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Abstract. In this paper we present a methodology to estimate rates of
enzymatic reactions in metabolic pathways. Our methodology is based on
applying stochastic logic learning in ensemble learning. Stochastic logic
programs provide an efficient representation for metabolic pathways and
ensemble methods give state-of-the-art performance and are useful for
drawing biological inferences. We construct ensembles by manipulating
the data and driving randomness into a learning algorithm. We applied
failure adjusted maximization as a base learning algorithm. The pro-
posed ensemble methods are applied to estimate the rate of reactions in
metabolic pathways of Saccharomyces cerevisiae. The results show that
our methodology is very useful and it is effective to apply SLPs-based
ensembles for complex tasks such as modelling of metabolic pathways.

1 Introduction

Metabolic pathways can be viewed as series of enzyme-catalysed reactions where
product of one reaction becomes substrate for the next reaction. These pathways
can be branched and interconnected via shared substrates. Quantitative analysis
of enzymatic reactions is very important in biomedical applications, biotechnol-
ogy and drug design. Estimation of reaction rates of enzymes in metabolic path-
ways is a key problem in quantitative analysis and modelling of metabolism.
Behaviour of enzymes in metabolic pathways can be studied using Michaelis-
Menten (MM) framework that is very useful in biological kinetics and pharma-
cokinetics. However information required for MM equation is not easily available
and the application of MM equation is not free from problems [1]. In this pa-
per we present a methodology that applies stochastic logic learning in ensemble
learning to calculate enzymatic reaction rates.

Ensemble methods are state-of-the-art learning algorithms to solving predic-
tion problems. The underlying aim of ensemble methods is to construct a highly
accurate predictor. These methods accomplish this aim by constructing a series
of predictors (models). The final model performs the estimation task by aggre-
gating the estimations of individual models. Bagging [2] and boosting [3] are
the most popular examples of these methods. Experimental results [4–6] have
demonstrated ensemble methods’ ability to generate highly accurate predictors
and their surprising contradiction of Ockham’s razor that give preference to



simple hypotheses over complex ones. In order to understand this phenomenon
ensembles have been analysed as they relate to the margin theory [7, 8]. Ensem-
ble methods have also been analysed in terms of bias (measure of the goodness
of the average predictor’s approximation of the target function) and variance (a
measure of the diversity among the base learning algorithm’s guess) [5]. Bagging
is a variance reduction technique and is very effective for unstable learning meth-
ods. It has also been shown that bias and variance can be expressed in terms
of margin and margin can be expressed in terms of bias and variance [9]. In
this paper we focus on bagging that is particularly useful for unstable predictors
and possess characteristics such as parallelization. Parallelization is particularly
important for stochastic logic learning where run time can be high depending on
the complexity of a problem. These properties make bagging an ideal method to
combine with SLPs.

SLPs [10] are generalisations of Hidden Markov Models (HMMs) [11] and
Stochastic Context Free Grammars (SCFGs) [12]. They were viewed as a com-
pact approach to representing a probabilistic preference function to provide as
a parameter to ILP algorithms. HMMs and SCFGs have been extremely suc-
cessful in sequence-oriented applications in natural language and bioinformatics.
They provide a compact representation of a probability distribution over se-
quences. This contrasts with Bayesian networks, which represent conditional
independences between a set of propositions. It is natural to think of HMMs and
SCFGs as representing probabilities over objects in the domain (Halpern’s type
1 approach from [13]) and Bayesian networks as representing probabilities over
possible worlds (Halpern’s type 2 approach). Learning of SLPs can be viewed
as learning of parameter estimation or structural learning. In this paper we fo-
cus on the parameter estimation task, as we want to study the performance of
SLPs-based ensembles to obtain the rate information of reactions in metabolic
pathways. In order to learn the parameters over SLPs we employed failure ad-
justed maximisation (FAM) as a base learner.

The combination of boosting with Inductive Logic Programming (ILP) has
been pioneered by Quinlan [14]. Recently Dutra et al. [15] have investigated
bagging in Inductive Logic Programming. However ensemble methods have never
been applied in conjunction with SLPs. This is the first combination of ensemble
learning with SLP learning.

