The Application of Inductive Logic Programming to Finite
Element Mesh Design

Bojan Dolsak and
Stephen Muggleton
The Turing Institute,
36 North Hanover Street,
Glasgow G1 2AD,
UK.

Abstract

Finite element methods are used extensively by engineers and modelling scientists to
analyse stresses in physical structures. These structures are represented quantitatively as
finite collections of elements. The deformation of each element is computed using linear
algebraic equations. In order to design a numerical model of a physical structure it is neces-
sary to decide the appropriate resolution for modelling each component part. Considerable
expertise is required in choosing these resolution values. Too fine a mesh leads to unnec-
essary computational overheads when executing the model. Too coarse a mesh produces
intolerable approximation errors. In this paper we demonstrate that rules for deciding on
appropriate resolution values can be inductively constructed from expert-provided exam-
ples. The Inductive Logic Programming algorithm Golem is employed for this purpose.
Cross-validation testing of rules produced by Golem in this domain indicate an acuracy of
around 79% correct on unseen data. We believe that for this domain the use of a relational
learning approach is essential for reflecting the relations between elements of the physical
structure being modelled.

1 Introduction

Finite element (FE) methods are used extensively by engineers and modelling scientists to analyse
stresses in physical structures. Figure 1 is a typical instance of such a structure. The figure
illustrates a cross-section of a cylinder from a hydraulic press used in the leather industry. The
effects of external and internal pressure on such a structure can be expressed as a set of differential
equations. However it is not possible to solve such differential equations in a reasonable amount of
computer time for arbitrarily complex structures. Instead engineers partition the structure into
a number of finite elements which are interconected at a discrete number of nodal points situated
on their boundaries. The displacement of these nodal points are basic unknown parameters of
the problem. A set of functions is chosen to define uniquely the state of displacement within each
FE in terms of its nodal displacements. With such discretisation instead of differential equations,
engineers have to solve the set of algebraic equations. Basic formulation of the finite element
method is described in detail in [5].

Figure 1: A typical structure to be analysed

The set of finite elements is called the FE mesh. Figure 2 shows the hand-constructed FE
mesh chosen by experts for the structure of Figure 1.

The basic demand for the FE mesh is that the mesh should represent the exact shape of
the structure. Fine meshes are used in places where high deformations are expected. Coarser
meshes are adequate where the expected deformations are small. In general the coarsest mesh
which gives rise to sufficiently low errors is employed. This minimises the required computation
time since each additional element adds extra linear algebraic equations to the set which must
be solved.

It is very difficult to know in advance where the mesh should be fine and where it should
be coarse because a number of parameters have to be considered. These include the shape of
the structure and the loadings and boundary conditions. Usually it is necessary to make a few
different meshes until we find the right one. The trouble is that each mesh must be analysed
since we generate the next mesh on the base of the results derived from the previous mesh. Since
each mesh analysis can take several days of computer time, iterative analysis can be very costly.
There exists a great need for knowledge based systems which are able to automatically design FE
meshes. In this paper we describe an attempt to automatically build part of such a knowledge
base using machine learning techniques.

FE methods have been applied extensively for the last thirty years. A large number of
published reports (such as [1, 4]) give FE designs in terms of the problem (input data), the final
FE mesh (chosen after several trials) and the results of the analysis. To build a knowledge base
for an expert system which would help us to find a “reasonable” mesh without previous trials, or
at least with less of them, we have to transfer input data and final meshes from these reports into
the system. We believe that the best way to do this is to divide each structure into a collection of
edges. Figure 3 shows some of the labellings of edges of the structure from Figure 1. If we know
how many elements are on the edges of the structure the FE mesh inside the structure is also
determined. Thus the number of elements chosen for each edge in published data can be used
as a source of examples for a machine learning technique. Certain relationships between edges
influence the final mesh. Therefore the target concept cannot be described completely using a
propositional learning algorithm. Instead a relational learning algorithm is required.

