
A Customisable Multiprocessor for
Application-Optimised

Inductive Logic Programming
Andreas Fidjeland, Wayne Luk and Stephen Muggleton

Imperial College London, 180 Queen’s Gate, London SW7 2AZ, United Kingdom
akf@doc.ic.ac.uk,wl@doc.ic.ac.uk,shm@doc.ic.ac.uk

Abstract

This paper describes a customisable processor designed to accelerate execution
of inductive logic programming, targeting advanced field-programmable gate array
(FPGA) technology. The instruction set and the microarchitecture of the processor
are optimised for key operations in logic programming, such as unification
and backtracking. Such optimisations reduce external memory access to enable
performance comparable to current general-purpose processors, even at much lower
clock frequencies. Our processor can be customised to a particular program by
excluding unnecessary functional and memory units, and by adapting the size of
such units to suit the application. These customisations reduce resource usage
while improving performance, and enable accommodating multiple processors on a
single FPGA. Such multiprocessor parallelism can be exploited by search-oriented
applications in machine learning applications. We find that up to 32 processors can
fit on an XC2V6000 FPGA. Using this device, the computational kernel of the machine
learning system Progol, when applied to common bioinformatics data sets for learning
to identify mutagenesis and protein folds, can yield speedups of up to 15 times
over software running on a 2.53GHz Pentium-4 machine. The proposed approach
appears promising with the advance of field-programmable technology: the more
recent XC4VLX160 device would be capable of supporting up to 65 processors.

Keywords:

1. INTRODUCTION

Current general-purpose processors are powerful devices which are generic enough that they
can be applied to many different application domains. Enormous effort has been dedicated
to achieving high performance for single-core processors and, more recently, for multi-core
processors. However, dedicated hardware can outperform the fastest general-purpose processors
by being optimised for certain tasks. For example, functionality such as graphics and network
processing has moved from the general-purpose processor to specialised co-processors. The
tasks which have moved to specialised units have been justified by high performance demands
and high volumes of production.

We aim to speed up inductive logic programming [7], a form of symbolic machine learning.
Inductive logic programming has found many uses in bioinformatics, for example to find rules
governing properties such as protein folding [15], mutagenic activity [12], and structure-activity
relationships [13]. These applications are often computationally demanding, as inductive logic
programming explores large search spaces where computations can run for hours or days.

While the inductive logic programming domain requires high performance, the size of the domain
is fairly small. We therefore aim to accelerate the application domain using reconfigurable
architectures. Such architectures can be programmed to implement different functionality, and
have been successfully used to implement algorithms directly in hardware. Inductive logic

Application-specific processors, Processor customisation, Inductive Logic Programming

 BCS International Academic Conference 2008 – Visions of Computer Science 319

programming can be seen as an extension of logic programming, and we therefore base our
solution around soft instruction processors, i.e. processors implemented in reconfigurable fabric.

Soft processors have disadvantages compared with general-purpose microprocessors, in
particular clock speed and resource usage. However, our approach is promising since: (a) the
underlying execution model is different from general-purpose processors, so a specialised
processor can perform more computations per cycle; (b) FPGAs enable customising the
processor architecture for a particular problem instance, hence reducing resource usage while
improving speed; (c) inductive logic programming is easily parallelisable, so a chip multiprocessor,
with processors on one chip, can exploit the increasing capacity and capability of FPGAs. Indeed,
similar approaches have been adopted for exploring various aspects of computer architecture,
such as transactional memory [16], using FPGA-based soft processors.

This paper describes Arvand, a customisable soft processor for fast execution of inductive
logic programming. There are four main novelties: (1) an instruction set and microarchitecture
for the Arvand processor for executing logic programs (Section 3.1), (2) customisation options
for the Arvand processor for improving performance or reducing resource usage to meet
requirements for a given application (Section 3.2), (3) evaluation of resource usage (Section 3.3)
and performance (Section 3.4) of Arvand, comparing it with general-purpose processors executing
large bioinformatics data sets, (4) evaluation of the performance and scalability of multiprocessors
based on Arvand (Section 4). Our proposed solution is aimed at exploiting parallelism in
inductive logic programming in particular, but many of the techniques can be used for other logic
programming-based application domains, such as cognitive robotics [10].

2. BACKGROUND AND RELATED WORK

Inductive logic programming [7] is a learning paradigm based on first-order logic, where
learning systems produce predicate hypotheses from background information and examples.
One advantage of this approach is that both the input background knowledge and the output
hypotheses are in a human-readable format. Another advantage is that by incorporating
background knowledge, the learning system can build on partial theories, for example in
bioinformatics [12, 13, 15].

