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Abstract
A technique is described for learning qualitative models of dy-
namic systems. The QSIM formalism is used as a representation for
learned qualitative models. The problem of learning QSIM-type mod-
els is formulated in logic, and the GOLEM learning program is used
for induction. An experiment in learning a qualitative model of the
connected containers system, also called U-tube, is described in detail.

1 Introduction

It has been shown that qualitative models are better suited for several tasks
than the traditional quantitative, or numerical models. These tasks include
diagnosis (e.g. Bratko, Mozeti¢ and Lavrac¢ 1989), generating explanation of
the system’s behaviour (e.g. Forbus and Falkenheiner 1990) and designing
novel devices from first principles (e.g. Williams 1990). We believe that sys-
tem identification, a fundamental problem in the theory of dynamic systems,
is also a task that is done easier at the qualitative level. This paper presents
a case study in how this can be done using a logic-based approach to machine
learning.



The system identification problem is defined as follows: given examples
of the behaviour of a dynamic system, find a model that explains these ex-
amples. In this paper we are interested in finding a qualitative model. Our
working hypothesis is that such models are much easier to learn than classical
differential equations models, and that qualitative models can be constructed
by means of logic-based approaches to machine learning. Learning of qual-
itative models is further motivated by another conjecture, investigated in
(Bratko 1989), that such models are often sufficient for the synthesis of con-
trol rules for dynamic systems.

For a start we have to choose a formalism for defining qualitative models
of dynamic systems. Several such formalisms can be considered. Among
them are qualitative differential equations, called confluences (de Kleer and
Brown 1986), Qualitative Physics Theory (Forbus 1986) and QSIM (Kuipers
1986). For our experiments we chose QSIM for it seems to be mathematically
best founded and understood.

In this paper we describe an experiment in which a learning system, called
GOLEM, was used. GOLEM (Muggleton and Feng 1990) can be viewed as
a simplified and more efficient version of its more known predecessor CIGOL
(Muggleton and Buntine 1988). The learning task, suitably formulated in
logic for GOLEM or CIGOL is: given background knowledge B and a set of
examples E, find a hypothesis H such that:
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This general framework applies to the learning of QSIM-type qualitative
models from examples of system’s behaviour as follows:

QSIMTheory N\ Qualitative M odel = ExamplesO f Behaviour

In section 2 we formulate the QSIM approach to qualitative simulation in
logic. In section 3 we convert the QSIM qualitative constraints into a form
acceptable as background knowledge by the GOLEM program. In section 4
we describe in detail the learning of a model for the U-tube system. Finally
in section 5 we compare our approach with some other approaches.



2 Formulating QSIM in logic

We will first illustrate the QSIM approach to qualitative modelling by an
example. Consider the two connected containers system, often called U-tube,
in Figure 1, that will also be used later in the learning experiment. The two
containers, A and B, are connected with a pipe and filled with water to the
corresponding levels La and Lb. Let the flow from A to B be Fab, and from
B to A be Fba. A qualitative model of a dynamic system in QSIM is defined
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Figure 1: Two connected containers: U-tube system.

as a set of constraints on the time variables of the system. For our system
we have two time derivative constraints:

d
%La = Fb(l
d
—Lb= Fab
dt “
We also have:
Fab = —Fba



In addition, F'ab depends on the water pressure along the pipe: the higher
the pressure, the greater the flow. The pressure, in turn, depends on the
difference between both levels: the greater the difference, the higher the
pressure. This can be formulated in QSIM as:

Diff = La— Lb
Press = My (Dif f)

Fab = My (Press)

A constraint of the form y = Mg () means that y is a monotonically
increasing function of z, where the subscript ”(0” indicates the ”corresponding
values” © = 0, y = 0. That is, whenever x = 0, also y = 0. Notice that if we
are not explicitly interested in the pressure, the two My~ constraints can be
simplified into one:

Fab= Mg (Dif f)

The values of variables are in (QSIM represented qualitatively by using
landmark values. For our example, appropriate landmarks for the four vari-
ables are, ordered from left to right:

La : minf,0,0a0,inf
Lb: minf,0,100,inf
Fab: minf,0, fab0,inf
Fba : minf, fba0,0,inf
These values are symbolic names corresponding to minus infinity, zero,
infinity, and to the initial values of the four variables. The current value of
a variable is stated in terms of its landmarks and direction of change. The
direction of change can be inc (increasing), std (steady), or dec (decreasing).

