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Abstract. In a previous paper we introduced a framework for combin-
ing Genetic Algorithms with ILP which included a novel representation
for clauses and relevant operators. In this paper we complete the pro-
posed framework by introducing a fast evaluation mechanism. In this
evaluation mechanism individuals can be evaluated at genotype level
(i.e. bit-strings) without mapping them into corresponding clauses. This
is intended to replace the complex task of evaluating clauses (which usu-
ally needs repeated theorem proving) with simple bitwise operations. In
this paper we also provide an experimental evaluation of the proposed
framework. The results suggest that this framework could lead to signifi-
cantly increased efficiency in problems involving complex target theories.

1 Introduction

Current ILP systems mostly employ deterministic search methods to examine
the refinement space of clauses and use different kind of syntactic biases and
heuristics (e.g. greedy methods) to cope with the complexity of the search, which
otherwise is intractable. Using these biases usually limits the exploration power
of the search and may lead to local optima. On the other hand, more powerful
search methods are required for dealing with large search spaces (for example in
multi-clause learning). Genetic Algorithms (GAs) have great potential for this
purpose and it is likely that a combination of ILP and GAs can overcome the
limitation of each individual method and can cope with some of the complexities
of real-world applications.

In [26] a framework for combining Genetic Algorithms with ILP was intro-
duced and a novel binary representation and relevant operators were discussed.
It was shown that the proposed representation has interesting properties in terms
of first-order concept learning. For example, it was shown that essential opera-
tions on clauses, such as unification and anti-unification [22, 21], can be achieved
by simple bitwise operations (e.g. and/or) on binary strings.

In this paper we complete the proposed framework by introducing a fast
evaluation mechanism for evaluating individuals at genotype level. In this paper
we also explain an implementation of the proposed framework together with an
empirical evaluation of the implemented system.

The paper is organised as follows. Section 2 reviews the proposed framework
and also provides the definition and theorems which are needed in the next



sections. Section 3 introduces a new evaluation mechanism for clauses. In this
section we show that evaluating a clause can be done by simple and fast opera-
tions. Section 4 introduces stochastic refinement for directing genetic operators.
Implementation and evaluation are explained in section 5. Related work and
similar systems are discussed in section 6. Finally, section 7 concludes this paper
and gives some directions for further research.

2 Representation, Encoding and Operators

In this section, we review the proposed binary encoding for first-order clauses and
some of its properties. We also provide a summary of definitions and theorems
which will be required in the rest of this paper. Proofs and more details about
the representation and operators can be found in [26].

Figure 1.a shows the main idea of the binary representation by a simple ex-
ample. Consider a clause with n variable occurrences. The relationships between
these n variable occurrences can be represented by a graph having n vertices
in which there exists an edge between vertices v; and v; if ith and jth vari-
able occurrences in the clause represent the same variable. For example variable
bindings in clause p(X,Y):-q(X,Z),r(Z,Y) represent an undirected graph and this
clause can be represented by a binary matrix as shown in Figure 1.a. In this ma-
trix entry m;; is 1 if 4th and jth variable occurrences in the clause represent the
same variable and m;; is 0 otherwise. This representation has interesting prop-
erties which can be exploited by a genetic algorithm for searching the refinement
space of a clause.

Definition 1 (Binding Set). Let B and C both be clauses. C is in binding set
B(B) if there exists a variable substitution * @ such that C = B.

Definition 2 (Binding Matrix). Suppose B and C are both clauses and there
exists a variable substitution 6 such that C0 = B. Let C' have n variable occur-
rences representing variables (v1,va, ..., v,). The binding matriz of C is an nxn
matriz M in which m;j s 1 if there exist variables v;, v; and u such that v;/u
and vj/u are in 6 and m;; is 0 otherwise. We write M (v;,v;) =1 if my; =1
and M (v;,v;) =0 if m;; = 0.

Definition 3 (Normalized Binding Matrix). Let M be an n x n binary
matriz. M is in the set of normalized binding matrices M, if M is symmetric
and for each 1 < i <n,1<j<nandl <k<n, my;=1if my =1 and
Mmg; = 1.

Definition 4 (Mapping Function M(C)). The mapping function M : B(B) —
M, is defined as follows. Given clause C € B(B) with n variable occurrences
representing variables (vi,vs,...,v,), M(C) is an n X n binary matriz in which
my; 18 1 if variables v; and v; are identical and m;; is 0 otherwise.

