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Abstract

There is increasing interest within the Machine Learning commu-
nity in systems which automatically reformulate their problem rep-
resentation by defining and constructing new predicates. A previous
paper discussed such a system, called CIGOL, and gave a derivation
for the mechanism of inverting individual steps in first order resolution
proofs. In this paper we describe an enhancement to CIGOL’s learn-
ing strategy which strongly constrains the formation of new concepts
and hypotheses. The new strategy is based on results from algorithmic
information theory. Using these results it is possible to compute the
probability that the simplifications produced by adopting new concepts
or hypotheses are not based on chance regularities within the exam-
ples. This can be derived from the amount of information compression
produced by replacing the examples with the hypothesised concepts.
CIGOL’s improved performance, based on an approximation of this
strategy, is demonstrated by way of the automatic “discovery” of the
concept of radiation. This example also demonstrates CIGOL’s abil-
ity to ignore irrelevant background knowledge and deal with multiple
interacting concepts.
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strator project and a grant from the US Army Research Institute for the Behavioural
and Social Sciences through its European Research Office, London, England, Contract no.
DAJA45-86-0047.



1 Introduction

A concept can only be learned if it can be represented. More than this,
an appropriate representation language facilitates a simple and elegant de-
scription of a target concept. In [17] we describe a system called CIGOL
which automatically develops its own representation language in order to
efficiently represent target concepts. Initially CIGOL is provided with per-
tinent background knowledge in the form of Horn clauses in first order logic.
CIGOL is then presented with a sequence of ground unit clauses, represent-
ing positive instances of the target concept. Following the presentation of
each example CIGOL presents the user with a sequence of hypotheses which
take one of two forms: either “Is X true?” or “What shall I call the following
concept?”. The first type of question involves a generalisation which could
be used to derive previous examples. Note that each negative response from
the user adds a neagtive instance to CIGOL’s “training set” which other-
wise would consist solely of positive instances. The second type allows the
introduction of new relational predicates which enable the target concept
to be represented more efficiently. Since these forms of generalisation are
chained together, the introduction of a new predicate is typically followed
by further generalisation and/or decomposition into related sub-concepts.

The generality of the approach used allows CIGOL to exhibit a number
of facets of Machine Learning. Thus CIGOL can be classed with systems
which carry out

1. inductive concept formation such as [11, 21]
2. constructive induction such as [22, 13]
3. discovery such as [10, 9, 6]

4. generalisation of single examples using background knowl-
edge such as [5, 15, 24]

Unlike most learning systems described in the literature CIGOL uses an
unrestricted form of first order Horn clause logic which allows predicate re-
lations to take not only variables and constants as arguments but also com-
plex terms. This allows CIGOL to learn not only simple structural concepts,
but also more complex program fragments. The various hypothesis forming
mechanisms employed by CIGOL are based on inverting individual steps of
a resolution proof. This approach is a generalisation of the approaches used



by Sammut and Banerji [24], Muggleton [16] and Banerji [1]. Other strongly
related work in progress can be found in Wirth [27] and Wrobel [28].

In [17] we provided a derivation for the inverse resolution operators em-
ployed by CIGOL but to a large degree left open the question of strategy
of operator application. The result was that CIGOL as described in [17]
proposed a number of irrelevant and uninteresting hypotheses based on the
discovery of chance and unimportant regularities within the presented ex-
amples. In this paper we describe a formal framework for a strategy of
operator application aimed at avoiding the generation and testing of un-
interesting hypotheses. The strategy is based on results from algorithmic
information theory[4]. The minimal bit size difference criterion unifies what
are usually perceived as two different kinds of inductive gain. The gain
which is produced by increasing the cover of a concept and the store-cost
gain involved in simplifying the decription of the concept, possibly involv-
ing decomposition into simpler sub-problems. An approximation to the new
strategy has been incorporated into a new version of CIGOL. Sample results
of the improved behaviour of CIGOL are included for a discovery problem
from Francis Bacon’s Novum Organum.