Inductive logic programming frames the learning process as a search through a space of
hypotheses. We consider in particular the inductive logic programming system Progol, which
performs an A*-like search where the quality of a hypothesis is determined by the number of
positive and negative examples it correctly classifies as well as its complexity. The searching
and testing is computationally demanding, and learning tasks can run for hours or days on
modern workstations. To avoid overfitting, i.e. producing a solution which is too specific, cross-
fold validation is often used, which increases execution time further. In order to cope with
computational complexity, various approaches to parallelising the learning process have been
proposed, such as splitting the data set to form hypotheses based on each partition [11],
partitioning the language bias [1], and performing a parallel branch and bound search through the
hypothesis space [8]. Our approach involves parallelising the quality assessment of hypotheses;
it can be used with the other methods mentioned above. The level of parallelism we exploit has a
fine task granularity, which can be better exploited in a tightly-coupled single-chip system.

The machine learning system Progol is based on the logic programming language Prolog. We
can thus support the execution of Progol by using a processor supporting fast parallel execution
of Prolog programs. We do this in our Arvand processor, whose execution model is based on the
Vienna Abstract Machine (VAM) [6] execution model for Prolog. Although Arvand can potentially
execute arbitrary Prolog programs, inductive logic programming has certain properties which our
architecture is designed for; these properties include a limited execution depth for the hypothesis
tests (which means that the stack can be reduced and kept on-chip) and that background
knowledge often contains a large number of simple facts, which means that mechanisms for
handling (and reducing) non-determinacy is important.

 A Customisable Multiprocessor for Application-Optimised Inductive Logic Programming

 BCS International Academic Conference 2008 – Visions of Computer Science320

H
yp

ot
he

si
s

active(A) :-
atm(A,B,c,27,C),
bond(A,D,E,1),
bond(A,D,B,7).

1 h-fstvar A
2 c-goal atm/3
3 g-nxtvar A
4 g-fstvar B
5 g-const c
6 g-int 27
7 g-void
8 c-call
9 ...

B
ac

kg
ro

un
d atm(d1 ,d1_1 ,c,22 , -0.117).

atm(d1 ,d1_2 ,c,22 , -0.117).
...
bond(d1,d1_1 ,d1_2 ,7).
bond(d1,d1_2 ,d1_3 ,7).
...

1024 h-const d1
1025 h-const d1_1
1026 h-const c
1027 h-int 22
1028 h-fix -0.117
1029 c-nogoal
1030 ...

(a) Prolog code (b) Arvand instructions
FIGURE 1: Example data from the mutagenesis data set. Arvand instructions are prefixed to denote control
instruction (c), head data instruction (h), or goal data instructions (g). For both Prolog and Arvand code,
upper-case letters denote variables.

Prolog is a declarative language, with an execution model and primitive operations different
from those of conventional imperative languages. In particular, Prolog relies on unification for
data manipulation, uses tagged data, is strongly stack-oriented, and can have non-deterministic
execution. Programs are defined by declaring facts and rules describing relationships which are
held to be true. In the Progol system, hypotheses are rules, while the background knowledge
contains both facts and rules. We use a couple of benchmarks taken from bioinformatics:
mutagenesis and protein folding for immunoglobulin. To illustrate how these are represented,
Figure 1 shows a hypothesis (top) and a few facts from the background knowledge (bottom) from
the mutagenesis benchmark. Column (a) shows these in Prolog form, while column (b) shows the
corresponding VAM/Arvand instructions. The hypothesis describes the mutagenic activity of some
compound A in terms of properties of some of its constituent atoms and bonds. The part of the
background knowledge shown lists some such atoms and bonds.

The Arvand instructions are data-oriented; there is a strong correspondence between the Prolog
code and the Arvand instructions. Data instructions simply specify the presence of a variable
(e.g. fstvar, nxtvar, void), or a constant (e.g. int, const, fix). Control instructions specify
the structure of the rule or fact by delimiting its constituent parts (e.g. goal, call, nogoal). The
instruction set is high-level as instructions do not directly encode the operations to be performed.
There are for example no branching, jump, or stack manipulation instructions, as these operations
are implicit in the control instructions.

The VAM execution model uses two instruction streams, head and goal, which are combined
at run-time. The head instruction corresponds to the code of a caller, while the goal instruction
corresponds to the callee. In Figure 1a, the second line of the hypothesis (corresponding to lines
2–8 in 1b) can be seen as a call, querying the presence of a particular type of atom in compound A.
To determine this, execution considers possible matches, such as the example background facts
shown in the figure. Data from these two code streams are unified by being executed pairwise, e.g.
Arvand instructions pairs from lines 3 and 1024 onwards. Unification is responsible for parameter
passing, returning data, record allocation and field-access in records. Unification of terms can
fail. When failure occurs, execution backtracks and attempts another path of execution. This non-
deterministic execution requires careful stack support in order to reset the processor state.