! Substitution § = {v;/u;} is a variable substitution if all v; and u; are variables.
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(b) A substitution lattice bounded below by clause p(X,Y):-¢(X,Z),r(Z,Y)
and binary encoding for each clause

Fig. 1. A binary representation for clauses and the relationship between the binary
strings and the substitution ordering between clauses.



Definition 5 (Mapping Function C(M)). The mapping function C : M,, —
B(B) is defined as follows. Given a normalized n xn binding matriz M, C(M) is
a clause in B(B) with n variable occurrences (v1,vs, .. .,vy,), in which variables
v; and v; are identical if m;; is 1.

Definition 6 (Matrix Subset). Let P and Q) be in M,,. It is said that P C Q
if for each entry p;; € P and q;; € Q , pij 1s 1 if g is 1. P=Q if P C Q and
QCP.PCQifPCQand P#£Q.

Definition 7 (Subsumption and Substitution). Clause C subsumes clause
D, C = D if there exists a (variable) substitution 6 such that C6 C D (i.e.
every literal in CO is also in D). C properly subsumes D, C = D if C = D and
D # C. Clause D is a substitution of clause C, C O D if there exists a (variable)
substitution §' such that C§' = D (i.e. every literal in C8' corresponds to a literal
in D). D is a proper instance of C,C 2D if C 3D and D 2 C.

Because of the substitution order between clauses (which is a quasi-order)
the search space (or refinement space) can be modelled as a sub-lattice of sub-
sumption [21]. The following theorem represents the relationship between binary
matrices and the substitution order of clauses. However, because these theorems
also hold for the subsumption order we use the subsumption notation which is
more general.

Theorem 1. For each clause B and matrices My and Ms in M, such that
C (M) € B(B) and C(Mz) € B(B), C(M,) = C(Mz) if M1 C M>.

Ezxample 1. Figure 1.b shows a substitution lattice bounded below by the clause
p(X,Y):-q(X,Z),r(Z,Y). This lattice shows the substitution ordering between
clauses which are in the same binding set. According to Theorem 1, binding
matrix of each clause which subsumes the bottom clause must be a subset of the
binding matrix of the bottom clause. Hence, each clause in this search space can
be encoded by 3 bits.

The proposed binary representation can be used to encode a substitution
lattice (bounded below by a bottom-clause) in a compact way. Moreover, this
encoding reduces the redundancy which we usually have in a first-order represen-
tation. However, we may still have redundant binary representation for clauses
with more than one literal per predicate. To avoid this redundancy, one solu-
tion is to re-order literals with the same predicate symbol in such a way that
the corresponding binary number is minimal. Using this strategy ensures that
the binary encoding for these clauses is not redundant. We assume that this
condition is hold in the following definitions and theorems. Another property
of the proposed representation is that mgi(most general instance) and lgg(least
general generalization) which are also known as unification and anti-unification
operations on clauses [22,21] can be achieved by simple bitwise operations on
the binary encoding of clauses. In the following, first we introduce mgi and lgg
operations for clauses.



Definition 8 (mgi and lgg). Clauses E and F are respectively a common
instance and a common generalization of clauses C and D if and only if C, D »
E and F = C,D. mgi(C, D) andlgg(C, D) are the most general instance and the
least general generalization for clauses C' and D if and only if for every common
instance E and common generalization F it is the case that mgi(C,D) = E and
F = 199(C,D).

Ezample 2. In Figure 1.b clause p(U,V):-q(U,X),r(X,Z) is the mgi of clauses
p(U,V):—q(U,X),r(Y,Z) and p(U,V):—q(W,X),r(X,Z), and p(U,V):—q(W,X),r(Y,V)
is the lgg of clauses p(U,V):-q(U,X),r(Y,V) and p(U,V):-q(W,X),r(X,V).

Definition 9 (Matrix AND). Let My and My be in M,,. M = (My A Ms) is
an n X n matriz and for each a;; € M, bj; € My and c;; € Ma, a;j =1 ifbj; =1
and c¢;; =1 and a;; = 0 otherwise.

Similar to AND operator, OR operator (M; V Ms) is constructed by bitwise
OR-ing of M7 and M> entries.

