
Automatic Invention of Functional Abstractions

Robert J. Henderson and Stephen H. Muggleton

Department of Computing, Imperial College London, United Kingdom
{rjh09,shm}@doc.ic.ac.uk

Abstract. We investigate how new elements of background knowledge
can be abstracted automatically from patterns in programs. The approach
is implemented in the KANDINSKY system using an algorithm that
searches for common subterms over sets of functional programs. We demon-
strate that KANDINSKY can invent higher-order functions such as map,
fold, and sumBy from small sets of input programs. An experiment shows
that KANDINSKY can find high-compression abstractions efficiently, with
low settings of its input parameters. Finally we compare our approach with
related work in the inductive logic programming and functional program-
ming literature, and suggest directions for further work.

1 Introduction

Can background knowledge be learned automatically through problem-solving
experience? This would be a form of meta-learning [7], distinct from base learning
which is concerned simply with solving problem instances. We propose that
a general strategy for acquiring new background knowledge can be found in
the abstraction principle of software engineering. Abstractions [1] are re-usable
units obtained by separating out and encapsulating patterns in programs. We
define abstraction invention as the process of formulating useful abstractions in
an inductive programming context, and when these abstractions take the form
of functions, Functional Abstraction Invention (FAI). Some forms of predicate
invention may be regarded as FAI (since predicates are functions).

We have implemented KANDINSKY 1, a system which performs FAI over
sets of functional (λ-calculus) programs by Inverse β-Reduction (IβR), an ana-
logue of inverse resolution [4, 5]. This move from first-order logic to λ-calculus is
crucial because it allows our system to invent higher-order functional abstrac-
tions, an ability that is necessary in order to generalise on arbitrary patterns in
programs. See Fig. 1 for an example where first-order methods fail.

incElems([],[]). doubleElems([],[]).

incElems([H|T],[H1|T1]) :- doubleElems([H|T],[H1|T1]) :-

inc(H,H1), incElems(T,T1). times(2,H,H1), doubleElems(T,T1).

Fig. 1. To abstract over the commonality manifest in the above two programs requires
quantification over predicate symbols, which is impossible in first-order logic.

1 Source code available at: http://ilp.doc.ic.ac.uk/kandinsky

a b
s

f f
xx

f =)(x
a b
s

a b
s

f ff f
x x

f =)(x
a b
s

Base learning

Abstraction invention

Base learning

Data
Background
knowledge

? ? ? ? ?? ? ?? ? ??

? ?? ? ??

? ?? ? ??

Fig. 2. An illustration of
compression-based learning. The
top line represents the input in
a learning problem: there is nu-
merical data with some values
missing, and there is background
knowledge consisting here of an
‘arithmetic progression’ opera-
tor. From top to bottom, the
learner performs a succession of
transformations, each of which
involves compression (reducing
the width of the entire horizon-
tal block), and some of which also
involve generalisation (prediction
of the missing data values).

KANDINSKY is set within a larger inductive programming framework called
Compression-Based Learning (CBL). CBL takes advantage of the general corre-
spondence that exists between learning and compression (minimum description
length [3]), to allow both base learning and meta-learning to be understood in a
unified manner in terms of transformation operators. See Fig. 2 for an illustra-
tion of CBL. We shall leave further discussion of CBL for a future paper; the
rest of this paper is concerned only with the FAI meta-learning technique.

2 KANDINSKY’s Abstraction Invention Algorithm

Given a set of k λ-calculus terms, each with at most n subterms, the number of
possible combinations of two or more subterms with at most one subterm taken
per term is of the order of (n+1)k. Any of these combinations can potentially be
anti-unified by IβR to form an abstraction, but enumerating all of them by brute
force is intractable for even moderately large values of k and n. To cope with
this, we have designed a heuristic search procedure auSearch (anti-unification
search) whose running time is polynomial in both k and n.

To prepare a set of terms for auSearch, all their subterms are generated,
converted to a tree representation (Defn. 1), and each subterm paired with a
‘tag’ (Defn. 2) marking its origin. auSearch itself (Fig. 3) searches the space of
‘common parts’ (Defn. 1) that are obtainable by anti-unifying combinations of
two or more subterms. It makes use of a heuristic ‘score’ function (Defn. 3)
in order to guide the search. Each auSearch result represents one candidate

Input: σ, τ ∈ N; I, a set of 〈tag, tree〉 pairs.
Output: a set of auSearch results.

1. proc auSearch(σ, τ, I):
2. Let R = bagof (findOne(σ, τ, I)).
3. Divide R into disjoint subsets by tag-set. For each of these subsets, extract

the top σ elements by score. Place all of the extracted elements into a
new set R′.

4. Return the top τ elements by score of R′.

Fig. 3. The auSearch algorithm. findOne is a non-deterministic procedure that returns
many auSearch results on backtracking. findOne and auSearch are mutually recursive.
Owing to lack of space we defer a specification of findOne to a longer paper.

abstraction, which can be constructed from the subterms marked by the result’s
tag-set.