2 Generality and inverse resolution

Using standard notation from logic one can define the generality relation
between well-formed-formulae F; and F5 as follows

Fy is more general than F, iff F; F F,

where F; F F5 should be read as “F} entails F5” or alternatively “F5 is
provable from F1”. Note that this simple definition allows us not only to
compare the relative generality of atomic formulae and clauses but also the
same relationship for arbitrary pairs of theories (sets of clauses). Buntine
[3] describes an algorithm aimed at computing this generality relationship
which he terms “generalised subsumption”. For a fuller discussion of the
subject of generality the reader is referred to Niblett [18]. Following Plotkin
[19] we may more precisely define the setting of inductive learning using the
following relationship

INBANHFET (1)

where 1 is background knowledge which is not pertinent to the present learn-
ing problem, B is background knowledge which is pertinent to the problem,



H is an hypothesis consisting of one or more clauses and E* is a set of pos-
itive examples. In addition, if £~ is a set of negated formulae representing
counter-examples then we can guard against over-generalisation by ensuring
that I A B A E~ A H is not unsatisfiable, i.e. self-inconsistent. The explicit
definition of the inductive setting described by (1) allows us to both pose
and answer the following questions concerning the approach to learning em-
bodied in CIGOL. Since this setting is analogous to both scientific theory
formation and automatic program construction the author will indulge in a
certain amount of mixed metaphor in the following discussion.

Question 1 How can we construct H given I, B, and E*?

Answer: All methods outside enumeration and testing of H rely on applying
efficient “generalisation operations” which incrementally construct H from
B and ET. Michalski [12] notes that these generalisation operations can
be based on reversing the deductive rules of inference which allow us to
derive ET from B and H. Michalski’s INDUCE system uses the inversions
of a wide variety of deductive rules of inference. However, we note that
this is somewhat analogous to the position in theorem proving before the
introduction of the universal rule of deductive inference known as resolution
[23]. The thesis behind CIGOL is that appropriate inversions of resolution
provide an efficient, sufficient and complete mechanism for the inductive
setting described by (1).

Question 2 Given that the predicate vocabulary used in ET and E~ might
reasonably be limited to the “observation language” of experimentation and
measurement, how do we develop a “theoretic language” of predicates which
cannot be directly observed?

Answer: Clearly the theory described by B and H can in principle con-
tain predicates which, although relevant to the entailment of the observa-
tions E* and E~, are not expressed in the vocabulary of Et and E~.
In CIGOL this “theoretic vocabulary” is introduced via the “W” operator
(Intra-construction) (see [17]) and generalised and integrated into B using
the “V” operator (Absorption).

Implementation details relating to answers 1 and 2 are given in [17].
However, familiarity with practical implementation details and the methods
of scientific investigation would suggest that we must at least address the
following additional questions.

Question 3 How do we effectively constrain the generation of possible hy-
potheses H?



Question 4 How can we judge our confidence in any particular H?

Question 5 What is the criterion for distinguishing between the relevant
background knowledge B and irrelevant background knowledge 17

In the following sections we discuss possible approaches to answering ques-
tions 3-5.

3 Search strategies and algorithmic information

3.1 Version spaces

In [14] Mitchell describes a general search strategy for inductive inference,
known as the “Version space” approach. This method involves the mainte-
nance of two sets, S and G. These sets represent respectively the least and
most general hypotheses which are consistent with the examples so far. The
idea is that as increasing numbers of examples are presented the space of
plausible hypotheses defined by S and G converges in the limit to a singleton.
At this point the system can be said to have recognised the concept.

Might this simple and attractive technique be adapted to the purpose of
guiding the search in CIGOL? The answer is “no” for the following reasons.
In Mitchell’s description, hypotheses are single clauses constructed from a
fixed language and containing no terms as arguments other than variables
and constants. The generality relationship for Version spaces can be defined
by saying that clause C is more general than clause D whenever C - D (see
section 2). This generality relationship induces a finite lattice over the space
of hypotheses, an essential pre-condition for the Version space approach to be
effective. CIGOL has a less restricted form of hypothesis language consisting
of arbitrary sets of Horn clauses. In this case the generality relationship for
hypotheses becomes: theory 77 is more general than theory 75 whenever
Ty F T, (section 2). This relationship induces an infinite lattice over first
order Horn clause theories. Moreover, although top and bottom of the lattice
can be defined by theories which are equivalent to the empty clause (the
logical constant false) and the empty theory (true) respectively, according
to Plotkin [19] there exist infinite length ascending and descending chains
of generality within this lattice. Clearly this indicates that irrespective of
considerations of computational efficiency, a Version space search could not
be expected to converge within such a lattice. We must therefore look to
some alternative model to guide and constrain the search through this more
complex lattice.