We adapt bagging in SLPs to perform rate estimation task in metabolic
pathways. We also present another method, ranbag, to construct an ensemble
by driving randomness into a learning algorithm. Bagging and ranbag obtain
predictors from FAM. The final estimation is obtained by computing the average
of the outputs of all the base predictors. We evaluate SLPs-based bagging and
ranbag to modelling metabolic pathway of Saccharomyces cerevisiae. The results
show that it is useful to apply ensembles for learning SLPs to modelling metabolic
pathways.

The paper is organised as follows. A brief overview of metabolic pathways
has been given in Sect. 2. Section 3 explains SLPs and FAM. In Sect. 4 we have
described bagging and ranbag. Section 5 explains experimental results.
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Fig. 1. Illustration of Cell with metabolic network involved in converting growth media
into molecules essential for life.

2 Metabolic Pathways

Genomic data is now being obtained on an industrial scale. Complete drafts
of the human genome were published during 2001 [16, 17]. Projects are under
way to sequence the genomes of the mouse, rat, zebra fish and puffer fishes T.

nigoviridis and Takifugu rubripes. The focus of genome research is moving to
the problem of identifying the biological functions of genes. An application of
inductive logic programming to functional genomics is described in [18].

Figure 1 illustrates the way in which a network of metabolic reactions within
a cell convert a growth medium (input compounds) into molecules, which are
essential for life (output compounds). Each intermediate compound (associated
with nodes of the graph) is known as a metabolite and each metabolic reaction is
mediated by an enzyme (arcs in the graph). Presently not all enzymes involved
in metabolic reactions are known. Online databases such as KEGG1, WIT2 and
BRENDA3 describe relationships between tens of thousands of enzymes. Mea-
suring the rates of catalysed reactions can identify enzymes. Michaelis-Menten
(MM) framework can be used to estimate reaction rates of enzymes. In order
to compute these rates, using MM equation, information can be obtained from
online database discussed above. These databases may not contain all the re-
quired information. Alternatively enzyme kinetics can be studied using learn-
ing techniques such as SLPs-based bagging and ranbag. SLPs provide an ideal
representation for such data as rates can be viewed as probabilities, which can
capture rates as proportions. In this way, the rates of enzymatic reactions can be
estimated by computing the parameters over SLPs. In other words SLPs-based
ensemble methods provide an efficient way to study enzyme kinetics.

Metabolic pathways have been studied using mathematical models that com-
prise sets of ordinary differential equations (ODEs). ODEs model the dynamic
proprieties of enzyme-catalysed reactions. There exist simulation tools for ODE

1 http://www.genome.ad.jp/kegg/
2 http://wit.mcs.anl.gov/WIT2/
3 http://www.brenda.uni-koeln.de/



SLP eg.

Labelled Definite Clause 0.3: like(X,Y) ← pet(Y,X)
Labelled Program (impure) 0.3: proteinfold1(X) ← ..

0.3: proteinfold2(X) ← ..

Labelled Program (normalised) 0.5: coin(head) ←
0.5: coin(tail) ←

Fig. 2. Syntax for SLPs

cellular modelling. Gepasi [19] and DBsolve [20] are example of such simula-
tion software. In order to handle non-deterministic characteristics of biological
system, stochastic techniques such as Next Reaction Method [21] have been de-
veloped. In order to apply learning methods such as bagging and ranbag to ODE
models or stochastic models, we need base learner that can learn these models.
Once a sequence of ODE models or stochastic models is obtained from base
learner, bagging-based methods can be applied to generate the final model. The
final model that is a combination of individual ODE models or stochastic models
can have a higher accuracy than any of the individual base models.

3 Stochastic Logic Programs for Biological Domains

Stochastic logic programs (SLPs) extend standard logic programs in order to
represent probabilistic knowledge. SLPs have also been used to provide distribu-
tion for sampling the data [22]. In this way the application of SLPs are twofold,
they not only provide a way for efficient sampling but also represents complex
uncertain knowledge.