Our aim is to provide efficient execution of the VAM execution model by parallel execution
of multiple processors, exploiting the latest FPGA technology in the implementation. A similar
approach is used in existing chip multiprocessors which combine several simple general purpose
processor cores tightly coupled together. In addition to providing individual processors customised
to the target application, we can also provide an application-optimised processor interconnect.

 A Customisable Multiprocessor for Application-Optimised Inductive Logic Programming

 BCS International Academic Conference 2008 – Visions of Computer Science 321

HEAD

CACHE

REGISTER

FILE

GOAL

CACHE

STACK

BUFFER

decode
combined instruction

control signals

SLU

fail

ALU

fail

DATA

CACHE

MEMORY BUS

instruction fetch

(2 cycles)

instruction decode/

register fetch
execute/

write-back

FIGURE 2: Architecture overview of the Arvand processor. The unit labelled SLU is the unifier.

While FPGA-based chip multiprocessors exist [9], they are often not sufficiently optimised for
logic programming applications.

We build on recent work on processors for logic programming [2, 3]. Our proposed processor
generalises the simple data processor in [2] and supports a much wider range of input (including
structured data) than the design in [3]. Both the single processor and the multiprocessor
architectures provide a higher degree of microarchitectural customisation than the ones in [3].
While [3] provides only execution time results, we also provide an analysis of the performance
benefits of using a high-level instruction set on a tailored architecture.

3. THE ARVAND PROCESSOR

3.1. Processor microarchitecture

The two-pointer VAM execution model is realised as a two-issue pipelined processor (Figure 2).
In its most basic form, the processor has four pipeline stages: two-stage pipelined fetch, one
decode stage, and one execution stage. There are two instruction pipelines (for head and goal
code) which are combined in the execute stage. The two-pointer model increases the control
complexity, but supports twice the issue bandwidth. Additionally, the two-pointer model can avoid
some redundant computations [6] and tends to generate less data on the heap which in some
cases can be eliminated altogether.

The two instruction streams are cached independently in direct-mapped caches. Caches are
constructed from small embedded pipelined RAMs with one read port and one write port.
Separate caching provides a cheap way of issuing two instructions per cycle. Also, the two
instruction streams may well have quite different characteristics, and separate caches allow
for changing the design separately. For example, a program dominated by non-deterministic
execution may have much higher temporal locality among goal instructions than among head
instructions, as the same goal is repeatedly and unsuccessfully unified with different heads.

A set of general-purpose registers contain variables in the current head activation record. Two
activation records are active at the same time, however, and the goal activation record is available

 A Customisable Multiprocessor for Application-Optimised Inductive Logic Programming

 BCS International Academic Conference 2008 – Visions of Computer Science322

in a top-of-stack buffer. Unification operations may require reading or writing to both records, and
the processor can do a read and a write each cycle to either record. The reading takes place
in the decode stage, while the writing takes place in the execute stage. Forwarding logic avoids
read-after-write hazards. There are no global variables, so all data references in the code point
into the relevant activation record. References on the stack, however, may point into the heap.
Such data references are resolved in the decode stage, where deep reference chains may cause
a pipeline stall.

In addition to the general-purpose registers, the processor contains special registers to store
activation records. In order to handle backtracking, the stack contains non-determinate activation
records (choice points) in addition to the regular activation records (environments), forming two
interleaved stacks. The topmost choice point is stored in a special register set in order to speed
up backtracking.

The execution stage handles the simple cases of unification as well as arithmetic operations. The
unification unit can compare two constant data items, record a binding on either or both of the
local stack and register file, and record a fresh unbound variable on the heap. A single simple
unification operation, corresponding to two data instructions, can thus be performed every cycle.

There are no explicit stack manipulation instructions, as these are implicit in the complex
instructions and backtracking logic. The head activation record is moved between the register
set and the stack buffer on call and return. Non-deterministic activation records are pushed on
some, but not all, calls, and popped on failure. Stack operations can stall the pipeline, but are
partially overlapped with instruction pipeline refills. The implicit stack operations add some control
complexity, but reduce the code size. This is useful, as cache sizes on our target platforms are
limited.

The processor supports additional operations. These include arithmetic operations, special
addressing modes for selecting program paths either based on static information or dynamic
information (known as static and dynamic indexing), and support for complex data structures
using additional pipeline stages.

3.2. Processor customisation

One advantage of targeting Arvand to FPGAs is that the processor can be customised
to different applications. These customisations can have a significant impact on both the
resource requirement and performance of the processor. When the processor is used as a
processing element in a chip multiprocessor, this results in interesting trade-offs in the aggregate
performance, as the number of processors that can fit on the chip depends on the type, and hence
performance, of the individual processors.