In the initial state, for example, the value of level La is equal to la0 and is
decreasing. This will be written as:



La = 1a0 / dec

In the time interval that follows the initial time point, La is betwen 0 and
la0, and decreasing:

La = 0..1a0 / dec

QSIM simulation of our system results in the trace shown in Figure 2.
This consists of altogether four qualitative states that correspond to two time
points and two time intervals.

Time La Lb Fab Fba
t0 la0/dec 1b0/inc fab0/dec fbal/inc
(t0,t1) 0..1a0/dec 1b0..inf/inc 0..fab0/dec fbal..0/inc
t1 0..1a0/std 1b0..inf/std 0/std 0/std
(t1,inf) 0..1la0/std 1b0..inf/std 0/std 0/std

Figure 2: Trace of behaviour of the system in Figure 1

We will now translate the QSIM approach to qualitative simulation into
first order logic. QSIM qualitative simulation algorithm can be sketched in
Prolog as something like this:

simulate( State) :- % Start with State
write( State),
transition( State, NextState), % Move to next state
simulate( NextState).



% State = state( Variablel, Variable2, ...)

transition( state( V1, V2, ...), state( NewV1l, NewV2, ...)) :-
trans( V1, NewV1l), % Model-independent
trans( V2, NewV2),

*

legalstate( NewV1, NewV2, ...). 7% Model-dependent

Relation trans that non-deterministically generates possible transitions is
defined as part of the QSIM theory. Thus a model of a particular dynamic
system is defined by the relation legalstate. This imposes constraints on the
values of variables in the model. The repertoire of available constraints that
can be used in the definition of legalstate is, again, part of the QSIM theory.

For our purpose of learning in logic, we have to formulate these available
qualitative constraints as predicates that can be used as background knowl-
edge. The resulting set of predicates may be used in the construction of a
model. In the following, F, F'1, F'2,... stand for terms of the form:

Variable: QualValue / DirectionOfChange

where QualV alue is either a landmark belonging to Variable, or an inter-
val between two landmarks written as Landl..Land2. QSIM repertoire of
constraints corresponds to the following background predicates:

add( F1, F2, F3, Corr) % F1 + F2 = F3

mult( F1, F2, F3, Corr) % F1 * F2 = F3

minus( F1, F2, Corr) % F1 = - F2

m_plus( F1, F2, Corr) % Monotonicly increasing
m_minus( F1, F2, Corr) % Monotonicly decreasing
deriv( F1, F2) % F2 is time derivative of F1



Corris a list of corresponding values that specify particular points of the
relation between variables.
A qualitative model consists of a definition of the predicate

legalstate( F1, F2, ...)

where F'i correspond to time variables of the dynamic system. The learn-
ing task consists of defining the predicate legalstate in the form:

legalstate( ...) :-
constrainti( ...),
constraint2( ...),

where all the constraints are calls of constraint predicates.

3 Conversion of constraint predicates into a
form accepted by GOLEM

GOLEM accepts definitions of background predicates in terms of ground
facts. Therefore logical definitions of constraint predicates were compiled
into tables of ground facts. In the experiment reported here, the following
simplifications were done to keep the complexity within practical limits of
GOLEM:

1. All lists of corresponding values were assumed empty.
2. Consistency of infinite values in constraints was ignored.

3. "mult” constraint was not compiled at all.



The add constraint requires very large number of ground facts. This num-
ber depends on the number of landmarks and corresponding values, and is
in the order of several thousands of facts for each triple of variables. There-
fore the add constraint was not tabulated explicitly. It was effectively re-
placed by three more economical relations: norm_mag (normalise given qual-
itative value with respect to a landmark), lookup_consist_table (lookup table
for adding signs) and wverify_add_deriv (lookup table for adding derivatives).
The correspondence is:

add(F1:M1/D1, F2:M2/D2, F3:M3/D3, C) :-

verify_add_inf_consistence(M1, M2, M3), %» Ignored in experiment
verify_add_mag(F1, F2, F3, M1, M2, M3, C), % Add magnitudes
verify_add_der (D1, D2, D3). % Add derivatives

verify_add_mag(F1, F2, F3, M1, M2, M3, [1):-
norm_mag(F1, M1, 0, Al), %» Normalise magnitude M1 w.r.t. O
norm_mag(F2, M2, 0, A2),
norm_mag(F3, M3, 0, A3),
lookup_consist_table(Al, A2, A3).