Syntax for SLPs: An SLP is a definite labelled logic program. In an SLP
all or some of the clauses are associated with probability labels (parameters)
and is known as pure SLP or impure SLP respectively. An SLP is said to be
normalised if label of the clauses with same predicate symbol in the head sum to
one and unnormalised otherwise. Formally an SLP S is a set of labelled definite
clauses p : C where p ∈ [0, 1] is a probability label or parameter and C is a range-
restricted definite clause. In this way an SLP provides an efficient representation
to model metabolic pathways, where the set of clauses can describe enzymes
and probability labels depict rates of reactions in metabolic pathways. Figure 2
shows the syntax of SLPs.

Semantics for SLPs: The semantics for SLPs is illustrated in Fig. 3. SLPs
have a distributional semantics, that is one, which assigns a probability distri-
bution to the atoms of each predicate in the Herbrand base of the underlying
(unlabelled) logic program. An interpretation M is a model of an SLP S if all
the atoms a have a probability assigned by M which is at least the sum of the
probabilities of derivations of a with respect to S.

Proof for SLPs: Figure 4 shows proofs for SLPs. Probabilities are assigned
to atoms according to an SLD-resolution strategy which employs a stochastic se-



SLP eg.

Distributional 0.3: p(a) ..
Interpretation 0.4: q(a) ..

Distributional 0.3: p(a) ..
Model 0.3: q(a) ..

P |= Q 0.3: q(a),
1.0: p(X) ← q(X) |= 0.3: p(a)

Fig. 3. Semantics for SLPs

lection rule. Derivations can be viewed as Markov chains in which each stochastic
selection is made randomly and independently. Thus the probability of deriving
any particular atom a is the sum of products of the probability labels on the
derivations of a.

Failure Adjusted Maximization (FAM)- An Example of Learning Meth-
ods for SLPs .

Expectation Maximization (EM) [23] is a well-known maximum likelihood
parameter estimation technique. EM is an iterative algorithm that performs the
parameter estimation task from incomplete data. Failure adjusted maximization
(FAM) [24] uses EM algorithm to compute maximum likelihood estimates for
pure, normalised SLPs. In order to apply EM algorithm for parameter estimation
task a complete dataset of atoms has its natural representation as incomplete
dataset of atoms. A set of atoms yielding the refutation from a complete dataset
of derivations makes an incomplete dataset of atoms.

Given a logic program and a set of initial (prior) parameters FAM computes
the maximum likelihood estimates in a two step (expectation step and maximiza-
tion step) iterative learning process. In the expectation step FAM computes the
weighted contribution of the clause to deriving a data point and weighted con-
tribution of the clause due to failed derivation. In the maximization step the
contribution of the clause is maximised. The value associated with each clause
is normalised and becomes an input for the next iteration of FAM. In this way,
at each iteration FAM improves the current estimates of the parameters. This
process is repeated till convergence. In this paper we applied FAM as a base
learner to compute the reaction rate of metabolic pathways.

SLP eg.

SSLD derivation {0.3: q(a),
1.0: p(X) ← q(X) } refutes goal 0.3: ← p(a)

Fig. 4. Proof for SLPs



Require:
Learning Set: L = {x1, , . . . , xn} where xi ∈ X.
A base learner that takes an underlying logic program representing enzymes in a
metabolic pathway and a set of prior parameters that gives an initial guess of the
rates of enzyme-catalysed reactions.
for t = 1 to T do
/* Generate bootstrap sample LB from a learning set L */
/* Call the base learner with underlying logic program LP and prior parameters P0.
Set the prior parameters according to uniform distribution */
ht = BL(LB, LP, P0)
end for
/* The bagged estimation is */

hbag =
1

T

PT

t=1
h(P̂ )i

Fig. 5. Bagging for rates estimation in metabolic pathways

4 Bagging and Variants

Ensemble methods such as bagging and ranbag work by repeatedly calling a base
learner to produce a series of predictors. The final predictor is a combination
of individual predictors and generally has a higher accuracy than any of the
individual base learners. Although this higher accuracy is due to uncorrelated
errors among the base predictors, the following factors also contribute to the
success of the ensemble methods. 1) The base learner is too simple (weak) to
generate a hypothesis with low error. A predictor that is a combination of these
hypotheses can have high accuracy. 2) The base learner is unstable such as
decision trees, neural network, an inductive logic programming algorithm and
a learning algorithm for SLPs. For an unstable base learner a small change
in the learning set significantly affects the generated predictor. 3) The base
learning algorithm suffers from some problems (employing search strategies that
are not good enough to select a good hypothesis) that can be overcome using a
combination of predictors generated by these learning algorithms.