3.2 Algorithmic information theory

Following the lead of Kolmogorov [8] various information theorists [4, 26, 2]
have investigated the relationship between computation, randomness and
message complexity. The basic intuition rests on the observation that al-
though the strings

010100110111001100010110101100 and
010101010101010101010101010101

have approximately the same Shannon information content [25], the second
contains a higher degree of regularity than the first. As an alternative to
standard information measures Kolmogorov defined the algorithmic infor-
mation of a finite string s as being equal to the bit length of the minimal
Universal Turing machine program s* which generates precisely s as output.
Thus long regular strings have lower Kolmogorov information than strings of
the same length which have no regularity. In addition, Kolmogorov defines
a random string to be one which cannot be compressed by being encoded as
a program for a reference Universal Turing machine.

By definition, inductive construction of first order theories involves a
form of information compression. This follows from the fact that most
finitely expressible first order theories entail an unbounded set of instances.
Moreover, inductive inference from a finite set of examples can never be car-
ried out with absolute confidence. However, we feel increased confidence in
hypotheses that cover increasing numbers of examples. We will now attempt
to formalise the notion of confidence in hypotheses directly with respect to
compression of information.

3.3 CIGOL hypotheses and chance regularity

For the reader’s convenience we provide a proof sketch for the following
theorem and corollary from algorithmic information theory [4].

Theorem 1 Let X, be the set of all binary strings of length n, T, be an ar-
bitrarily chosen reference Turing machine and the k-bit-compressible strings
of length n, Ky 1, be defined as {y :y € ¥,z € Xy, T, (x) = y}. The set
K, has at most 2n—kelements.

Proof Since Turing machines are deterministic 7, either induces a par-
tial one-to-one or many-to-one mapping from the elements of 3, _j to the
elements of K, . Thus |K, x| < |Sp_g| =2"7%. O



Corollary 2 The probability of a binary string generated by tossing an un-
biased coin being compressible by k bits using any Turing machine T, as a
decoding mechanism is at most 27%.

Proof Applying theorem 1, the proportion of randomly generated strings
which are compressible by k bits is at most 2"7%/2" = 27%, O

Note that T, is merely used here for decoding compressed strings. In
addition these results hold irrespective of the choice of T}.. As mentioned in
the previous section information theory defines the absolute information of a
string by making use of the special case in which 7} is a reference Universal
Turing Machine. However, this is immaterial to the present discussion since
the discovery of such a minimal-length encoding is an undecidable problem
[4]. On the other hand, clearly the mere compressibility of a string relative
to a particular decoding machine which is known to halt on all inputs s
decidable.

Now consider again the inductive setting described by

INBANHFET

Within CIGOL, background knowledge is built up incrementally. Imagine
that the theory P is built entirely on the basis of examples. Though some
of P will be irrelevant to some examples, we can view P as being a single
hypothesis which entails the examples. Thus

P+ET

Of course an inductive agent cannot know the origin of the examples E*.
When evaluating the results of experimentation one generally makes use of a
null hypothesis, H, which is the negative of the hypothesis, 7, being tested.
By refuting H one demonstrates the plausibility of . In our setting we
might take the null hypothesis to be that every bit in the encoding of the
examples E+ was produced by tossing a coin. Note that # is an hypothesis
about an hypothesis. We can find an upper bound on the probability of the
null hypothesis using corollary 2 by defining a reference Turing Machine T
which, given an encoded version of P as input generates an encoded version
of ET as output. Thus

T,(I(P)) = O(E") @)

where I(P) is an input tape encoding of P, O(E™) is an output tape en-
coding of E* and I(P) is k bits shorter than O(E™). The machine 7, will
be described in the next section. We will use X to denote the statement



that there exists such a k-bit compressed explanation I(P) of O(E™). Now
according to corollary 2
Pr(Xgy|H) <27*

We will use the probability of X} given that the null hypothesis was true as
a measure of our confidence that the compression produced by accepting P
is not based on the discovery of chance regularities within E*. This is
Pr(XpH) = 1-p(XilH)
> 1-27% (3)

Example 1 Let O(E™) be 110 bits long and I(P) be 100 bits long. Then

PT‘(T]J%) > 1-— 9100110
> 1-—1/1024
> 0.999

Note the following intuitively appealing features of (3) as a measure of hy-
pothesis confidence. Firstly, Pr(Xy|H) is only well defined as a probability
when k is positive, i.e. we can only have confidence in a theory which is less
bulky than the facts on which it is based. Secondly, for all finite values of
k Pr(Xg|H) is less than 1, i.e. no matter how many facts are covered by
a theory, we can never have total confidence in it. Thirdly, an increase in
k when it is already large provides only a small increase in Pr(X|H), i.e.
there are diminishing returns in the confidence inspired in a theory involved
in showing that it covers an increasingly large number of facts. All of these
are standard assumptions within the philosophy of science [20].