The expert system should also choose the types of elements which need to be used. There are

2

Figure 2: Finite element mesh for the structure

Figure 3: Labelled edges of structure

different types of elements for 2D and for 3D structures. These are not all compatible since for
some elements the approximation between nodes is linear and for others it is parabolic. So if we
have for instance a 3D structure and we want to use parabolic elements there are only a small
number of elements that could be used. To represent the shape of the array we must choose
some combination of these elements. We believe that this knowledge can be described directly
by stating rules without automatic learning.

2 Golem

In [3] Muggleton and Feng describe a relational learning algorithm called Golem. Since Golem
constructs Logic Programs from examples and background knowledge it is an Inductive Logic
Programming system [2]. Golem examples and background knowledge are represented as ground
atomic facts.

The hypotheses constructed by Golem are restricted by a particular condition. A variable
found in the body of a Prolog clause and not in the head of the clause is normally assumed to
be existentially quantified. In Golem it is assumed that existential quantification is restricted to
being “exists exactly one”. This is otherwise known as Hilbert ex quantification. Target clauses
using non ex quantification cannot be learned using Golem. This caused some difficulty for the
learning task described in this paper (see Appendixes C and D).

3 Presentation of examples and background knowledge
for mesh learning

Golem needs three types of input files to build the rules.
e foreground examples
e negative examples
e background facts

In the file with foreground examples (Appendix A) we have stated the examples of classified
edges of FE meshes. For each edge there is a sentence such as

mesh(al3,1).

which means that on the edge “al3” there is “1” finite element. For different structures we have
used different letters for the first letter in the name of the edge.

In the file with negative examples (Appendix B) the sentences have the same format as
those in the foreground example file. The negative examples contain all possible combinations
of numbers of elements other than those found in the foreground examples for each edge name.
Golem needs negative examples for reducing the rules.

The file with background facts (Appendix C) is in some ways the most important. This file
contains definitions of the vocabulary that can be used to describe hypotheses about meshes.
The contents of the background file is divided into five parts.

e declarations

e types of edges

e boundary conditions
e loads
e geometric representation

The declarations part defines the modes and determinations of each predicate. The mode of a
predicate specifies its input and output arguments. The determinations are the set of background
predicates which are expected in the bodies of rules for this predicate. Thus a sentence such as

determ(mesh(_,_),mesh(_,_)).

means that recursive rules for the predicate ‘mesh’ are allowed. We have classified edges into
twelve different types.

e important long
e important

e important short
e not important
e circuit

e half circuit

e quarter circuit
e short for a hole
e long for a hole
e circuit hole

e half circuit hole
e quarter circuit hole

We believe that these are all the relevant types of FE edges. As an example, the following is a
simple fact which states the type of an edge.

not_important(a2).
There are four possibilities boundary conditions. An edge can be
o free
e fixed on one side
e fixed on two sides
e fixed completely
There are similar types for loads. Edges can have

e 1o loading

e one side loaded
e two sides loaded
e continuous loading

There is a possibility that an edge is continued and one or two sides loaded at the same time,
which means that some edges may be described with two “load” predicates.

The geometric representation is needed because of the relationships between edges. We think
that the most important relations are “neighbour” and “opposite”. In other words we believe
that the edges which are neighbours or which are opposite influence each other in the FE mesh.
The third relation which is interesting is that some edges are not only opposite but also have
the same length or form. For instance concentric circles have the same form. Such pairs of edges
we have described using the predicate “same”. All three predicates have two arguments. Each
argument (edge) can be input or output, which means for example that if A is a neighbour to
B then B is also a neighbour to A. Using these predicates we have described the FE meshes for
three different training structures. The sizes of input data for Golem were

e 75 foreground examples
e 618 negative examples

e 588 background facts

4 Results

4.1 Learning using the complete set of examples

We ran Golem with the described data several times. However some parameters varied with each
Golem run.