We can view the learning process of bagging and ranbag as comprising two
stages. In the first stage base predictors are generated and in the second stage
these predictors are combined.

Bootstrap Aggregating (Bagging): We now describe how we have adapted
bagging for learning the parameters over SLPs to modelling metabolic pathways.
Bagging is based on the idea of resampling and combining. In order to obtain
a predictor from the base learner, bagging provides the base learner with boot-
strap replicates [25] of the learning set. A bootstrap replicate is constructed by
randomly drawing, with replacement, n instances from the learning set of size
n. These instances are drawn according to a uniform distribution that is kept
on the learning set. The bootstrap replicate may not contain all of the instances
from the original learning set and some instances may occur many times. On av-



Require:
Learning Set: L = {x1, , . . . , xn} where xi ∈ X.
A base learner that takes an underlying logic program and a set of prior parameters.
for t = 1 to T do
/* Set the prior parameters Pt according to random distribution.
/* Call the base learner with underlying logic program LP and prior parameters Pt.
ht = BL(LB, LP, Pt)
end for
/* The final estimation is */

hranbag =
1

T

PT

t=1
h(P̂ )i

Fig. 6. Ranbag for the estimation of the rates of enzyme-catalysed reactions

erage bootstrap replicate contain 63.2% of the distinct instances in the learning
set.

Pseudocode for bagging is given in Fig. 5. As input, bagging requires a learn-
ing set L of instances of the form L = {x1, . . . , xn}. The instances are generated
independently and identically according to the probability distribution D. In our
setting, the learning set contains all the information that is required to measure
the reaction rates of enzymes. In order to estimate these rates NMR or mass
spectrometric data can be used as learning set. Alternatively an SLP represent-
ing metabolic pathway can be used to generate a learning set.

As described, bagging calls learning algorithm BL for T number of times. In
order to perform rates estimation a learning algorithm such as FAM is specified.
FAM is provided with a bootstrap sample LB , an underlying logic program and
a set of prior parameters (initial guess). Note that the prior parameters are
set according to a uniform distribution. For a particular bootstrap sample the
estimated parameters (predictions) are denoted by h(P̂ ). This process of drawing
a bootstrap sample and obtaining predictions is repeated for T times. The bagged
prediction is obtained by computing the average of the outputs of all the base
predictors. The bagged estimation for ith parameter is hbag = 1/T

∑T

t=1 h(P̂ )i.

Random Prior Aggregating (ranbag): In order to find out the reaction
rates of enzymes in a metabolic pathway we introduce, ranbag, a variant of
bagging. Ranbag performs the rates estimation task by driving randomness into
FAM. In this ways ranbag is based on the idea of combining a set of diverse
predictors. In order to obtain these predictors the prior parameters of FAM
are set randomly. The obtained base predictors can be substantially diverse
as FAM depends on the selection of prior parameters. Pseudocode for ranbag
is given in Fig. 6. As described, ranbag requires a learning set L and a base
learner that takes a set of prior parameters and underlying logic program. Let
the learning set L represents the data containing the information required to
calculate reactions rates of enzymes and the logic program LP is a set of clauses
where each clause represents an enzyme. Let the prior parameters provide the
initial guess for reaction rates. Ranbag calls learning algorithm BL such as FAM,



for T number of iterations. At each iteration FAM is provided with same learning
set L, and underlying logic program but prior parameters Pt are set randomly.
The estimated parameters (predictions) are denoted by h(P̂ ). This process of
setting the prior randomly and obtaining predictors is repeated for T times.
The final estimation is obtained by computing the average of the outputs of
all the base predictors. The final estimation for ith parameter is hranbag =

1/T
∑T

t=1 h(P̂ )i.

5 Experimental Analysis

In this section, we describe a series of extensive and systematic experiments.
We empirically evaluated bagging and ranbag to calculate the rates of enzyme-
catalysed reactions in metabolic pathways.