Definition 1 (tree, node, common part, mismatch point, size). A tree
is a pair 〈h,B〉 where h is a node and B is a list of trees. In the representation of
λ-terms as trees, each node is a symbol representing either a variable, a function
application, or an anonymous function (λ-abstraction). A common part is either
a mismatch point •, or a pair 〈h,B〉 where h is a node and B is a list of common
parts. The size of a tree or common part is equal to the number of nodes it
contains. A mismatch point has zero size.

Definition 2 (tag, term index, subterm index). A tag consists of a pair of
integers called the term index and the subterm index. It represents a reference
to a particular subterm within a particular term, given a list of terms.

Definition 3 (auSearch result, score). An auSearch result is a pair of the
form 〈γ, T 〉, where γ is a common part and T is a tag-set (set of tags). Its score,
an approximation to the degree of compression that can be obtained by deriving
an abstraction from this result, is given by (n− 1)c− (n+ 2)m− n, where n is
the number of unique term indices contained in T , c is the size of γ, and m is
the number of mismatch points contained in γ.

auSearch has two beam size parameters σ and τ which limit how many inter-
mediate results are stored during the search. When these parameters are both
infinite, the search is complete but has exponential time complexity in the size of
the input; when they are finite, the search is incomplete but the time complexity
is polynomial.

Equipped with auSearch, KANDINSKY can perform a process called ex-
haustive greedy abstraction invention. Here, a set of programs is provided as
input, and KANDINSKY constructs the most compressive abstraction that it
can find, adds it to the set, and re-expresses the other programs in terms of it.
This process repeats continually, halting only when no further compression is
possible. A demonstration on two (hand-constructed) datasets Map-Fold (MF)
and Sum-Means-Squares (SMS) is shown in Fig. 4.

a). Map-Fold dataset (size = 71)

incElems = fix (\ r lst -> if (null lst) nil (cons

(inc (head lst)) (r (tail lst))))

doubleElems = fix (\ r lst -> if (null lst) nil (cons

(times two (head lst)) (r (tail lst))))

length = fix (\ r lst -> if (null lst) zero (inc

(r (tail lst))))

↓
After 1 stage (size = 53, compression = 25.4%)

g1 = \ a1 -> fix (\ a2 a3 -> if (null a3) nil

(cons (a1 (head a3)) (a2 (tail a3))))

incElems = g1 inc

doubleElems = g1 (times two)

length = fix (\ a4 a5 -> if (null a5) zero (inc

(a4 (tail a5))))

↓
After 2 stages (size = 50, compression = 29.6%)

g2 = \ a1 a2 -> fix (\ a3 a4 -> if (null a4)

a1 (a2 a4 (a3 (tail a4))))

g1 = \ a5 -> g2 nil (\ a6 -> cons (a5 (head

a6)))

incElems = g1 inc

doubleElems = g1 (times two)

length = g2 zero (\ a7 -> inc)

b). fold

fold0

sum sumBy meanBy

sumElems

squareSum

sumSquares

sumCubes

mean

meanSquare

square

Fig. 4. a). KANDINSKY’s
output trace on the Map-
Fold dataset, which consists
of three list-processing pro-
grams. In stage 1, KANDIN-
SKY antiunifies incElems

with doubleElems to pro-
duce an abstraction g1 which
we may recognise as map, a
higher-order function which
maps an arbitrary unary op-
eration over the elements of
a list. In stage 2, KANDIN-
SKY antiunifies length with
a subterm of g1 to pro-
duce g2, a form of fold
which accumulates over a
list using a binary opera-
tion. b). Summary of results
for the Sums-Means-Squares
dataset. The input programs
(inside dashed rectangle) ex-
press various actions over the
elements of a list. KANDIN-
SKY succeeded in finding six
abstractions, which we in-
spected and assigned suitable
names. sumBy is a higher-
order analogue of sum which
maps an arbitrary function
over a list before summing its
elements; meanBy is a gener-
alisation of mean along simi-
lar lines. fold0 is a speciali-
sation of fold.

3 Experiment

In this section we ask: in practice, can we expect KANDINSKY to find near-
optimally compressive abstractions in polynomial time? As discussed in Sect. 2,
auSearch can always find an optimally compressive abstraction when the beam
size parameters σ and τ are infinite, because under those conditions it generates
every abstraction in the entire search space. However, finite values of the beam
size parameters are necessary for a tractable polynomial-time search. By study-
ing the effect on compression of varying these parameters, we wish to determine
if one can expect to achieve near-optimal compression even when using relatively
small finite values.

a). Effect of τ on compression,
for both datasets.

b). Effect of τ and σ on
time taken, for SMS.