We focus on three types of customisation: microarchitecture customisations, memory interface
customisations, and memory size parametrisations. The microarchitecture and memory interface
customisations determine the types of programs that the processor can support, by constraining
the valid control and data constructs. This in effect trades off processor generality for resources.
These customisations can thus be applied when the characteristics of the target program/data is
known, either through automated analysis of a specific program or by user-specified constraints
on a class of programs. The memory size parametrisations do not alter the types of programs that
are supported, but may affect the performance of each processor. We use the strategy of reducing
the processor to the simplest instance that can support the required input programs/data, and
then considering trade-offs involving memory size parametrisations. This process can be partially
automated [4].

The following microarchitecture customisations are available:

ground: If a program contains only variable-free (ground) terms, a number of data instruction
combinations are guaranteed not to occur together, and can hence be eliminated.

 A Customisable Multiprocessor for Application-Optimised Inductive Logic Programming

 BCS International Academic Conference 2008 – Visions of Computer Science 323

unit: If a program contains only facts (unit clauses), rather than rules (except for the initial goal),
some control instruction combinations are guaranteed never to occur, simplifying decode
and control logic.

indexing: Dynamic indexing instructions, which reduce the amount of non-determinacy at run-
time, require support in the form of an extra call instruction, and a special execution mode
for traversing a lookup table. For some programs all this information can be determined
statically, and the instruction support can be eliminated.

alu: Some programs may rely exclusively on symbolic data and therefore do not require any
arithmetic operations (except separately hard-wired address computation) and hence no
ALU. When present, the ALU can be customised such that only certain operations are
supported.

structures: Unifying structures is supported by a number of different instructions, and requires
executing the two pipelines at different speeds. Programs without such structured data can
execute without this extra support.

In the most general processor instance, the code, stack, and heap are stored in main memory,
and are cached (head/goal instruction caches, data cache) or buffered (top-of-stack buffer) locally
on the processor. For some programs, however, these caches and buffers can be configured as
purely local units, or can be eliminated altogether. These customisations reduce both the memory
resource requirement, and the control logic associated with the buffering/caching. The following
memory interface customisations are available:

goal buffer: For programs with the unit customisation, the goal cache can be used as a local
memory buffer which is loaded during processor initialisation. This avoids overheads in
resolving cache misses for the goal instruction stream.

head buffer: For programs of limited size, all the head code can be kept locally.

local stack: For programs whose execution depth is limited, the whole stack can be kept locally.

no heap: The heap stores bindings for structured data and new unbound variables. Programs
which do not have either structured data or the relevant variable unifications, can execute
on a program without a heap.

local heap: For programs whose execution depth is limited, the data can be kept locally, instead
of being cached.

The mutagenesis benchmark can execute on a processor using the ground and unit
customisations, without dynamic indexing, heap, or structure support. Our other benchmark,
immunoglobulin, can execute on a processor with an ALU and dynamic indexing support, but
without heap or structure support.

3.3. FPGA implementation and trade-offs

Resource constraints is a major issue for our soft processor implementation. We assume a generic
target FPGA with configurable logic blocks (CLBs) and embedded memories. Either of these
resources can pose a limiting factor. While simple processor configurations use few resources,
adding features can significantly increase the programmable logic cost. Programs which can
operate using a reduced instruction set and limited amounts of memory are therefore the most
suitable for exploiting the chip multiprocessors that we propose.

We have implemented the Arvand processor on the Xilinx Virtex II chip XC2V6000, which has
a 0.15/0.12µm feature size. The XC2V6000 chip contains 6M system gates, divided into 8448
configurable logic blocks (CLBs), as well as 144 embedded 18Mb RAMs. Virtex II CLBs are
based around eight 4-input look-up tables (4-LUTs). Area cost can be separated into CLB cost for

 A Customisable Multiprocessor for Application-Optimised Inductive Logic Programming

 BCS International Academic Conference 2008 – Visions of Computer Science324

0

1000

2000

3000

4000

4
-L
U
T
s

g
ro
u
n
d
+
u
n
it

A
L
U

In
d
e
x
in
g

H
e
a
p

S
tr
u
c
tu
re
s FIGURE 3: Approximate resource

cost/benefit of customisations of the
Arvand processor measured in terms of
device-independent 4-input lookup tables
(4-LUTs), relative to a single processor in
the “normal” configuration with two small
512-word caches.

programmable logic and embedded RAM cost. Since CLBs are architecture specific, we report
the cost in terms of 4-LUTs.

Figure 3 shows the approximate cost of the different microarchitecture customisations using the
XC2V6000 device, measured relative to a single processor in the “normal” configuration (no
customisations). Processors can use several of the given customisations, which have an additive
effect on the total resource usage. There can therefore be a significant difference in resource
requirement between the simplest and most complex configuration.