Definition 10 (Matrix OR). Let M; and My be in M,,. M = (M; V Ms) is
an n X n matriz and for each a;; € M, bj; € My and c;; € Ma, a;; =1 ifbj; =1
or c;j =1 and a;; = 0 otherwise.

Theorem 2. For each clause B and matrices My, My and M in M,, such that
C(My) € B(B), C(M>) € B(B) and C(M) € B(B), C(M) = lgg(C (M), C(M2))
if M = (M1 A Ms).

Theorem 3. For each clause B and matrices My, Ms and M in M, such that
C(M,) € B(B), C(M>) € B(B) and C(M) € B(B), C(M) = mgi(C (M), C(Ms))
if M = My V Ms.

Example 3. In Figure 1.b, lgg and mgi of any two clauses can be obtained by
AND-ing and OR-ing of their binary strings.

In summary, the proposed binary representation can be used to encode a
substitution lattice bounded below by a bottom clause. Essential operations on
clauses can be achieved by bit-wise operation on binary strings. These operations
can be considered as task-specific genetic operators which together with conven-
tional genetic operators (i.e. mutation and crossover) can be used to search the
refinement space of clauses. This issue will be discussed in section 4. In the next
section we show how the properties of the proposed representation can be used
to evaluate individuals (i.e. binary strings) at genotype level without mapping
them into corresponding clauses.

3 Evaluation Mechanism

The usual way for evaluating a hypothesis in first-order concept learning systems
is to repeatedly call a theorem prover (e.g. Prolog interpreter) on training ex-
amples to find out positive and negative coverage of the hypothesis. This step is



known to be a complex and time-consuming task in first-order concept learning.
In the case of genetic-based systems this situation is even worse, because we
need to evaluate a population of hypotheses in each generation. This problem is
another important difficulty when applying GAs in first-order concept learning.

In this section we introduce a method which is intended to replace the com-
plex task of evaluating clauses with bitwise operations on binary strings. This
idea is similar to data-compilation method used by the attribute-based learn-
ing system GIL [9]. This system retains binary coverage vectors for all possible
features (attributes and values) which can appear in a rule. This introduces a
database which can be used for computing the coverage set of each rule by bit-
wise operations on the coverage vectors of participating features. However, in
our case there is no need to maintain such a database. We show that by main-
taining the coverage sets for a small number of clauses and by doing bitwise
operations we can compute the coverage for other binary strings without map-
ping them into the corresponding clauses. This property is based on the implicit
subsumption order which exists in the binary representation. In the following,
first we define the cover-vector approach for representing coverage of a clause on
training examples.

Definition 11 (Cover Sets and Cover Vectors). Let C be a clause and
Et = {ef,ef,....,ef} and E= = {e],e5,...,€; } be the set of positive and
negative training examples respectively 2. ej is in the positive cover set P(C) if
C = e;". Similarly, e; s in the negative cover set N(C) if C = e; - The positive
cover vector PV(C) is a k-bit binary string in which bit i is 1 if ef € P(C) and
0 otherwise. Similarly, the negative cover vector N'V(C) is a l-bit binary string
in which bit j is 1 if e; € N'(C) and 0 otherwise.

Theorem 4. For each clause Cy and C2, P(mgi(C1,C2)) = P(C1) N P(Cy).

Proof. Let e € P(mgi(C1, Cs)), then according to Definition 11, mgi(C1, Ca) = e.
But according to the definition of mgi, C; > mgi(C1,C2) and Cy = mgi(Cy,Cs)
and therefore C; > e and Cy > e. Hence, e € P(C1) and e € P(C>) and
therefore e € P(C1) N P(Cy). Hence, P(mgi(C1,C2)) C P(C1) N P(Cs). Now,
let e € P(C1) NP(Cs), then according to Definition 11, C = e and Cy = e. But
according to the definition of mgi, mgi(Cy,C3) > e. Hence, e € P(mgi(C1, Cs))
and therefore P(C1) NP(C3) C P(mygi(Cy,C2)) and this completes the proof. O

Theorem 5. For each M, My and My in M,, , PV(C(M)) = PV(C(M;)) A

Proof. Suppose M = M; V M. Therefore according to Theorem 3, C(M) =
mgi(C(My),C(Mz)). Then according to Theorem 4 ,P(C(M)) = P(C(M1)) N
P(C(Ms)). But according to Definition 11, PV(C(M)) = PV(C(M;))APV(C(Ms)).
O

2 Note that the training examples must be prepared for substitution testing with
respect to the bottom-clause.



This theorem, which also holds for negative coverage vectors, can be eas-
ily extended for n clauses. According to these theorems, positive (or negative)
coverage of clauses can be computed by bitwise operations. Hence, the evalu-
ation of each individual is done at genotype level without mapping it into the
corresponding phenotype (clause).