Datasets We applied bagging and ranbag to modelling aromatics amino acid
pathway of Saccharomyces cerevisiae (baker’s yeast, brewer’s yeast) [26]. We
compared modelling performance of bagging with ranbag’s performance. Fig-
ure 7 shows the aromatic amino acid pathway of yeast. SLPs naturally represent
metabolic pathways as they can capture the rate information by way of proba-
bilities (parameters over SLPs). We used the implementation of FAM available
at4. The metabolic pathways have been represented by an SLP comprising of
21 stochastic clauses. Each clause of SLP provides the probabilistic information
about the occurrence and non-occurrence of a reaction. In this way an SLP repre-
sents a metabolic pathway and tell the reactions’ rates. Furthermore, modelling
performance of bagging and ranbag has also been evaluated where a branch has
been added in the metabolic networks. A branching metabolic networks is ob-
tained by adding a branch in the same metabolic pathway (shown in Fig. 7).
This phenomenon provides us with a new SLP.

As discussed, SLPs provide an efficient way for sampling the data, we gener-
ated the data using SLPs for both the chain and branching metabolic pathways.
In our experimental setting the two SLPs represent chain and branching scenar-
ios and two datasets are generated using these SLPs. These dataset hereafter
are referred to as Chain dataset (non-branching metabolic network) and Branch
dataset (branching metabolic network).

Experimental Methodology Bagging and ranbag obtain base predictors from
an SLP learning algorithm, FAM. The coordinates described below can control
the performance of FAM and ensembles.
Convergence criteria: FAM allows specifying the convergence criterion. We
set it the log likelihood.
Prior: This corresponds to prior (initial) parameters of FAM. The prior param-
eters can be set randomly or uniformly. We set the prior parameters of FAM

4 http://www-users.cs.york.ac.uk/˜nicos/sware/
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Fig. 7. The aromatic amino acid pathway of yeast. A chemical reaction is represented
by a rectangle with its adjacent circles where rectangles represent enzymes and circles
represent metabolites. In this figure metabolites are labelled by their KEGG accession
numbers and enzymes by the EC number.
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Fig. 8. MSE for non-branching metabolic pathway.

according to a uniform distribution for bagging. The prior has been set accord-
ing to random distribution for ranbag.
Stopping criterion: In bagging and ranbag we specify the number of base
models T . We set the number of models T to 100.
As part of our experimental methodology we sampled chain and branch dataset
where each dataset comprising of 1000 instances. The experiments were per-
formed 10 times using 10 different sets of chain and branch data.
Evaluation measure: We used mean squared error (MSE) and Kullback-Leiber
(KL) divergence performance measures to estimate the goodness of bagging and

ranbag. MSE is given by, MSE =
P

N

i=1
(pi−p̂i)

2

N
, where pi are the parameters

need to be estimated and are termed the true parameters and p̂i are estimated
parameters and N is the total number of parameters. KL divergence to true
parameters is given by KL =

∑
i pi log(pi

p̂i

)

Results Figure 8 through figure 11 show the results of the experiments. Figure 8
and figure 10 represent the MSE for non-branching and branching metabolic
pathway. Figure 9 and figure 11 show the KL divergence to true parameters.
The results are averaged over 10 runs of the method. These figures demonstrate
how the solution improves with iterations. The performance of bagging and
ranbag varies by combining models or predictors. The results show that KL
divergence to true parameters and MSE drops to a minimum value by combining
a number of diverse models. In other words bagging and ranbag improves the
performance of an SLP learning algorithm. The results are described in detail
in next paragraphs.
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Fig. 9. KL divergence for non-branching metabolic pathway.

We first consider the non-branching metabolic pathway (chain dataset). The
average error for a single model is 0.17% for bagging and 0.29% for ranbag. The
results show that both bagging and ranbag improves the performance. Average
error for bagging is 0.12% and average error for ranbag is 0.14%. The curves
show that both bagging and ranbag achieve substantial improvements. Bagging
obtains the improvements within first 15 iterations and ranbag achieves the max-
imum gain by combining 70 models. The curves also show that after some initial
iterations there is no significant improvement in the performance of bagging but
ranbag does not show this phenomenon. Figure 9 tells the KL divergence to
true parameters for bagging and ranbag. The curves validate the effectiveness of
bagging and ranbag to modelling metabolic pathways.