Memory units are composed from embedded RAMs. We consider composing up to 16 embedded
RAMs configured as 512×36 bit units, resulting in a range of memory unit sizes from 512 words
to 8K words. An 8K-word memory unit uses 11% of the available memory resources on the
XC2V6000 chip. Additionally, there is overhead in terms of the connective logic required when
composing embedded RAMs. Thus a restriction of current technology is the limited size of caches
and buffers if the processor is used in a chip multiprocessor.

3.4. Single processor performance

The Arvand instruction set contains complex instructions targeted specifically to the Prolog/VAM
execution model. The number of instructions that needs to be executed for a given program is
therefore smaller for Arvand than for a general-purpose processor (GPP). On the other hand,
targeting FPGAs results in a slower clock. Also, the more complex instructions are likely to require
more cycles per instruction (CPI).

Executing Prolog on a general-purpose processor is often carried out via an abstract machine,
where the abstract machine instructions are either interpreted in a byte-code interpreter or are
used to guide compilation to the native instruction set. In contrast, the Arvand processor directly
executes such abstract machine instructions. Since the abstract machine instructions are more
complex than native microprocessor instructions, there is an interpretation overhead, Oint, which
is the number of native instructions required to execute each abstract machine instruction.

Arvand is faster than a general-purpose processor when its reduced interpretation overhead
outweighs its dual disadvantages of lower clock frequency and higher CPI. The speedup of Arvand
over the equivalent software executing on a GPP is given by: speedup = Oint× CPIGP P

CPIArvand
× fF P GA

fGP P

where typically the clock frequency ratio fFPGA/fGPP is in the range 1/10 to 1/40, CPIGPP < 1,
and CPIArvand > 1. This is a simplification as it ignores the effect the memory architecture,
necessarily different on the FPGA, has on performance.

We compare the FPGA implementation of Arvand, ArvandFPGA, with three software Prolog
systems: YAP Prolog, a fast direct-threaded byte code interpreter; GNU Prolog, a native-
compilation system; and ArvandSW, a software implementation of the Arvand execution model.
We use the ArvandSW target since ArvandFPGA follows a different basic execution model from YAP,
and uses small statically sized memory segments. For the benchmarks in this paper, ArvandFPGA

 A Customisable Multiprocessor for Application-Optimised Inductive Logic Programming

 BCS International Academic Conference 2008 – Visions of Computer Science 325

Benchmark System Oint CPIGPP CPIArvand
Speedup of Arvand at
40MHz 100MHz

mutagenesis
ArvandSW 34 1.38 0.37 0.92
YAP 82b 1.2b 2.05 0.41 1.03
GNU Prolog 33/60a 1.01 0.25 0.64

immunoglobulin YAP 84b 1.2b

1.96 0.96 2.40
GNU Prolog 45/39a 1.38 0.51 1.28

aBased on Arvand/YAP abstract machine instruction counts
bBased on estimated CPI value
TABLE 1: Performance comparison between a single ArvandFPGA and three software Prolog systems:
ArvandSW, YAP Prolog, and GNU Prolog. The interpretation overhead, Oint is the number of native
instructions required to execute one abstract machine instruction, based on the CPI in the next column.
The speedup column shows the speedup of ArvandFPGA over the given software when ArvandFPGA is clocked
at 40MHz and 100MHz. The larger this number, the larger the advantage of Arvand over software.

places data exclusively on the stack, and hence does not perform garbage collection. ArvandSW
is a bytecode interpreter which has an identical execution path as ArvandFPGA and executes
ArvandFPGA binaries.

We execute the software Prolog systems on a 2.53GHz Pentium 4 (Northwood) processor, which
is based on comparable technology to the Virtex II FPGA. The ArvandFPGA results do not consider
variations in cache or other architectural characteristics, and are based on a 2K-word head
instruction cache and a 1K-word goal instruction cache. The current implementation of Arvand
on the XC2V6000 executes at 40MHz. We also make a comparison with the processor executing
at 100MHz, which we consider a realistic clock frequency after further optimisations.

We consider two benchmarks taken from bioinformatics: mutagenesis and protein folding. The
Mutagenesis data set is a machine learning benchmark from a study [12] of the mutagenic
activity in nitro-aromatic compounds, linked to cancer. It contains simple program constructs and
relies heavily on backtracking. mutagenesis is a sample of 200 hypothesis tests from running this
benchmark through Progol. The mutagenesis benchmark uses 46KB of program data.

The immunoglobulin benchmark is taken from an inductive logic programming application for
detecting protein fold signature data [14]. The data set refers to different protein folds and is
sampled from the hypothesis tests relating to the immunoglobulin protein. The data set requires
the full range of control instructions and includes a modest amount of backtracking. There are
some arithmetic operations but no structures. The immunoglobulin benchmark uses 157KB of
program data. This data set can be executed on a processor with ALU and dynamic indexing
support only, without heap or structure support.

