networks, i.e. networks generated from a single run or from 10
random permutations as well as probabilistic networks. In all cases the predictive
accuracies are significantly higher than the default accuracy of the majority class
(i.e. down for 53% of all abundance data). We can thus refute null hypothesis 1.

5.2 Experiment 2

Null hypothesis 2: Using the permutation based HFE method for estimating
probabilities of trophic links does not lead to increased predictive accuracies
compared to the non-probabilistic trophic network.

Null hypothesis 3: The predictive accuracy of a trophic network with proba-
bilities estimated using the permutation based HFE method is significantly
lower than the trophic network with probabilities estimated using LeProblog.

Materials and methods As in Experiment 1, we use leave-one-out cross-
validation test on the observable data for species in the network, i.e. leaving
out the abundance of each predator at each site and trying to predict whether
the abundance is up or down, given the trophic network generated from the
rest of the data. For the trophic network with probabilities, we first need to
calculate the relative frequencies of hypotheses which imply that the abun-
dance of the test example is up or down. Let p(abundance(a, s, up)) be the
relative frequency of hypotheses which imply the abundance of a at site s is up

and p(abundance(a, s, down)) is defined analogously. If p(abundance(a, s, up)) >

p(abundance(a, s, down)) then we predict that the abundance of the test example



a is up and otherwise it is down. p(abundance(a, s, up)) and p(abundance(a, s, down))
can be calculated using the probabilistic inference in SLPs or ProbLog given the
rules for abundance(X, S, up) and abundance(X, S, down) and the relevant prob-
abilistic representation of the trophic network in SLPs or ProbLog as described
in Section 4.

Results and discussion As shown in Figure 7 the predictive accuracies for the
non-probabilistic networks are significantly lower than the probabilistic networks
when more than 50% of the training data are provided. Hence, we can reject null
hypothesis 2. The predictive accuracies for the trophic network with probabilities
estimated using LeProblog (Permut10-LeProbLog) are generally higher than the
predictive accuracies of the trophic network with probabilities estimated using
the permutation based HFE method (Permut10-HFE). In order to see if the
differences are statistically significant we apply a t-test. The p-values from the
t-test are 0.14, 0.28, 0.083 and 0.075 when 25%, 50%, 75% and 100% of training
examples are used respectively. These p-values suggest that the null hypothesis
3 can also be rejected (significance level of 0.05).

5.3 Experiment 3

Null hypothesis 4: A trophic network between functional groups constructed
by generalising trophic interactions over individual species does not have a
higher predictive accuracy compared to the trophic network for individual
species.

Results and discussion The predictive accuracies for the probabilistic net-
work for functional groups (Permut10-HFE-Func) are shown in Figure 7. The
difference between the predictive accuracies of the probabilistic network for
the individual species (Permut10-HFE) and the network for functional groups
(Permut10-HFE-Func) are not significant for 50%, 75% and 100% of training ex-
amples. The predictive accuracy of Permut10-HFE-Func for 25% is significantly
higher than the predictive accuracy of Permut10-HFE (p-value of 0.004 from
t-test). The null hypothesis 4 can therefore be refuted. This result suggest that
when the number of training examples are limited, the network for functional
groups has a higher predictive accuracy compared to network for the individual
species.

6 Ecological evaluation

The trophic network in Figure 2 has been examined by the domain experts and
corroboration of many of the links in the literature have been found. Table 2c
is a tabular representation for some prey (columns) and predator (rows) species
combination in Figure 2. Each pairwise hypothesised link has a strength (i.e. fre-
quency between 1 to 10) followed by references (in square brackets) in the litera-
ture (listed in Appendix) supporting the link. In this table, only prey/predators



Fig. 8. Tabulated trophic links for some prey (columns) and predator (rows) species combination in Figure 2. Each pairwise hypothesised
link has a strength (i.e. frequency between 1 to 10) followed by references (in square brackets) in the literature (listed in Appendix)
supporting the link.



are shown which have at least one link with strength more than or equal to 7.
This table shows that many of the links, suggested by the model, are corrob-
orated by the literature. In particular, links in the model ascribed with high
frequency are shown to correspond well with those having multiple references
in the literature. Table 9 shows the correspondence between the frequencies of
hypothetical trophic links, the number of multiple references and the total num-
ber of references in the literature. We use the numbers in this table to test the
following null hypothesis.

Null hypothesis 5: The frequency of hypothetical trophic links in the learned
trophic network are not correlated with the number of references in the
literature for those trophic links.

Figure 9 shows the correlation between frequencies and the total number of
references. If we use Spearman’s correlation between the frequencies and the
total number of references then the ρ value and the p-value are 0.77 and 0.009
respectively. Hence, the hypothesis 5 is refuted.

According to Table 8 in some cases novel high frequency links are suggested,
which could be tested. For example there are several links with frequency 10 but
with no reference in the literature. New experimental studies are needed to test
these potential novel hypotheses.

7 Discussion and related work

8 Conclusions

We find that machine learning, using A/ILP, produced a convincing food web
from sample ecological data. Many of the important abduced trophic links are
supported either by the literature or the expert knowledge of agricultural ecol-
ogists. This food web representing probabilistic interactions between species
can readily be interpreted by Ecologists and the logical framework for learn-
ing trophic links can be openly discussed, a priori, and the hypothesised links
are not an abstract, statistical product of the data. Two aspects of the use of
A/ILP in this paper are particularly novel. Firstly, unlike previous applications
of A/ILP, the abductive predicate ‘eats’ is entirely undefined before the start of
the learning process. The second novel aspect of the approach relates to the as-
signment of probabilities to hypothetical ‘eats’ facts based on their frequency of
occurrence when randomly sampling the hypothesis space. The resulting proba-
bilistic network is a compact summary of the hypothesis space with a posterior
distribution which could be viewed as a Bayes predictor.The results of cross-
validation tests suggest that the trophic networks with probabilities have higher
predictive accuracies compared to the networks without probabilities. In this
paper we have reported the predictive accuracies for binary classification. How-
ever, we have also used expected utilities implemented as Decision-Theoretic
Logic Programs (DTLPs) [3] for estimating R values (treatment effect ratio as



Freq. 1 Ref. 2 Ref. 3 Ref. Total refs.

1 0 0 0 0
2 0 1 0 1
3 0 0 0 0
4 0 1 0 1
5 0 0 0 0
6 0 0 0 0
7 1 1 0 2
8 0 1 0 2
9 8 3 0 14

10 23 5 3 42

(a)

(b)

Fig. 9. a) Correspondence between the frequencies of hypothetical trophic links, the
number of multiple references and the total number of references in the literature b)
The correlation between frequencies and the total number of references. Spearman’s
correlation ρ value is 0.77 with p-value 0.009.



described in Section 2). Initial results suggest that using probabilities leads to
reduced mean square errors when estimating R values in cross-validation tests.
The probabilistic trophic network together with the expected utility approach
can be viewed as a Decision-Theoretic representation which we call an Acyclic
Expectation Network (AEN). We intend to study different aspects of this repre-
sentation in a follow up paper.

[EXTEND CONCLUSIONS WITH RESULTS ON FUNC. GROUPS] This
is to our knowledge the first time that machine learning and in particular ILP
has been used for the construction of food webs from ecological data. We believe
that this paper represents a major breakthrough for ecosystem and food web
research that will lead to important advances in ecological theory and improved
management of ecosystems under environmental change. We envisage immediate
opportunities to apply this knowledge to optimize the delivery of food and other
ecosystem services from agricultural land.
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