First of all we knew that even an FE mesh chosen after several trials is not perfect so we
expected some of the data to be “noisy”. Therefore we allowed the rules induced by Golem to
cover in one case a maximum of three negative examples and in another case only one negative
example. We also tried an assumption of no noise.

We ran Golem with and without the ability to produce recursive rules. When recursive rules
were not allowed more rules were derived for exact numbers of elements than in the case in which
recursive rules were allowed.

Golem induced 56 different rules. All of them we believe to be correct. Some of them cover
only two foreground examples, some of them more than ten. But from a practical point of view
some of these rules are not useful. For example rule

mesh(A,1) =
neighbour(A,B
neighbour(A,C
cont_loaded(C),
fixed(B),
not_loaded(B).

),
)

I

is not useful, since it does not say anything about what kind of edge A is. Another example of
a useless rule is

mesh(A,3) :- opposite(A,a3).

The rule is true for two training examples but it can’t be used in practice for other edges since
only two edges are opposite edge a3.

There were 26 useful rules. 20 of them were unrecursive and six rules were recursive. Some
of the rules were more general than others. So we had to eliminate some of them. We chose to
retain the rules which covered the most foreground examples. The following is a rule for one
element

mesh(A,1) =
not_important(A),
not_loaded(A).

which covers 18 foreground examples and no negative examples. But when we allowed some
negative cover the induced rule was

mesh(A,1) :- not_important(A).

which covers 27 foreground examples and only one negative example. It is obvious that this one
example is debatable so we accepted the second rule, treating this example as noise.

A similar situation occurred with recursive rules. The following rule covered 10 foreground
examples and one negative

mesh(A,B) :-
same(A,C),
con_loaded(C),
mesh(C,B).

The rule does not say anything about edge A. However it does say that since A and C are
both opposite and have the same form they should have the same number of FEs. This is because
the pressure on edge C influences edge A. We chose this rule in preference to the rule

mesh(A,B) :-
cont_loaded(A),
same(A,C),
cont_loaded(C),
mesh(C,B).

which is more restrictive and covers only 6 foreground examples. We also know from experience
that there is no need for both edges to be loaded for them to have the same number of FEs.

After eliminating rules there were 13 unrecursive and two recursive rules left. In the fore-
ground examples we had examples for 1,2,3,4,5,7,8,9 and 12 elements on an edge. There were
too few examples for Golem to induce rules for 4 and 5 elements.

4.2 Cross-validation

In order to estimate the accuracy of the rules obtained and described in the previous subsection
we carried out a cross-validation test. In this test we removed a random subset containing 10% (7
examples) from the training examples and used these for testing the resulting rules. Training and
testing was carried out twice with different random 10% test samples removed from the training
sample each time. In the first case 6 out of the 7 test instances were still correctly predicted, i.e.

7

the induced rules were 86% correct. In the second experiment 5 out of the 7 test instances were
correctly predicted, i.e. the resultant rules were 71% correct. The average result is thus 79%,
though as shown by the discrepancy between the first and second test, this may have a rather
large standard deviation. To accurately assess the standard deviation would require many more
runs.

5 Conclusion

Rules derived by Golem can be used as a knowledge base for an expert system which would
help in the design of FE meshes. We can use the rules simply as a PROLOG program and use
PROLOG as an expert system shell. We use PROLOG to “consult” the background facts and
the rules. We can then ask PROLOG about the number of FEs on edges.

We carried out this experiment using training structures. Clearly, when using the complete
set of data and ignoring noise, the rules agreed with the training set. In addition, by use of
cross-validation techniques we found that the rules have an expected accuracy of around 79% on
unseen data. In order to apply these rules in real world domains a higher accuracy in excess of
90% should be achieved. This will require larger amounts of data and further testing.

Generally, we believe that derivation of the knowledge base using automatic learning is the
correct approach for this domain. For practical use there have to be more rules for predicting the
number of elements, which means that more training examples should be given to the system.