It is now necessary to describe in more detail the reference Turing ma-
chine T, and its input and output tape encodings I and O.

3.4 Encodings and the compression model

First an efficient Turing tape encoding M for any logical expression, S is
described. The encoding M should be efficient in the sense that almost any
tape encoding should correspond to a particular logical expression and vice
versa. This is necessary for testing  since we do not want to introduce
the possibility of spurious compressibility due to inefficient encoding of the
examples.

A set of Prolog clauses can be coded as a single logical expression, using
list concatenation symbols as necessary to separate clauses. One such coding



might be to use a standard prefix coding !, such as Huffman codes, for
coding each function symbol and variable, and write the expression on the
tape using reverse polish notation. Reverse polish allows us to ignore the
requirement for bracketting and separators.

Let sym(S) represent the combined set of variables and function symbols
of given arity within S and let N be the sum of the frequencies of occurrence
of elements of sym(S) within S. Now if we write the relative frequency of
occurrence of symbol s in S as ps then, ignoring the length of the prefix
table, M(S) has a length of

[M(S)|~N Y —pslog,p, bits
sesym(S)

according to Shannon information theory. There is obviously a similarity
here to the entropy function used in ID3 [21], which should not be surprising
given the common basis in information theory.

Example 2 Let S be [crow(harry), (black(X) :- crow(X))]. Then sym(S)
is {’:-7/2, .°/2, crow/1, black/1, X/0, harry/0, []/0}, N = 10 and the
corresponding relative frequencies are <0.1, 0.2, 0.2, 0.1, 0.2, 0.1, 0.1>.
Thus | M(S)] ~ 10(4 x 0.1 x 3.3 + 3 x 0.2 x 2.3) = 27 bits.

Clearly we can use M as the output tape encoding function O described in
the previous section, rewriting (2) as

T,(I(P)) = M(E")

Could we also use M as the input tape encoding function 1?7 In fact we
cannot, since the logic program P does not contain sufficient information
to describe which particular instances it was derived from. Thus in general
there is no Turing machine which could take an encoding of an arbitrary
logic program P and print out the set of instances E+ from which P was
derived. This leaves us in a predicament as to how to represent this addi-
tional information for the purposes of our model of hypothesis confidence.
The following is a possible solution. Devise a numbering scheme for all
instances entailed by P. Now append the numbers corresponding to the
particular examples in ET onto the encoded description of P to make I(P).
Such a numbering scheme is called a Godel numbering after [7]. A natural

! Prefix codes are variable length bit patterns used to encode the symbols in a message.
Efficient coding schemes allow one to encode each symbol in close to the optimal of —log,p
bits per symbol, where p is the relative frequency of the symbol within the message.



numbering scheme that suggests itself is to consecutively number the unit
clauses in order of their first appearance within the levelwise expansion of the
resolution universe, R*(P) [23]. The levels of R*(P) are defined as follows

RY(P) = P
RY(P) = R"YP)u{C:Ci,Co e R"(P),
C is the resolvent of C; and Cs}

R*(P) is simply the closure R°(P) U R'(P)... We will use unit(i, P) to
denote the ith unit clause 4 in this enumeration. However, this numbering
scheme is still not adequate for the purpose since R*(P) does not contain
all the ground unit clauses entailed by P. However, it is straightforward to
show that for every ground unit clause L entailed by P there is a unit clause
L' in R*(P) and a substitution # such that L = L'f#. Thus our input tape
encoding I can simply be as follows

I(P) :M(< P,ui,01,...,u,,60, >)

where unit(u;, P)6; is the ith example from E+, and M is used to encode
the entire expression < P, uq,... >.

We are now in a position to calculate the lower bound on hypothesis
confidence expressed in inequality (3) of the previous section.