Example 4. In Figure 1.b we can compute the coverage vector of any clause
provided the coverage vector of individuals 001, 010 and 100. For example:
PY(C(110)) = PY(C(100)) A PV(C(010)) and PV(C(111)) = PV(C(100)) A
PY(C(010)) A PY(C(001)).

4 Stochastic Refinement

According to the theorems in section 2, unification and anti-unification can be
done by simple bitwise operations on the binary encoding of clauses. These prop-
erties can be used for designing task-specific genetic operators such as generaliza-
tion and specialization crossover operators. Generalization and specialization are
known as the main operations in concept learning methods [28,16,15]. In par-
ticular, lgg and mgi are essential in first-order learning. For example, the ILP
system Golem [18] which was successfully applied to a wide range real-world
applications [2,4,19] only uses a lgg operator which operates on determinacy
restricted clauses.

In addition to the generalization and specialization crossovers mentioned ear-
lier, we can also introduce task-specific mutation operators. In the standard mu-
tation operator we use a fixed probability (mutation-rate) for changing 0 and
1 bits 3. As shown in section 2, the difference between bits in binding matri-
ces determines the substitution order between clauses. Hence, the substitution
distance between clauses increases monotonically with the Hamming distance
between the corresponding matrices. We can use this property to set different
mutation rates for 0 and 1 bits based on a desirable degree of generalization and
specialization. This could lead to a directed mutation operator.

This degree of generalization or specialization (which can be also used for
crossover operators) is introduced by probabilities for generalizations and spe-
cialization. In a genetic search some criteria such as completeness and consistency
of current individuals can be used for setting these probabilities [9, 6].

In first-order concept learning, upward and downward refinement operators
are used for generalization and specialization of clauses [21]. In our case, task-
specific genetic operators can be interpreted as stochastic refinement operators
in the context of first-order concept learning.

5 Implementation and Empirical Evaluation

As shown in the previous sections, the proposed framework has great potential
for combining GAs and ILP and could lead to an increased performance in a

3 A random mutation could result in a matrix which is not consistent with Definition 3.
This matrix could be normalized using Definition 3.
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Fig. 2. Progol’s Covering Algorithm. In the present implementation, the A*-like search
used in step 4 is replaced by a genetic search.

system which is created based on this framework. In particular, in this section
we examine the following two null hypotheses:

Null hypothesis 1: A GA-ILP system based on the proposed framework does
not lead to significantly increased efficiency in any problem involving com-
plex target theories.

Null hypothesis 2: The increased efficiency in Null hypothesis 1 cannot be
achieved without substantial decrease of accuracy.

To test these hypotheses, we employed the proposed framework to combine
Inverse Entailment in CProgol4.4 with a genetic algorithm. CProgol is an ILP
system which develops first-order hypotheses from examples and background
knowledge. Figure 2 shows the set covering algorithm used in CProgol. CProgol
uses Inverse Entailment [17] to construct the most specific clause (or the bottom-
clause) for each example and then searches for the best clause H which subsumes
this bottom-clause (O > H > 1). This introduces a subsumption lattice bounded
below by the bottom-clause (L). The standard CProgol starts from the empty
clause (O) and uses an A*-like algorithm for searching this bounded subsumption
lattice (step 4). In the present implementation, this lattice is searched by a
genetic search. The details for CProgol’s A*-like search, refinement operator
and algorithm for building the bottom-clause can be found in [17].

As shown in section 2, B(_L) represents a substitution lattice bounded below
by the bottom-clause. We used a genetic algorithm together with the binary
encoding for clauses (as described in section 2) to evolve a randomly generated
population of binary strings in which each individual corresponds to a member
of B(L). Because of simple representation and straightforward operators any
standard genetic algorithm can be used for this purpose. We used a Simple Ge-
netic Algorithm(SGA) [7] and modified it to suit the representation introduced
in this paper. This genetic search evolves a population of hypotheses which all
subsume the bottom-clause.