Finite element methods are used by thousands of engineers all over the world. Mesh design
is a major bottleneck in this process. We believe that extensions of our approach should have
very wide and far-ranging applications.

Acknowledgements. This work was supported partly by the Esprit Ecoles project 3059 and
an SERC Post-graduate fellowship held by Stephen Muggleton.

References

[1] A. Jezernik, S. Gorosnik, and S. Bader. Deformation and stress analysis of cylinder F30 using
fem, Final report. Technical report, Faculty of Technical Sciences, Maribor, Yugoslavia, 1989.

[2] S. Muggleton. Inductive logic programming. New Generation Computing, 8(4), (To Appear)
1991.

(3] S.H. Muggleton and C. Feng. Efficient induction of logic programs. In Proceedings of the
First Conference on Algorithmic Learning Theory, Tokyo, 1990. Ohmsha.

[4] M. Oblak, A. Jezernik, and J. Ducep. Deformation and stress analysis of paper mill for the
Sladogorska Company, Final report. Technical report, Faculty of Technical Scineces, Maribor,
Yuoslavia, 1986.

[5] O.C. Zienkiewicz and R.L. Taylor. Basic formulation and linear problems. In The Finite
Element Method, volume 1. McGraw-Hill, London, 1988.

A Foreground examples

% a — cylinder

1
2
mesh (a3,
4

1
1
8
1
mesh (ab, 1
2
1
1
3

(
(
(
(
(
(ab
(a7
(a8
mesh (a9
mesh (al
mesh (al

(al
mesh (al
mesh (a
mesh (a
mesh (a
mesh (a
mesh (a
mesh (a
mesh (a20
mesh (
mesh (
mesh (a23
mesh (a24
mesh (a25
mesh (a26
mesh (a27
mesh (a28
mesh (a29

(

(

(

(

(

(

a21
a22,
1
mesh a30 1
mesh (a3l, 3).
mesh (a32, 2
mesh (a33, 2

mesh (a34,11).
mesh (a35,1).

mesh (a36,12).
mesh (a37,12).
mesh (a38,12).
mesh (a39,5).
mesh (a40, 2).
mesh (a41,1).
mesh (a42, 5).

mesh (c7,
mesh (c8,
mesh (c9
1
1

— W N

(
(
(<9,
mesh (c10, 2)
mesh (c11,1)
mesh (c12, 2)
mesh (c13,1).
mesh (c14, 2).
mesh (c15, 8).
mesh (c16, 8).
mesh (c17, 8).
mesh (c18, 8).
mesh (c19, 8).
mesh (20, 8).
(c21,8)

mesh (c21, 8).

B Negative examples

If we consider that we have two sets:

e set of the names of the edges
E = {al,...,ad42,bl,... bl4, cl,... c21}

e set of possible numbers of finite elements
N ={1,2,3,4,5,7,8,9,12}

and that we have also set of foreground examples:
F={..., mesh(a2,1), mesh (a3,8), mesh (a4,1), ...}
the set of negative examples can be constructed as:

{ mesh(Edge, Number) | Edge € E, Number € N} - F

For instance:

mesh(al,1).
mesh(a3,1).
mesh(a6,1).

mesh(c19,12).
mesh(c20,12).
mesh(c21,12).

10

C Background facts

% DECLARATIONS

mode(important_long(-1)).
mode(important(-1)).
mode(important_short(-1)).
mode(circuit(-1)).
mode(half_circuit(-1)).
mode(short_for_hole(-1)).
mode(long for_hole(-1)).
mode(circuit_hole(-1)).
mode(half_circuit_hole(-1)).
mode(not_important(-1)).
mode(free(-1)).
mode(one_side_fixed(-1)).
mode(two_side_fixed(-1)).
mode(fixed(-1)).
mode(not_loaded(-1)
mode(one_side_loade
mode(cont_loaded(-
mode(neighbour xy r(-1,1
mode(neighbour_yz_r(-1,
mode(nelghbourlx r(1
(
(
(
(
(
(
(
(

)-
d(-1)).
1)).