The speedup of ArvandFPGA over software is between 0.25 and 0.96 when ArvandFPGA is clocked
at 40MHz, i.e. at its best the same performance as the software. When ArvandFPGA is clocked
at 100MHz, its performance is correspondingly better, with speedups in the range 0.64 to 2.40.
For the purpose of measuring the CPI of Arvand, a pair of instructions (head + goal) is counted
as two instructions, even though they are executed as a combination. The theoretical minimum
CPI for Arvand is thus 0.5. The measured CPI for Arvand is around 2, a result of the high cost
of control hazards. The performance of Arvand with respect to the software targets is better
for immunoglobulin than for mutagenesis. This can be attributed to the relatively higher cost of
backtracking compared with unification in Arvand. The mutagenesis benchmark is dominated
by backtracking. The interpretation overhead is lower for GNU Prolog than for YAP, which can
be expected, since it compiles directly to the native instruction set. This estimated overhead is
consistent with the assembly code generated by the GNU Prolog compiler.

Overall, we find that despite the higher CPI and lower clock frequency, a single Arvand processor
only has a slight disadvantage with respect to software running on a general-purpose processor.
This is achieved by a much reduced instruction count and a customised microarchitecture. It thus
forms a good basis for chip multiprocessor implementations.

 A Customisable Multiprocessor for Application-Optimised Inductive Logic Programming

 BCS International Academic Conference 2008 – Visions of Computer Science326

BUS1

BUS2

BUS3

I/O QG FORK JOIN SUM

M1

P1 P2 P3 P4

M2

P5 P6 P7 P8

M3

FIGURE 4: Multiprocessor
structure for Progol multi-
processor. Each box labelled
Pi denotes an instance of the
Arvand processor

4. PROGOL MULTIPROCESSOR

The computational kernel of Progol can be executed using an array of processors to evaluate the
stream of hypotheses. Figure 4 shows the structure of such a Progol multiprocessor with eight
independent processor cores (P1–P8). In practice the precise number of cores is typically larger
and depends on the processor configuration and the target device.

The input to this Progol-specific multiprocessor consists of: (a) a logic program encoding the
background knowledge, (b) a stream of program snippets encoding the hypotheses, and (c) a
list of examples. The background knowledge is written to the shared code areas on each of the
memories used by the processors (M2 and M3), while the hypotheses and examples are written to
input buffers in M1. The hypothesis test is produced on-chip by combining a hypothesis with each
of the examples in a query generator (QG). The resulting stream of program calls are dispatched
to available processors by a FORK unit which writes the program call data to each processor’s
buffer in M2 or M3. The results are synchronised by the JOIN unit and accumulated by the SUM
unit, and then written back to the output buffer. The FORK and JOIN units are pipelined to avoid
becoming a critical path due to high fan-in and fan-out.

To evaluate the scaling properties of the multiprocessor, we use the processor customisations
for the two benchmarks outlined in Section 3.2. For mutagenesis we use up to 16 processors
on the XC2V6000 using a fixed goal cache size (512 words), and varying the head cache
size between 512 words and 4K words. For immunoglobulin we use up to 8 processors with
different microarchitectural customisations, but otherwise the same setup. The speedup in each
case is measured relative to a single processor with a 512-word head instruction cache. As bus
congestion can be an issue for larger number of processors, we additionally find the average,
maximum, and minimum utilisation for each of four banks for the different cache configurations.

For mutagenesis the speedup is near-linear for up to 8 processors (Figure 5a). For 16-processors
the speedup falls somewhat, indicating that memory bus congestion and dispatch overhead
becomes significant. There is no noticeable difference between the different cache configurations,
indicating that there are few capacity misses, even for the smallest caches. For this reason,
the external memory utilisation (Figure 5b) is similar for the different cache configurations, but
increases to almost 50% for 16 processors.

For immunoglobulin the speedup is near-linear for up to 8 processors (Figure 6a). The larger
cache configuration (4K words) shows a 12% higher performance than the smallest (512 words).
The difference in memory utilisation for the different cache configurations (Figure 6b) results in
differences in speedup, but the effect is not large for 8 processors, as the total memory utilisation
is low, at 25%.

The number of nodes in the multiprocessor can be varied, along with the configuration of each
processor. When scaling the number of nodes in the multiprocessor, there are two resource
limitations: the logic required for the processor and the memories required for its buffers and
caches. There is thus a trade-off where increasing the number of processors limits the amount

 A Customisable Multiprocessor for Application-Optimised Inductive Logic Programming

 BCS International Academic Conference 2008 – Visions of Computer Science 327

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

 o
ve

r
si
ng

le
 p

ro
ce

ss
or

Number of processors

a) Speedup

Head cache: 512
Head cache: 1K
Head cache: 2K

 0

 10

 20

 30

 40

 50

 60

168421

E
xt

er
na

l
m

em
or

y
ut

ili
sa

ti
on

 (
%

)

Number of processors

b) Memory performance

Head cache: 512
Head cache: 1K
Head cache: 2K

FIGURE 5: Speedup and memory utilisation of the mutagenesis benchmark for different cache configurations
of the Progol multiprocessor.