In the following, we explain the material and methods used in our experi-
mentation and then discuss the results.



1 for ¢ =1 to 100 do

2 forj=1to5do

3 Generate a random target concept T;; with complexity 5 x j

4 Generate 2 x 100 random training and test examples for concept Tj;
5 Execute Progol on the training examples using the A* search

6 N;; =number of evaluations before finding hypothesis Cj;

7 A;; =predictive accuracy of Cj; on the test examples

8 Execute Progol on the training examples using the genetic search

9 N;; =number of evaluations before finding hypothesis C;;
10 Aj; =predictive accuracy of C;; on the test examples

11 end

12end

13for j =1 to 5 do
14 Plot average and standard error of Nj; and N; versus 5 x j (¢ € [1..100])
15for j =1 to 5 do
16 Plot average and standard error of A;; and Aj; versus 5 x j (i € [1..100])

Fig. 3. Experimental method.

Material and methods In this experiment, we compare the performance of
the A*-like search and the genetic search in learning concepts with different
complexities. Figure 3 shows the experimental method used in this experiment.
In this experiment we measure the average performance of the genetic search
and the A* search on 100 different runs. In each run, target concepts with com-
plexities between 5 to 25 are generated. For each target concept, a fixed number
(i.e. 100) of examples are generated both for training and testing. After gener-
ating random examples, Progol is executed on the training example using the
A* search and the genetic search. For each iteration of the loop the following
parameters are recorded: N, the number of evaluations before finding a single
clause C which is complete and consistent with respect to the training exam-
ples and A, the predictive accuracy of C' on the test examples. The average and
standard error of these parameters are then plotted against the complexity of
the target concepts.

As mentioned before, in this experiment we needed to generate random con-
cepts with a given complexity as well as random training and test example for
each concept for measuring the predictive accuracy of the induced hypotheses.
For this purpose, we have used a concept generator program in which the concept
description language is determined by a Stochastic Logic Program(SLP) [20]. In
the present experiment, we have used a concept description language similar to
one used in the Michalski’s trains problem [14]. Table 1 shows part of the train
description language used in this experiment. This program defines the space of
all possible carriages. A random train is defined as a list of carriages sampled
from this program. In this experiment, the complexity of target concept is mea-
sured by the number of specific features which describe the target concept. This



Table 1. Part of a stochastic logic program for generating random trains. This program
defines the space of all possible carriages. A random train is defined as a list of carriages

sampled from this program.

carriage (Shape,Length,Double,Roof ,Wheels,Load) :-

shape (Length, Shape) ,

double(Length,Shape,Double),
roof (Length, Shape ,Roof) ,
wheels (Length,Wheels),

load(Length,Load) .

shape (long,rectangle) .
shape (short ,hexagon) .

double (short,rectangle,double) .
double (short,rectangle,not_double).
double (short,hexagon,not_double) .

shape (short,rectangle) .
shape (short ,u_shaped) .

double (short,bucket,not_double).

roof (short,ellipse,arc).
roof (long,rectangle,none) .

roof (long,rectangle, jagged) .

roof (short,rectangle,flat).
roof (short,u_shaped,none) .

roof (short,u_shaped,peaked) .

roof (short,bucket,flat).
wheels (short,2).

load(short,1(circle,1)).
load(short,1 (hexagon,1)).
load(short,l(triangle,1)).
load(short,1(circle,2)).
load(short,1(hexagon,2)).
load(short,l(triangle,2)).
load(long,1(circle,1)).
load(long,1(hexagon,1)).
load(long,1(triangle,1)).
load(long,1(circle,2)).
load(long,1(hexagon,2)).
load(long,1(triangle,2)).
load(long,1(circle,3)).
load(long,1(hexagon,3)).
load(long,1(triangle,3)).

wheels(long,2) .

roof (short ,hexagon,flat).
roof (long,rectangle,flat).
roof (short,rectangle,none) .

roof (short,rectangle,peaked) .

roof (short,u_shaped,flat).
roof (short,bucket,none) .
roof (short ,bucket,peaked) .