1(1,-
mode(neighbour_yz 1(1
mode(neighbour_zx 1(1,-
mode(opposite_r(-1,1)).
mode(opposite_1(1,-1)).
mode(same_r(-1,1)).
mode(same_1(1, 1))
mode(mesh(-1,1)).

% TYPES OF THE EDGES
important_long(a
important_long
important_long
important_long

Py

1).
a34).
b1)
b8).
important(a3).
important_short(a9)
important_short(all).
important_short(all).

determ(mesh
determ(mesh
determ(mesh

=
Yo

=

determ(mesh

=

same_r(_,_)5
J)-

same_](_,

important_long(_)).
important(_)).
important_short(_)).

(mesh(_,.),

(mesh(_,.),

(mesh(_,.),
determ(mesh(_,_),circuit(_)).
determ(mesh(_,_),half_circuit(_)).
determ(mesh(_,_),short_for_hole(_)).
determ(mesh(_,_),long _for_hole(_)).
determ(mesh(_,_),circuit_hole(_)).
determ(mesh(_,_),half_circuit_hole(_)).
determ(mesh(_,_),not_important(_)).
determ(mesh(_,_),free(_)).
determ(mesh(_,_),one_side_fixed(_)).
determ(mesh(_,_),two_side fixed(_)).
determ(mesh(_,),fixed(.)).
determ(mesh(_,_),not_loaded(.)).
determ(mesh(_,_),one_side_loaded(_)).
determ(mesh(_,_),cont_loaded(-)).
determ(mesh(_,_),neighbour xy_r(_,_)).
determ(mesh(_,_),neighbour_yz r(_,_))
determ(mesh(_,_),neighbour_zx r(_,_)).
determ(mesh(_,_),neighbour xy_1(_,-)).
determ(mesh(_,_),neighbour_yz_1(_,.)).
determ(mesh(_,_),neighbour_zx 1(_,_))
determ(mesh(_,_),opposite_r(_,_)).
determ(mesh(_,_),opposite_1(_,)).
determ(mesh(_,_),

(mesh(_,.),

(mesh(_,.),

determ(mesh(_,_),mesh(_,_)).

important(a39).
important
important(b11).

important(c5
important(c6
circuit(c18).
circuit(c19).
circuit(c19).

(a39
(b4).
(b11
important(c2).
(c5).
(c6).

11

important(c8).

important(c10).
important(c12).
important(c14).

important_short(a6).
not_important(al2).
not_important(al4).
not_important(al4).

important_short(al3).
important_short(al5).
important_short(al9).
important_short(a22).
important_short(a23).

)
)
)
)
)
)-
)
)
)
)
)
)

important_short(a25

important_short(a26).
important_short(a28).

(
(
(
(
(
(
(
(
important_short(a31).
(
(
(
(b
(
(
(
(

important_short
important_short
important_short
important_short
important_short
important_short(c4).

important_short(c7).

important_short(c13).

a3
a3
ad
b

circuit(c15).
circuit(c16).
circuit(c17).

% BOUNDARY CONDITIONS

one_side_fixed(a34).
fixed(al3).

fixed(al4).
fixed(alb).
fixed(al6).
fixed(al7).

3
5
0).
3)-
0

10).

circuit(c20).

half_circuit(a36).
half_circuit(a37).

short_for_hole(al6).
short_for_hole(al8).

long for_hole(al7).
circuit_hole(c21).

half_circuit_hole(a

not_important(a2).
not_important(a4).
not_important(ab).
not_important(a7).
not_important (a8
not_important(al

one_side_fixed(a
one_side_fixed
one_side_fixed
one_side_fixed
one_side_fixed
one_side_fixed

(a35).
(
(
(
(
(
one_side fixed(c
(
(
(
(
(

3
adl).
b1).
b4).
b8).
b11).

one_side_fixed(c
one_side_fixed(c
one_side_fixed(c
one_side_fixed(c
one_side_fixed(c

).