The following constraint predicates were thus tabulated:

range( F, Range)

deriv( F1, F2)

m_plus( F1, F2, [1)

m_minus( F1, F2, [1)

minus( F1, F2, [1)

norm_mag( FunName, QValue, O, NormalisedQValue) 7% Normalise
lookup_consist_table( NormV1i, NormV2, NormV3) % Add norm. val.
verify_add_deriv( Dirl, Dir2, Dir3) % Dirl + Dir2 = Dir3



4 Learning U-tube

We will now describe an experiment with learning of the U-tube system
(Figure 1). A usual QSIM-type model of this system can be in our Horn
clause notation written as:

legalstate( La, Lb, Fab, Fba) :-
add(Lb, Diff, La, [ ¢(1v0,d0,1a0)]),
% Correspond. 1b0 + d0 = 1a0
m_plus( Diff, Fab, [ c(0,0), c(d0,fab0)]),
minus(Fab, Fba, [ c(mf0,fab0)]),
deriv(La, Fba),
deriv(Lb, Fab).

The legalstate relation can be adequately expressed by the tabulated pred-
icates by substituting the add constraint with its definition in terms of other
tabulated predicates.

The qualitative states shown in the example behaviour of Figure 2 were
used as positive examples for learning. There are four states in Figure 2.
As two of them are equal, we have in fact only three positive examples. We
added six negative examples. A model induced by GOLEM from these 9
examples was:

legalstate( la: A/B, 1lb: C/D, fab: E/B, fba: F/D) :-
deriv( la: A/B, fba: F/D),
deriv( 1b: C/D, fab: E/B),
minus( la: A/B, 1b: G/D, [1),
minus( la: G/B, 1b: C/D, [1).

GOLEM constructed this model using 9 examples and 5408 background
atoms representing the necessary atoms from QSIM theory. The model was
constructed in 17 seconds on a Sun SPARCStation/330. As an alternative,
GOLEM also found a model similar to this with the only difference that the
last two constraints were replaced as follows:



xﬁiﬁus( fab: G/B, 1lb: C/D, [1),
minus( fab: G/D, la: A/B, [1).

The interesting question now is whether the induced model is correct and
whether it offers some useful interpretation from the physics point of view.
The following analysis shows that both induced models are in fact correct
and equivalent to the usual model of U-tube. First, it is easy to see that
both induced models are equivalent, and therefore it suffices to only study
the first one. In the sequel, this model will be called GolemTube, and the
usual tube model will be called StandardTube.

It should be observed first that in the induced GolemTube clause there
are some unexpected terms. For example, in addition to

la: A/B
we also have
la: G/B

The first of these two terms appears in the head of the clause and corresponds
to the level in container A. On the other hand, the second term, although
containing atom la, does not really correspond to the level in container A: it
in effect introduces a new variable whose sign of derivative is equal to that of
level A. GOLEM just “borrowed” the name la for this new variable. There
was no other way for GOLEM to introduce a new variable because only these
names appear in the tabulated background relations.

One way of demonstrating that GolemTube is equivalent to Standard-
Tube, is to show that:

1. GolemTube is not overconstrained, and

2. GolemTube is not underconstrained.
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We will justify statement (1) by justifying each of the constraints in
GolemTube from the point of view of the physics of the modelled system.
First, the two deriv constraints are obviously correct. Next, the two minus
constraints both together say the following: La and Lb always have the same
sign, but opposite direction of change (directions of change of La an Lb are in
the induced model denoted by B and D). This is also correct because both
La and Lb are non-negative, and whenever La increases Lb must decrease
and vice versa. GOLEM thus in a way found that the total amount of water
in the system is constant. Note, however, that GOLEM only found a 'weak’
way of stating this. Instead of saying La + Lb = const., GolemTube only

says that
d

[dt
where [z] denotes the sign of z. In addition to these constraints, the repeated
occurrences of B and D in the head of GolemTube clause indicate two other
constraints: (a) La and Fab have the same direction of change, and (b) Lb
and F'ba have the same direction of change. This is again easy to justify
in terms of the physics: whenever La increases, Lb must decrease and the
difference between the two levels must also increase, and therefore F'ab must
increase.

Thus we can conclude that all the constraints in GolemTube are justified
by the physics of the system, and therefore the GolemTube model is not
overconstrained.