Example 3 Let Et = {crow(tom), crow(dick), crow(harry), crow(janis)}
and P = {crow(X)}. Now I(P) = M(<[crow(X)], 0, (X/tom), 0, (X/dick),
0, (X/harry), 0, (X/janis)>). Computing encoding lengths in the fashion
demonstrated in example 2 we find that |[M(E™)| = 32 bits while |I(P)| =~ 65
bits. Thus since the encoding for the hypothesis is longer than the encoding
of all of the examples we can attribute no confidence to the hypothesis.

Example 4 Let E* = a(b(c(d(e(f(g(h))))))), a(b(c(d(e(f(9(i))))))), a(b(c(d(e(f(9(i)))))))
and P = a(b(c(d(e(f(9(X))))))). In this case |M(E*)| = 96 bits and |I(P)|

= 78 bits. Substituting these values into (8) produces a confidence of at least

1 —272 = 0.9999999, i.e. virtual certainty that the compression produced

by accepting the hypothesis is not accidental.

Examples 3 and 4 demonstrate an important point regarding the trunca-
tion operator within CIGOL. In the version of CIGOL described in [17]
hypotheses were preferred entirely on the basis of textual simplicity. As a
result, the learning sessions demonstrated that CIGOL had a strong ten-
dency to overgeneralise when applying the truncation operator. Since this
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operator merely replaces terms by variables, the most preferred description
is bound to be the most general, such as member(X,Y). However, since
simplicity seemed to be a powerful heuristic for all other cases, it seemed
arbitrary to use a different heuristic for this special case. As examples 3
and 4 demonstrate, the confidence bound described by (3) produces a much
more satisfactory result, and clearly distinguishes between generalisations
based on weak and strong similarities respectively.

In summary, the reader should note that the new strategy is based on pre-
ferring inverse resolution operators on the basis of their abilities to shorten
the minimal acehivable encoding of the examples.

4 Example sessions

Francis Bacon’s Novum Organum (1620) is an early but thorough exposition
of what is now known as scientific method. As an example of the method
of hypothesis formation Bacon demonstrates that many of the properties
of light can be inferred from a small set of known facts. In this section
we demonstrate the performance of the revised CIGOL which employs the
“confidence” statistic developed in previous sections of this paper. The
example below is in the spirit of Bacon’s exposition of the properties of
light. User input is underlined, and excessive computer output with no
corresponding input from the user is replaced by ”...”.

!- [-inverse].

!- show._clauses.
inverse(huge,tiny).
inverse(large,small).
inverse(small,large).

inverse(tiny,huge).

proportional (huge,huge) .

proportional (large,large).

proportional (small,small).

proportional (tiny,tiny).

- situation(dist(light,board,tiny),
illum(board,huge)).

Confidence = NIL for (situation(dist(light,
board,tiny) ,illum(board,A)) :-inverse(A,tiny))

Confidence = NIL for (situation(dist(light,
board,A) ,illum(board,B)) :-inverse(B,A))

11



In the session so far the user started by loading background knowledge con-
cerning the qualitative relations inverse and proportional. The user now de-
scribes an observed situation, situation(dist(light,board,tiny), illum(board,huge)),
involving a board and a light source. In the situation described, the light
source is a tiny distance from the board, and the illumination on the board
is huge. CIGOL tries various hypotheses, including a possible inverse re-
lationship between distance and illumination. However, with only a sin-
gle example on which to base the hypothesis CIGOL has insufficient con-
fidence to suggest the hypothesis to the user. In the version of CIGOL
described in [17] CIGOL would at this point have chosen the hypothe-
sis (situation(dist(light,board,A),illum(board,B)):-inverse(B,A)) to present
to the user since this is the simplest within the hypothesis space. Using
the new confidence statistic, CIGOL acts more cautiously since this hypoth-
esis, although simple, is no simpler than the presented example itself. We
now continue the session.

!- situation(dist(light,board,large),
illum(board,small)).

TRUNCATION: (0.999)

Is situation(dist(light,board,A),
illum(board,B)) always true? n.

ABSORPTION: (0.99999)
New clauses:[(situation(dist(light,board,A),
illum(board,B)):-inverse(A,B))]
cover new facts: [situation(dist(light,board,
huge) ,illum(board,tiny)) ,situation(dist (light,
board,small),illum(board,large)),...]