2
3
)
8
1
14).

)-
)-
)-
)-
0
4

two_side_fixed(a
two_side_fixed (a3
two_side_fixed(
two_side_fixed(
fixed(a23).
fixed(a24).
fixed(a25).
fixed(a26)
(a27)

36)

7).
a38).
a42)

12

38).
half_circuit_hole(a42).

not_important(a20).
not_important(a21
not_important(a24
not_important(a2
not_important(a2
not_important(a3
not_important (a3
not_important(
not_important(
not_important(
not_important(
not_important(
not_important(
not_important(
not_important(
not_important(
not_important(c
not_important(c
not_important(c
not_important(c

).
).

ad

b2
b5
b6
b7
b9
bl
bl
b14).

)
)-
)-
)-
)-
2
3
4

1).
3).
9).
11).

two_side_fixed
two_side_fixed
two_side_fixed

b5).

b6).

bl
two_side_fixed(b1

)
)
2).
3

(
(
(
(b13).

fixed(al8). fixed(a28). fixed(c16).
fixed(al9). fixed(a29). fixed(c19).
fixed(a20). fixed(a30). fixed(c20)
fixed(a21). fixed(a31). fixed(c21)
fixed(a22). fixed(a32).

% LOADS

not_loaded(al) not_loaded(c4). cont_loaded(al9)
not_loaded(a2) not_loaded(c5). cont_loaded(a20).
not_loaded(a3) not_loaded(c6). cont_loaded(a21)
not_loaded(a4) not_loaded(c7). cont_loaded(a22).
not_loaded(ab). not_loaded(c8). cont_loaded(a30).
not_loaded (a6) not_loaded(c9). cont_loaded(a31).
not_loaded(aT). not_loaded(c15). cont_loaded(a32).
not_loaded(a23) not_loaded(c20). cont_loaded(a37).
not_loaded(a24) not_loaded(c21). cont_loaded(a38).
not_loaded(a25) cont_loaded(a39).
not_loaded(a26) one_side_loaded(a34). cont_loaded(c10).
not_loaded(a27). one_side_loaded(a35). cont_loaded(c11).
not_loaded(a28). one_side_loaded(a40). cont_loaded(c12).
not_loaded(a29) one_side_loaded(a41) cont_loaded(c13).
not_loaded(a33) one_side_loaded(b3). cont_loaded(c14).
not_loaded(a36) one_side_loaded(b4). cont_loaded(c16).
not_loaded(a42) one_side_loaded(b10). cont_loaded(c17).
not_loaded(b1). one_side_loaded(b11). cont_loaded(c18).
not_loaded(b2) cont_loaded(c19).
not_loaded (b5) cont_loaded(a8).

not_loaded(b6). cont_loaded(a9).

not_loaded(b7). cont_loaded(al0).

not_loaded(b8) cont_loaded(all).

not_loaded(b9). cont_loaded(al2).

not_loaded(b12). cont_loaded(al3).

not_loaded(b13). cont_loaded(al4).

not_loaded(b14). cont_loaded(al5).

not_loaded(cl). cont_loaded(al6).

not_loaded(c2). cont_loaded(al7).

not_loaded(c3). cont_loaded(al8).

% GEOMETRIC REPRESENTATION

neighbour _xy r(a34,a35).
neighbour _xy r(a35,a26).
neighbour_xy _r(a26,a36).

neighbour_zx r(b5,b1).
neighbour_zx r(b8,b9).
neighbour_zx_r(b9,b10).

neighbour_yz_r(c20,c2).
neighbour_yz r(c21,c4).