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

S
pe

ed
up

 o
ve

r
si
ng

le
 p

ro
ce

ss
or

Number of processors

a) Speedup

Head cache: 512
Head cache: 1K
Head cache: 2K
Head cache: 4K

 0

 10

 20

 30

 40

 50

 60

8421

E
xt

er
na

l
m

em
or

y
ut

ili
sa

ti
on

 (
%

)

Number of processors

b) Memory performance

Head cache: 512
Head cache: 1K
Head cache: 2K
Head cache: 4K

FIGURE 6: Speedup and memory utilisation of the immunoglobulin benchmark for different cache
configurations of the Progol multiprocessor.

of memory available to each processor. Figure 7 shows this trade-off for (a) the XC2V6000 chip
(based on place-and-route results), and (b) the larger XC4VLX160 chip (estimated).

The configuration used for the mutagenesis benchmark allows up to 32 processors on a chip
for small memory sizes, but this number quickly drops when the total memory size increases.
The configuration used for immunoglobulin allows a smaller number of processors, 14 on the
XC2V6000, but this means that a larger total memory size is required before the multiprocessor
placement becomes memory resource bound. Figure 7b shows a similar trend for the larger
XC4VLX160 FPGA, which should fit 65 processors for mutagenesis and 30 processors for
immunoglobulin.

We find that up to 32 processors for the mutagenesis data set can fit on the XC2V6000 chip.
A 16-processor configuration gives a speedup of around 13 with respect to a single Arvand
processor. Extrapolating to 32 processors, and taking bus utilisation into account, we expect a
speedup of around 20 times compared with a single Arvand processor. Combined with the single-
processor results for mutagenesis the total FPGA speedup with respect to GNU Prolog running
on a 2.53GHz Pentium 4 is then around 5 times when Arvand is running at 40MHz and around 13
times when it is running at 100MHz. Doing the same analysis for immunoglobulin, a 14-processor
configuration would have a speedup of around 6 times when running at 40MHz and 15 times when
running at 100MHz.

 A Customisable Multiprocessor for Application-Optimised Inductive Logic Programming

 BCS International Academic Conference 2008 – Visions of Computer Science328

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 6 8 10 12 14 16 18

N
um

be
r

of
 p

ro
ce

ss
or

s

Number of 18Kb memory blocks

(a) XC2V6000

Mutagenesis
Immunoglobulin

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 6 8 10 12 14 16 18

Number of 18Kb memory blocks

(b) XC4VLX160

Mutagenesis
Immunoglobulin

FIGURE 7: Trade-off between number of processors and memory usage per processor for the Progol
multiprocessor on two types of FPGAs: (a) XC2V6000, (b) XC4VLX160.

5. CONCLUDING REMARKS

This paper presents the Arvand processor and multiprocessor architectures for accelerating
machine learning in the inductive logic programming domain. Prototype implementations on
XC2V6000 and XC4VLX160 FPGAs show the viability of the approach: that a combination of
complex instruction set, domain specialisation and application customisation can give better
performance than general-purpose processors. The low resource usage of the processor allows
multiple instances to fit on a chip, and the machine learning application readily supports
exploitation of this form of parallelism.

The Arvand design can be further improved in several ways. For instance, soft processors on
the same FPGA device have been reported to be capable of 170MHz [17], while our design is
currently clocked at 40MHz. Even if the current design cannot be pushed that far, the memory
bandwidth can be better utilised and can be clocked faster than the processor. A four-time
performance improvement appears possible through a combination of higher processor and
memory clock speeds. Space usage could also be improved, perhaps by a factor of two. Moreover,
there is room for microarchitectural improvements in the processor, especially with regards to
branch overheads, which might yield a performance benefit of 50%-100%. We therefore hope
that, using current technology, the performance of Arvand can be improved by a factor of ten, to
achieve an overall speedup of up to two orders of magnitude over general-purpose processors.

Compiler optimisations can have a significant impact on overall performance. We have factored
compiler optimisations out of the comparisons between the Arvand processor and the general-
purpose processor for a fair comparison of the raw computational power in this application domain.
To some extent compiler optimisation is an orthogonal issue, as such optimisations can be
applied to both general- and special-purpose processors. However, a highly specialised processor
can support hardware optimisations which may incur fixed costs in software. An example, not
described earlier, involves an Arvand optimisation which trims non-deterministic branches of
execution at run time by setting a flag in one instruction, giving a speedup of 40 times for the
mutagenesis data set. This has only a small hardware cost and no run-time cost in cases where it
does not apply. In contrast, implementing the same feature in software, especially for dynamically
generated code as in Progol, could incur additional run-time overhead to decode the flag even
where the optimisation is not used as the flag is read. The results in Section 3.4 and Section 4 do
not use this optimisation for Arvand.