It remains to show that GolemTube is not underconstrained. This can be
done by demonstrating that each constraint in NormalTube logically follows
from the constraints in GolemTube. First, the two deriv constraints appear
explicitly in both StandardTube and GolemTube. Of the remaining Stan-
dardTube constraints it is rather straightforward to show that GolemTube
implies the following two:

d

add( Lb, Diff, La) % Diff = La - Lb
m_plus( Diff, Fab)

That is: Flab monotonically increases with the difference La— Lb, written
shortly as m_plus(La — Lb, Flab). For simplicity we have omitted the corre-
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sponding values. In GolemTube we have that the La and Fab have the same
direction of change, and so have Lb and Fba. This is equivalent to:

m_plus( La, Fab)
m_plus( Lb, Fba)

We also have that La and Lb have opposite direction of change, that is:
m_minus( La, Lb)
From this it follows:
m_plus( La, -Lb)
and
m_plus( La, La - Lb)
From this and m_plus( La, Fab) we have:
m_plus( La - Lb, Fab)

The only remaining StandardTube constraint now is minus( Fab, Fba).
In simulation, the two minus constraints in GolemTube seem to produce
the same effect, although it remains unclear how to formally show that the
StandardTube minus constraint in fact logically follows from the GolemTube
constraints. GolemTube was exhaustively tested on all possible behaviours.
It was found to be complete and correct with respect to StandardTube.

It should be noted that the analysis above only takes into account con-
straints with empty corresponding values lists. In relation to this, the cor-
responding qualitative simulation is not expected to generate new landmark
values and new corresponding values.
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5 Discussion and comparison

In this paper, a technique for inducing models of dynamic systems was pre-
sented. The approach relies on the QSIM formalism for qualitative simula-
tion, and learning in the logic framework. So the described technique is an
application of ”inductive logic programming” (Muggleton 1990) where the
GOLEM learning program (Muggleton and Feng 1990) was used.

As an example, we presented the induction of a model of the U-tube
system. The model induced from 3 positive and 6 negative examples of the
states of the system is correct and to a large extent offers natural interpreta-
tion from the point of view of the physics of the system. It may be surprising
that it was possible to induce a correct model from such a small set of ex-
amples. On the other hand the success can be attributed to the background
knowledge available to GOLEM in this exercise. The background knowledge
consisted of 5408 ground facts. The relative efficiency of GOLEM compared
to other logic induction programs was essential in coping with this amount
of background knowledge. Also, it seems that GOLEM’s style of gener-
alisation is particularly suitable in this application. As reported by SasSo
Dzeroski, straightforward application of two other logic learning programs
LINUS (Lavra¢ and Dzeroski 1990) and FOIL (Quinlan 1989) to the same
problem was not successful. FOIL was impeded by the particular heuristic it
uses, while LINUS was too limited by its inability to introduce new variables
into the induced formulas.

Another approach to learning qualitative models, also using logic, is
(Mozeti¢ 1987a; 1987b), also described in (Bratko, Mozeti¢ and Lavrac 1989).
Exploiting abstraction hierarchy, Mozeti¢ obtained impressive experimental
results. His approach, however, cannot be directly compared to ours because
in his approach the observed system was viewed as static and thus completely
different predicates were used as background knowledge.

Another interesting technique for the induction of qualitative models of
dynamic systems was developed by Coiera (1989). His program, called GEN-
MODEL, also finds a model in the form of a Horn clause. The program
also performs a special kind of least general generalisation where the search
is from specific to general descriptions. Coiera (1989) reports that GEN-
MODEL, applied to the U-tube problem, generated a model consisting of 16
constraints when only 6 positive examples were used. In Coiera’s approach,
the search for qualitative constraints is more restricted so that the magni-

13



tude and derivative of a dynamic variable always both occur in the same
term and cannot be mixed with other landmarks. This restriction has the
advantage that it constrains search, and that the physics interpretation of
induced models is easier. On the other hand, the learning program, being
more constrained, cannot discover a fundamentally new formulation, and in-
teresting new laws may be impossible to represent. Also, a major limitation
of GENMODEL is that it does not introduce new variables and the user has
to specify explicitly all the variables, or intermediate terms, that may occur
in the induced model. As a consequence of this limitation, the U-tube model
found by GOLEM cannot be generated by GENMODEL.
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Figure 1 Two connected containers: the U-tube system.

Time La Lb Fab Fba
t0 la0/dec 1b0/inc fab0/dec fbal/inc
(t0,t1) 0..1la0/dec 0..1b0/inc 0..fab0/dec fbal..0/inc
t1 0..1a0/std 0..1b0/std 0/std 0/std

(t1,inf) 0..1a0/std 0..1b0/std 0/std 0/std

Figure 2 Trace of behaviour of the system in Figure 1.

16