13

neighbour_xy_r(a36,a4).
neighbour_xy_r(a4,a34).
neighbour_xy_r(b1,b13).
neighbour_xy_r(b13,b8).
neighbour_xy r(b8,b7).
neighbour xy_r(b7,b1).
neighbour_xy _r(b4,b6).
neighbour_xy_r(b6,b11).
neighbour_xy r(
neighbour_xy_r(b14,b3).
neighbour _xy r(c15,c9).
neighbour_xy _r(c16,c9).
neighbour_xy_r(
neighbour_xy _r(
neighbour_xy r(
neighbour_xy r(
neighbour_xy _r(
neighbour_xy _r(
neighbour_xy _r(

cl9,cl).
c20,cl).
c21,¢3).

neighbour_yz_r
neighbour_yz_r
neighbour_yz_r
neighbour_yz_r
neighbour_yz_r
neighbour_yz_r
neighbour_yz_r
neighbour_yz_r
neighbour_yz_r
neighbour_yz_r
neighbour_yz_r
neighbour_yz_r
neighbour_yz_r
neighbour_yz_r
neighbour_yz r(c15,c8).
neighbour_yz r(c16,c10).
neighbour_yz_r(c19,c14).
opposite_r(b11,b8).
opposite_r(c6,c12).
opposite_r(c2,c14).
opposite_r(c10,c14).
opposite_r(c15,c16).
opposite_r(cl16,c17).
opposite_r(cl17,c18).
()
()
()

b5,b6).
b6,b12).

b13,b5).
b2,b7).
b7,b9).
b9,b14).
b14,b2).

TN TN TN TN TN TN TN TN TN TN TN TN N N N N

opposite_r(cl8,c19).
opposite_r(c19,c20).
opposite_r(c20,c21).

b10,b14).

cl7,c11).
c12,c17).
c18,c12).
c13,c18).

a39,a4l).
a40,a39).
a35,a40).
a25,a3b).
a42,a25).
a24,a42).

b12,b13).

neighbour_zx r(al,a2).
neighbour_zx. r(a2,a3).
neighbour_zx r(a3,a4).
neighbour_zx r(a4,ab).
neighbour_zx r(ab,a6).
neighbour_zx r(a6,a7).
neighbour_zx r(a7,a8).
neighbour_zx r(a8,a9).
neighbour_zx r(a9,a10).
neighbour_zx r(al0,all

neighbour_zx r(all,al2).

neighbour_zx r(al2,al3

neighbour_zx r(al3,al4).

neighbour_zx_r(al4,al5

neighbour_zx_r(alb,al6).
neighbour_zx r(al6,al7).

neighbour_zx r(al7,al8

neighbour_zx_r(al8,al9).

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
neighbour_zx r(al9,a20).
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

neighbour_zx_r(a20,a21

neighbour_zx _r(a21,a22).

neighbour_zx_r(a22,a23

neighbour_zx_r(a23,a24).

neighbour_zx_r(a24,al).

neighbour_zx r(a25,a26).
neighbour_zx r(a26,a27).
neighbour_zx r(a27,a28).
neighbour_zx r(a28,a29).
neighbour_zx_r(a29,a30).
neighbour_zx r(a30,a31).
neighbour_zx r(a31,a32).
neighbour_zx r(a32,a33).
neighbour_zx r(a33,a25).

neighbour_zx r(b1,b2).
neighbour_zx_r(b2,b3).
neighbour_zx_r(b3,b4).
neighbour_zx_r(b4,b5).
same_r(a33,a23).
same_r(a36,a37).
same r(a38,a37).
same_r(a39,a42).
same_r(b1,b8).
same_r(c6,c12).
same_r(c2,c14).

same_r(c10,c14).
same_r(c15,c16).
same_r(c16,c17).