wheels(long,3).

load(short,1(diamond,1)).
load(short,1(rectangle,1)).
load(short,1(utriangle,1)).
load(short,1(diamond,?2)).
load(short,l(rectangle,2)).
load(short,l(utriangle,2)).
load(long,1(diamond,1)).
load(long,l(rectangle,1)).
load(long,1l(utriangle,1)).
load(long,1(diamond,2)).
load(long,l(rectangle,2)).
load(long,1(utriangle,2)).
load(long,1(diamond,3)).
load(long,1l(rectangle,3)).
load(long,1(utriangle,3)).

shape (short,ellipse) .
shape (short ,bucket) .

double(long,rectangle,not_double).
double(short,ellipse,not_double).
double(short,u_shaped,not_double) .



Table 2. Control parameters and evaluation function used by the genetic search in the
present experimentation.

Population size (popsize): 30
Probability of mutation (p.,): 0.0333
Probability of crossover (p.): 1 —0.8 x f
Probability of lgg (pigg): 0.8 X f

(f= W where C1 and C2 are parental clauses in crossover and lgg)

Evaluation function: f(C) = a% +(1-a)(1- %

where @« = 0.8 and 8 = 0.5

E*, E™: total number of positive and negative examples

et (C), e (C): number of positive and negative examples covered by clause C
¢(C): length of clause C

h(C): number of further literals to complete clause C (as defined in [17])

is determined by the number of specific carriages in the target train and number
of properties for each carriage (see Table 1).

The evaluation function and control parameters which are used by the genetic
search are shown in Table 2. The evaluation function uses similar criteria to
the ones used in the evaluation function of the A*-like search of CProgol. The
probability setting for generalisation used in this experiment is similar to one
used in [6].

Results and discussion Figure 4.a compares the average number of clauses
evaluated by the genetic search and the A*-like search in learning concepts with
different complexities. The vertical axis shows the average number of the ex-
plored nodes before finding a complete and consistent hypothesis. The horizontal
axis shows the complexity of target concept which is measured by the number
of conditions in the target concept. This figure shows that in this experiment
the A*-like search exhibits a better performance in learning concepts with small
complexities (e.g. less than 10). However, the number of evaluations by the A*-
like search grows very sharply in the complexity of target concept and varies
between 38 and 3065.

Figure 4.b compares the predictive accuracy of the induced hypotheses by
the genetic search and the A*-like search. This figure shows that the predictive
accuracy of the genetic search is slightly lower (less than 2%) than the predictive
accuracy of the A*-like search.

In summary, these graphs suggest that in the random trains problem the
genetic search can lead to significantly increased efficiency for learning complex
target trains and this can be achieved without substantial decrease of accuracy.
These graphs also suggest that the performance of the genetic search is less
dependent on the complexity of hypotheses, whereas A*-like search shows a great
dependency on this factor. The results of this experiment are consistent with the
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and b) predictive accuracy of the induced hypotheses versus the complexity of concepts.



fact that the actual completeness and complexity exhibited by the standard A*-
like search of CProgol depends upon the order of literals in the bottom clause
and upon the complexity of the hypothesis. In contrast, the genetic search is less
dependent on the complexity of the hypotheses and is not affected by the order
of literals in the bottom clause.

6 Related Work

One main difficulty in applying conventional GAs in first-order domain is related
to the formulation of first-order hypotheses into bit-strings. GA-SMART [6] was
the first relation learning system which tackled this problem by restricting con-
cept description language and introducing a language template. A template in
GA-SMART is a fixed length CNF formula which must be defined by the user.
Mapping a formula into bit-string is done by setting the corresponding bits to
represent the occurrences of predicates in the formula. The main problem of this
method is that the number of conjuncts in the template grows combinatorially
with the number of predicates. REGAL [5], DOGMA [8] and G-NET [1] fol-
low the same basic idea as GA-SMART and employ a user-defined template for
mapping first-order rules into bit strings. However, instead of using a standard
representation, a template in these systems is a conjunction of internally dis-
junctive predicates. This leads to some difficulties, for example in representing
continuous attributes. Other systems including GILP [27], GLPS [13], LOGEN-
PRO [29], STEPS [11] and EVIL [23] use hierarchical representations rather than
fixed length bit-strings. These systems evolve a population of logic programs in
a Genetic Programming (GP) [12] manner. Even though some of the above men-
tioned systems use background knowledge for generating the initial population
or seeding the population, most of these systems cannot benefit from intentional
background knowledge in the same way as in usual first-order learning systems.
This is mainly because in most cases genetic search has been used as the only
learning mechanism in the system.