Our observation is that we can learn substantially diverse models by setting
the priors of FAM randomly. Our second observation is that by increasing the
number of iteration, error for ranbag and bagging decreases reaching a mini-
mum and becomes stable. In this way, we obtain substantial gain using bagging
and ranbag as compare to single model. In terms of KL divergence and MSE
bagging shows better performance than ranbag. It is worth noting that average
error for individual models for ranbag is considerably higher than the average
error for individual models for bagging. It seems that FAM displays a bias in
favour of uniform prior. Bagged model has been constructed by setting the prior
parameters of FAM according to a uniform distribution whereas prior has been
set according to a random distribution for ranbag. Hence, bagging achieves bet-
ter modelling performance than ranbag due to FAM’s bias in favour of uniform
prior.
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Fig. 10. MSE for branching metabolic pathway.

We now describe the results for branching metabolic pathway (branch dataset)
for bagging and ranbag. We study the behaviour of bagging and ranbag in con-
junction with FAM in a scenario where an alternative path has been added to
a pathway. Figure 10 shows MSE for bagging and ranbag. The average MSE for
single model for bagging is 0.85% and 1.5% for ranbag. Average error for bagging
is 0.81% that is obtained by combining 25 models. Ranbag obtains minimum av-
erage MSE of 0.9%. The results show that bagging improves the performance
of a single model but the improvement is not substantial. Success of bagging-
based methods depends on the fit of the style of the function with the particular
data and base learner. It seems that bagging is unable to achieve substantial im-
provement in performance due to underlying SLP where dataset has also been
generated using SLP. The average MSE for ranbag is substantially better than
the average MSE for a single model for ranbag. However average MSE for ranbag
is not better than the average MSE for single model for bagging. As discussed
in the preceding paragraph FAM’s bias in favour of uniform prior seems a cause
of the occurrence of this phenomenon. Furthermore, underlying SLP can also
account for this phenomenon. Ranbag’s performance can be improved by select-
ing individual models on the basis of some statistical test. Figure 11 represents
KL divergence to true parameters for bagging and ranbag. Average KL diver-
gence for single model is 0.81% for bagging and 1.4% for ranbag. Bagging and
ranbag substantially minimises KL divergence to true parameters. Average KL
divergence for bagging is 0.72% and 0.79% for ranbag.

The results demonstrate the effectiveness of ensemble methods. Sometimes
we obtain only a modest gain applying bagging in conjunction with FAM. This
happens especially for MSE. The parameter learning process of FAM is influ-
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Fig. 11. KL divergence for branching metabolic pathway.

enced by the underlying SLP. It seems that FAM’s ability to learn good starting
model due to underlying SLP, and FAM’s bias in favour of uniform prior account
for the modest gain for particular dataset. In summary it is effective and efficient
to apply bagging and ranbag to modelling metabolic pathways.

6 Conclusion

Bagging is a useful learning technique especially for unstable predictors. This
paper presents a novel study of SLPs-based ensemble methods and addresses an
important problem of modelling metabolic pathways. We have focused on the
parameter estimation task over SLPs as reaction rates of enzymes in metabolic
pathways can be computed by estimating the parameters over SLPs. We have
shown how bagging can be adapted to perform maximum likelihood parameter
estimation task. We have also shown that an effective ensemble can be con-
structed by driving randomness into an SLP learning algorithm. The empirical
results demonstrate the efficacy of these methods and show that bagging and
ranbag obtain substantial gain in performance. In terms of KL divergence and
MSE these techniques show sizeable improvements in performance.

Deterministic models (such as ODE models) and stochastic models are popu-
lar for cellular modelling. We believe that application of bagging-based methods
to ODE models and stochastic models will be effective and efficient. We are look-
ing at the ways to develop base learners to learn ODE models and stochastic
models and to apply them in conjunction with bagging-based methods.

SLPs provide an efficient representation for metabolic pathways where each
clause of an SLP contains probabilistic information about enzyme-catalysed re-



actions. One of the important issues to be addressed in our future work is to
learn really unknown parameters. In order to capture enzymatic reaction rates
each clause of an SLP can be augmented by incorporating temporal information.
One way to capture temporal dimension in stochastic logic framework is to add
an expression specifying time as an argument in each clause of an SLP.
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