14

neighbour_zx_r(b10,b11).
neighbour_zx_r(b11,b12).
neighbour_zx_r(b12,b8).
neighbour_zx r(cl,c2).
neighbour_zx r(c2,c3)
neighbour_zx r(c3,c4).
neighbour_zx_r(c4,ch).
neighbour_zx r(c5,c6).
neighbour_zx r(c6,c7).
neighbour_zx r(c7,c8).
neighbour_zx r(c8,c9).
neighbour_zx_r(c9,c10).
neighbour_zx_r(c10,c11).
neighbour_zx_r(c11,c12).
neighbour_zx_r(c12,c13).
neighbour_zx_r(c13,c14).
neighbour_zx r(c14,cl).

opposite_r(all,a3).
opposite r(a9,a3).
opposite_r(a31,a25).
opposite_r(al3,al).
opposite_r(alb,al).
opposite_r(al7,al).
opposite_r(al9,al).
opposite_r(a22,al).
opposite_r(a23,al).
opposite_r(a32,a22).
opposite_r(a33,a23).

(

(

(

(

(

(

(

opposite_r(a36,a37).
opposite_r(a38,ad7).
opposite_r(a39,a42).
opposite_r(bl b8)
opposite_r(b3,bl).
opposite_r(b4,bl).
opposite_r(b10,b8).
same_r(c17,c18).
same_r(c18,c19).
same_r(c19,c20).
same_r(c20,c21).

)
)
opposite_r(a34,a37).
)
)
)

Because the arguments in the relations “neighbour”, “opposite” and “same” can be output or
input, we also need to have the following predicates defined in the background facts:

neighbour xy_l
neighbour_yz_1
neighbour_zx_1
opposite_l
same_l

which have exactly the same arguments as the predicates with suffix “r”. Only the order of
input and output is changed using “mode” declarations.

15

D Rules derived by Golem

Because of the restriction for hypotheses constructed by Golem (Section 2) we introduced three

different suffixes for predicate neighbour: “xy

yz” and “zx” (Appendix C) and divided the

[

problem on three plains in xyz space. When applying the rules, the suffixes “x” and “.1” are not
necessary. Therefore we deleted them from the rules derived by Golem.

mesh(A,1) :- not_important(A).

mesh(A,1) :- short_for_hole(A).

mesh(A,2) :-
important_short(A),
neighbour(A,B),
fixed(B),
not_loaded(B).

mesh(A,2) :-
important_short(A),
neighbour(B,A),
not_important(B),

mesh(A,3) :-

important(A),
not_loaded(A),
neighbour(B,A),
important_short(B).

mesh(A,3) :-

important_short(A),
cont_loaded(A),
neighbour(A,B),
not_important(B),
neighbour(C,A),

C \== B,
not_important(C).

not_loaded(B).

mesh(A,7) :-
mesh(A,2) :- important(A),
important_short(A), one_side_loaded(A).
free(A),
neighbour(B,A), mesh(A,8) :- circuit(A).
not_loaded(B).
mesh(A,9) :-
mesh(A,2) :- important long(A),
free(A), one_side_fixed(A),
one_side_loaded(A). not_loaded(A).
mesh(A,2) :- mesh(A,12) :- half circuit(A).
important(A),
opposite(A,B),
important(B).
mesh(A,B) :- mesh(A,B) :-
same(A,C), not_loaded(A),
cont_loaded(C), same(A,C),
mesh(C,B). mesh(C,B).

In the second rule for three elements both neighbour predicates had different suffixes before we
deleted them. Insead of suffixes we added declaration “C \== B” to make clear that C and B

16

are not the same edge.
If we want to use the rules without suffixes with the set of background facts we need the

following additional rules for geometric representation.

neighbour(A,B) :-

neighbour xy_d(A,B);
neighbour_xy_d(B,A);
neighbour_yz_d(A,B);
neighbour_yz d(B,A);
neighbour_zx_d(A,B);
neighbour_zx_d(B,A).

opposite(A,B) :-
opposite_d(A,B);
opposite_d(B,A).

same(A,B) :-

same(A,B);
same(B,A).

17