In our proposed framework, encoding of hypotheses is based on a most specific
(or bottom) clause which is constructed according to the background knowledge
and training examples. This bottom-clause can be automatically constructed
using logic-based methods such as Inverse Entailment. Moreover, as shown in
section 2 and section 3, the proposed encoding and operators can be interpreted
in well known first-order logic terms.

7 Conclusions and Further Work

In this paper we have introduced a framework for combining first-order concept
learning with GAs by introducing a novel encoding for clauses, relevant genetic
operators and a fast evaluation mechanism. Empirical results suggest that the
proposed framework could lead to significantly increased efficiency in problems
involving complex target theories and this can be achieved without substantial
decrease of accuracy.



The present implementation could be improved in many ways. A natural
improvement might be using more sophisticated genetic algorithms rather than a
simple genetic algorithm. For example the greedy cover set algorithm of CProgol,
which repeatedly generalizes examples, could be replaced by a parallel genetic
algorithm. The task-specific genetic operators can be used to guide the genetic
search towards the interesting areas of the search space by specialization and/or
generalization as it is done in usual concept learning systems. The fast evaluation
mechanism can be used to compensate for the natural computation cost of a
genetic algorithm and could lead to a high performance genetic search. In the
current approach, the occurrence of atoms in a clause is not considered in the
binary encoding of the clause and inactive atoms (e.g. unconnected predicates)
are filtered from the induced hypotheses. Alternatively, the presence or absence
of atoms in each clause can be encoded as a part of the binary representation
of the clause. Finally, more experiments are required to evaluate the proposed
framework in real-world domains.

The framework proposed in this paper is an opportunity not only to utilize
the benefits of these two different paradigms (i.e. ILP and GAs) in a hybrid
system but also to study some common issues with an analogical view. In the
following we review some of these issues which could be considered as further
research.

Hybrid search. It has been argued [7] that GAs are a weak method with-
out the guarantee of optimality. In other words, GAs sort out interesting area
of a space quickly without the guarantees of more convergent process. In ILP
problems, which known local but convergent methods exist, the idea of a hybrid
GA [3] is natural. In this scheme the search is started using a GA to sort out the
interesting hills in the problem. Once the GA locates the best regions, a locally
convergent search is used to climb the local peaks. In this way, one can combine
the globality and parallelism of the GA with the more convergent behaviour of
the local search (i.e. the ILP techniques). In this hybrid scheme, the GA per-
forms a global adaptive search of the space of possible hypotheses and then an
ILP algorithm locally refines an initial estimate provided by the GA. Theory
revision in ILP could be relevant in designing a local search in this scheme. This
hybrid scheme also provides an opportunity to study the interaction between
the computational models of ’evolution’ and ’learning’.

Parallel search. In addition to the well-known implicit parallelism 4, GAs
are naturally suitable for parallel implementation [25]. This makes it easier to
scale-up GA-based systems and to benefit from the computational power of
parallel and distributed hardware. Hence, in a GA-based ILP system a reasonable
attempt is to parallelize the search. Moreover, there are some situations in ILP
methods where parallel processing could be useful. For example, the greedy

* It has been shown [7] that even though in each generation we perform computation
proportional to the size of the population (n) we get useful processing of much more
schemata (O(n®)) in parallel with no special bookkeeping or memory other than the
population itself.



set covering algorithm which repeatedly generalizes training examples, could be
replaced by a parallel co-evolutionary procedure [1].

Learning clausal theories. In the current approach each individual in the
population stands for a single clause. The final solution consists of clauses each
corresponding to an iteration of the cover set algorithm. An alternative is to
induce the whole clausal theory at once. In a GA-based system this requires
encoding of clausal theories as bit-strings which are regarded as individuals in
the population. This problem is similar to Pittsburgh approach [24,10] in which
each individual encodes a set of production rules. To be able to learn clausal
theories, the proposed binary encoding must be extended to represent multiple
clauses.
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