This paper compares the Arvand processor with a conventional single-core microprocessor. The
recent trend, however, is towards multicore processors. Such multicore processors can clearly

 A Customisable Multiprocessor for Application-Optimised Inductive Logic Programming

 BCS International Academic Conference 2008 – Visions of Computer Science 329

exploit the same type of parallelism in Arvand. However, Arvand has been shown to be competitive
with current microprocessors in comparable technology. Future research would explore whether
the customisability of Arvand, coupled with the growth in FPGA capacity, would continue to
make Arvand-like processors an appealing option. Further work would also consider improving
the design to attain higher clock rates, making optimal use of the on-chip memory bandwidth,
and exploiting additional forms of parallelism [1, 8, 11]; recent advances in nanowire-based
programmable logic [5] could offer a long-term promise for this approach.

ACKNOWLEDGEMENTS

The support of UK EPSRC (EP/C51050X/1 and EP/C549481/1), the ORS Award Scheme, the
HiPEAC project, Agility, Celoxica and Xilinx is gratefully acknowledged.

REFERENCES

[1] Dehaspe, L. and De Raedt, L. (1995) Parallel inductive logic programming. Proc. MLnet
Familiarization Workshop on Statistics, Machine Learning and Knowledge Discovery in
Databases, Heraklion, 112–117.

[2] Fidjeland, A. and Luk, W. (2003) Customising parallelism and caching for machine learning.
Proc. IEEE Int. Conf. on Field-Programmable Technology, Tokyo, 204–211.

[3] Fidjeland, A. and Luk, W. (2005) Customising application-specific multiprocessor systems:
a case study. Proc. IEEE Int. Conf. Application-Specific Systems, Architectures, and
Processors, Samos, 239–244.

[4] Fidjeland, A. and Luk, W. (2006) Archlog: High-level synthesis of reconfigurable
multiprocessors for logic programming. Proc. Int. Conf. Field-Programmable Logic and
Applications, Madrid, 335–340.

[5] Gojman, B. et al. (2006) 3D Nanowire-based programmable logic, Proc. Int. Conf. on Nano-
Network, Lausanne, 1–5.

[6] Krall, A. and Neumerkel, U. (1990) The Vienna Abstract Machine. Proc. Int. Workshop
Prog.Language Implementation and Logic Programming, LNCS 456, 121–135.

[7] Muggleton, S. and De Raedt, L. (1994) Inductive logic programming: Theory and methods.
J. of Logic Programming, 19,20:629–679.

[8] Ohwada, H. et al. (2000) Concurrent execution of optimal hypothesis search for inverse
entailment. Proc. Int. Conf. Inductive Logic Programming, 165–173.

[9] Ravindran, K. et al. (2005) An FPGA-based soft multiprocessor system for IPv4 packet
forwarding. Proc. Int. Conf. Field-Programmable Logic and Applications, 487–492.

[10] Shanahan, M.P. and Randell, D. (2004) A logic-based formulation of active visual perception.
Proc. Int. Conf. Principles of Knowledge Representation and Reasoning, 64–72.

[11] Skillicorn, D.B. and Wang, Y. (2001) Parallel and sequential algorithms for data mining using
inductive logic. Knowledge and Information Systems, 3:405–421.

[12] Srinivasan, A. et al. (1994) Mutagenesis: ILP experiments in a non-determinate biological
domain. Proc. Int. Inductive Logic Programming Workshop, Gesellschaft fur Mathematik und
Datenverarbeitung MBH, GMD-Studien Nr 237.

[13] Sternberg M. and Muggleton, S. (2003) Structure activity relationships (SAR) and
pharmacophore discovery using inductive logic programming (ILP). QSAR and
Combinatorial Science, 22.

[14] Turcotte, M., Muggleton, S. and Sternberg, M. (1998) Protein fold recognition. Proc. 8th Int.
Workshop on Inductive Logic Programming (ILP-98), LNAI 1446, Berlin, 53–64.

[15] Turcotte, M., Muggleton, S. and Sternberg, M. (2001) Automated discovery of structural
signatures of protein fold and function. J. of Molecular Biology, 306:591–605.

[16] Wee, S. et al. (2007) A practical FPGA-based framework for novel CMP research, Proc. Int.
Symp. on FPGAs, Monterey, CA.

[17] Xilinx. (2006) MicroBlaze Soft Processor – Performance, Xilinx Inc., CA.

 A Customisable Multiprocessor for Application-Optimised Inductive Logic Programming

 BCS International Academic Conference 2008 – Visions of Computer Science330