0

10

20

30

40

50

0 10 20 30 40 50

C
o
m

p
re

ss
io

n
/

%

τ

SMS,σ=1
SMS,σ=50

MF

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

T
im

e
/

s

τ

σ=50
σ=10
σ=5
σ=3
σ=2
σ=1

σ 1 2 3 5 10 50

τ 15 24 32 44 – –
c). Effect of σ on the smallest value of τ at which the
compression plateau of 45.1% was reached, for SMS.

Fig. 5. Experimental results. The two datasets are ‘Map-Fold’ (MF) and ‘Sums-Means-
Squares’ (SMS). σ and τ are the beam-size parameters of KANDINSKY’s search algo-
rithm. In a), the compression-τ curves for MF are all identical for the six values of σ
that were tested; for SMS they are all different but lie very close together, so we have
only plotted those for the lowest and highest σ values. In b), we have plotted the curves
for SMS only; the curves for MF show a somewhat similar pattern. The experiment
was run on a 2.8 GHz desktop PC with 4 GB of RAM.

We ran exhaustive greedy abstraction invention on the MF and SMS datasets,
at values of σ of 1, 2, 3, 5, 10, and 50, for all values of τ between 0 and 50, and
recorded the overall compression for each run (Fig. 5a). We also measured the
time taken at the same values of σ and for values of τ at 0, 5, 10 . . . 50 (Fig. 5b). To
reduce the effects of measurement error, each timing measurement was averaged
over 200 identical runs for MF and 20 identical runs for SMS.

From the results, we see that as tau increases, compression increases. How-
ever, the vast majority of compression is achieved for both datasets by τ = 4:
the compression curves reach a ‘plateau’ very rapidly. For larger values of σ, a
larger value of τ tends to be needed to reach the maximum achievable level of
compression (Fig. 5c). Time taken increases with both τ and σ.

The ‘plateau’ phenomenon that we observe supports the hypothesis that low
beam size parameters are adequate for achieving near-optimal compression. For
the datasets studied here, it seems unlikely that the plateau is a ‘false-summit’,
because the invented abstractions capture almost all of the obvious commonality
manifest in the input programs. However, whether this plateau effect will occur
for arbitrary input programs is an open question; ultimately it would be worth
trying to obtain a theoretical justification.

4 Related/Further Work and Conclusion

Our FAI technique is inspired by a standard ‘recipe’ which human programmers
use to derive functional abstractions from patterns in programs, described by
e.g. Abelson and Sussman [1, Sect. 1.3.1]. One previous attempt to automate
this kind of recipe is due to Bakewell and Runciman [2]; they implemented an
abstraction construction algorithm for Haskell programs, however they did not
address the problem of searching for a compressive abstraction. In inductive
logic programming, the Duce [4] and CIGOL [5] systems use inverse resolution
to perform FAI in propositional and first-order logic respectively; KANDINKSY
shares a lot with these systems, both its inverse deduction approach (IβR), as
well as its use of a compression-guided search algorithm.

For further work, we hope shortly to combine KANDINSKY with a base
learning system so as to realise a full CBL framework. Many improvements can
also be made to KANDINSKY itself; most significantly it is currently limited to
deriving abstractions from syntactic commonality in programs, whereas a more
powerful system could search the space of all semantic equivalences via β-η-δ
transformations.

To conclude, we have defined the term abstraction invention to mean the
derivation of new knowledge from patterns in programs. We have demonstrated
and experimentally justified an efficient algorithm for functional abstraction
invention over λ-calculus programs in the KANDINSKY system. KANDINSKY
invented, without any prior knowledge of such concepts, higher-order functions
such map, fold, sumBy, and meanBy. Some of these functions are strikingly similar
to ones in the Haskell standard library [6], so KANDINSKY is clearly able to
invent abstractions that are natural from a human perspective.

Acknowledgments. Thank you to Dianhuan Lin, Alireza Tamaddoni-Nezhad,
and Jianzhong Chen, for their helpful comments on an earlier draft of this paper.

References

1. Abelson, H., Sussman, G.J.: Structure and Interpretation of Computer Programs.
MIT Press, Cambridge, Massachusetts, 2nd edn. (1996)

2. Bakewell, A., Runciman, C.: Automated generalisation of function definitions. In:
FLOPS’99. LNCS, vol. 1722, pp. 225–240. Springer-Verlag (1999)

3. Grünwald, P.D., Myung, J., Pitt, M.A.: Advances in Minimum Description Length:
Theory and Applications. MIT Press (2005)

4. Muggleton, S.: Duce, an oracle based approach to constructive induction. In: IJCAI-
87. pp. 287–292 (1987)

5. Muggleton, S., Buntine, W.: Machine invention of first-order predicates by inverting
resolution. In: Proceedings of the 5th International Conference on Machine Learning.
pp. 339–352. Morgan Kaufmann (1988)

6. Peyton Jones, S.L.: Haskell 98 Language and Libraries: The Revised Report. Cam-
bridge University Press (2003)

7. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artificial
Intelligence Review 18(2), 77–95 (2002)