Are new clauses always true? y.
| =

Given the additional example, CIGOL finds a high confidence level (0.999)
for applying ”truncation” since the two examples share a lot of structure (see
examples 3 and 4). However, the user rejects this and is instead presented,
by absorption, with the previously rejected hypothesis stating the inverse
distance relation. Note that this hypothesis, though textually more complex
than the truncation leads to an even higher confidence level using the new
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model. The reason for this is that no additional substitutions need be stored
to describe the Godel numbers of an absorption or intra-construction. Note
also that the background knowledge concerning the qualitative proportional
relationship was never proposed in any hypothesis. The reason again for
this is that the new confidence statistic always rejects hypotheses unless they
simplify the description. This provides something of an answer to question 5
in section 2 of this paper. It should be noted that the limitations of efficient
search using a best first algorithm can lead to the normal problems to do
with local minima.

The inverse distance hypothesis is accepted by the user. Interestingly,
Bacon proposed this qualitative relation for light from simple observations
more than 60 years before Newton’s quantitative inverse square distance law
for gravitation.

Next the user provides examples concerning the illumination on an opaque
globe, resulting in the additional inverse distance law situation(dist(light,globe,A ), heat(globe,B))
:- inverse(A,B). CIGOL then combines these two laws by constructing a new
predicate as follows.

INTRA-CONSTRUCTION (0.99997)
situation(dist(light,A,B) ,heat(A,C)):-
p559(A) ,inverse(B,C).
p559 (board) .
p559(globe) .
What shall I call p5597 opaque.
-

Thus CIGOL discovers a set of objects which reflect, and the user names
the new concept “opaque”.

The user next goes through the same process with respect to the heat
properties of the light source for the given objects, eventually producing the
similar rule situation(dist(light,A,B),heat(A,C)):- opaque(A), inverse(B,C),
i.e. opaque objects get hot when close to the light source, and are cooler
when the light source is moved away. CIGOL now combines the two analo-
gous rules together to construct a new predicate again as follows.

INTRA-CONSTRUCTION (0.99999)
situation(dist(1light,A,B),C):-
p773(A,C,D) ,opaque(A) ,inverse(B,D).
p773(A,heat (A,B),B).
p773(A,il1lum(A,B),B).
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What shall I call p7737 radiation.
!- show_clauses

inverse(huge,tiny).
inverse(large,small).
inverse(small,large).
inverse(tiny,huge).

proportional (huge,huge) .
proportional (large,large) .
proportional (small,small).
proportional (tiny,tiny) .

opaque (board) .

opaque (globe) .
situation(dist(light,A,B),C):-

radiation(A,C,D),opaque(A) ,inverse(B,D).

radiation(A,heat(A,B),B).
radiation(A,illum(A,B),B).

CIGOL has managed to combine the concepts of light and heat to produce
a new 3-place relation which the user calls radiation. The three arguments
of radiation correspond respectively to the transmitter, radiation-type and
receiver. Note that this predicate construction is rather like a second order
analogy, even though CIGOL works only in first order logic. The reason
CIGOL managed to carry out a pseudo-second-order analogy is because the
properties heat and illumination were described within the examples using
function symbols rather than predicate symbols.

At the send of the session the user types show_clauses to reveal the entire
set of clauses.

5 Discussion

Machine invention of concepts within unrestricted first order Horn clause
logic is at least as ambitious as most other problems within Artificial Intel-
ligence. For this reason progress is likely to be slow. However, the method
of inverting resolution described in [17] provides a logical basis for a very
general form of inductive inference. This paper describes an information
theoretic approach to constraining the hypothesis space for inverse resolu-
tion, and an attempt is made to integrate the logical, computational and
information-based aspects of hypothesis formation.
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Many obstacles lie ahead in the further development of the inverse res-
olution approach to machine learning. These include

1. Noise. CIGOL works on the unacceptable assumption of completely
noise-free data.

2. Time. CIGOL does not take into account the time complexity of
executing the hypotheses which it forms.

3. Unrestricted operators. The derivation of the inverse resolution
operators in [17] used a number of assumptions to simplify the deriva-
tion. These assumptions restrict the CIGOL operators unduly.

The work described in sections 3.3 and 3.4 of this paper may give us
some lead on the problem of noise. This comes from the definition within
algorithmic information theory of random (incompressible) strings. Indeed
incompressibility is one of the most ubiquitous features that distinguises
noise from signal. Thus the incompressibility of sections of a set of ex-
amples would be a strong indication that the corresponding examples are
noisy. It remains to be seen whether the relationship between noise and
compressibility might be put to use within a system such as CIGOL.
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