
Can ILP Learn Complete and Correct Game

Strategies?

Stephen Muggleton and Changze Xu

Computing Department, Imperial College London

Abstract. While there has been a long history of applying machine
learning to game playing , our approach differs in attempting to provide
a general approach to learn complete winning strategies for a group of
combinatorial games and the first time to apply ILP to learn complete
and correct game strategies. Instead of learning the winning moves un-
der different game states, the learning problem we propose is to learn a
classifier for P-positions, in which the next player has at least one min-
imax winning move. Combining such a classifier with a move generator
produces a winning strategy. We report the predictive accuracy curves of
learning the positions for winning strategies of a range of combinatorial
games. In each of the six combinatorial games 100% accurate prediction
is achieved after presenting at most 26 randomly sampled examples of
play. These results were averaged over 10 independently sampled trials.
We also report the predictive accuracy curves of learning the positions
for the winning strategy of Nim using artificial neural network(ANN),
support vector machine(SVM) and Case Based Reasoning(CBR). Even
with 200 randomly sample examples, 100% predictive accuracy is not
achieved in any case by ANNs, SVMs and CBRs.

1 Introduction

Automated Game Playing, Machine Learning and Logical Reasoning are each
important sub-areas of research within Artificial Intelligence [13]. This paper
combines these three aspects of AI. In combinatorial game theory[3], an impar-
tial game is a game in which the allowable moves depend only on the position
and not on which of the two players is currently moving. Nim is an impartial
game in which two players take turns removing objects from different heaps. On
each turn, a player must remove at least one object, and may remove any num-
ber of objects provided they all come from the same heap. The player to take
the last object wins. Table 1 shows an example of a 3-heap Nim. The winning
strategy of Nim is based on computing the xor sum of the number of objects in
each pile [4] and was extended to impartial games by Sprague [14] and Grundy
[6]. Sprague-Grundy theory [3] shows that any impartial game is isomorphic
to a Nim game; in other words, despite appearances, all impartial games are
mathematically equivalent to Nim. Later, Guy and Smith [7] applied this theory
to obtain complete, closed-form solutions to a wide variety of impartial games.
However, it is still non-trivial for humans to manually find an accurate mapping
from an impartial game to a Nim game. It is well known [3,5] that each state
of an impartial game must be classified to one of two types of positions : P-
positions and N-positions and there are three theorems [2] which form the basis



2

of winning strategies of impartial games : any move applied to a P-position turns
the game into a N-position; there is at least one move that turns the game from
a N-position into a P-position; the final position (when the game is over) is a
P-position. Our aim is to use the ILP system Progol4.5[11] to learn the classifier
for N-P positions of impartial games. Then we use the learned N-P classifier
to construct the winning move generator of these games. This approach can be
easily extended for partisan games(non-impartial combinatorial games) whose
winning strategies are based on N-P positions such as the Northcott’s game [3].

Heap1 Heap2 Heap3 Moves

1 2 4 Player1 removes 1 obj from Heap 3
1 2 3 Player2 removes 2 obj from Heap 2
1 0 3 Player1 removes 2 obj from Heap 3
1 0 1 Player2 removes 1 obj from Heap 1
0 0 1 Player1 removes the last obj and wins

Table 1. a 3-Heap Nim game starting wtih 1, 2, 4 objects.

2 ILP Representation of Games

An impartial game in a P-position is a positive example. An impartial game in
a N-position is a negative example. There is a set of mathematical operations
{xor, mod, ×, /, +, -} regarded as general background knowledge. There is
some specific background knowledge that encodes the game states. A classifier
for N-P positions(target hypothesis) H which entails all the positive and none
of the negative examples. A winning strategy is a function that takes as input
the current state of the game, player(for partisan game) and outputs a winning
move that the current player can play.

2.1 Learning Schema

Given

A set I+ of P-positions and A set I− of N-positions
General background knowledge ((a set of mathematical functions) GB

Apecific background knowledge for each impartial game SB

A space of N-P classifiers H
Find an N-P classifier p-Pos ∈ H such that
∀ i+ ∈ I+,GB ∪ SB∪ p-Pos |= i+ and ∀ i− ∈ I−,GB ∪ SB∪ p-Pos 2 i−

Construct the winning move generator

Input : CState-current game state Player-current player
Output : Action-winning move AState-the game state after taking the action
If p-Pos(CState)
Return an Action ∈ LegalActions(Player) with the least change to CState.
Else

Forall Action ∈ LegalActions(Player)
If play(Player,CState,Action)
←updateState(Player,CState,Action,AState),p-Pos(AState)

Return Action and AState.



3

3 Experiments

Experiments for learning the N-P classifier for the winning strategies of six dif-
ferent combinatorial games are performed in this section. We will analyse the
relationships between sample size and predictive accuracy of each game.

3.1 Learning N-P Position of Impartial Games by ILP

We use Progol4.5 [10,11], as the reference system. We use the minimax algorithm
to generate examples assuming that both players are playing winning strategies.
We fix the sample size to 50 where 32 of them are positive examples and 18 of
them are negative examples. We use the qsample program in Progol4.5 which is
based on the sampling algorithm [8] to randomly generate training and testing
examples. If N examples are chosen from the total sample dataset as training
examples, then the remaining 50-N examples are test examples. For each game,
we conduct experiments by sampling 1 to 27 training examples and repeat the
same experiment 10 times for each size of training examples and calculate the
mean predictive accuracy and the standard deviation. For all impartial games, we
use the same set of math functions {xor, mod, ×, /, +, -} as general background
knowledge. Fig.1 shows the relationships between sample size and predictive
accuracy of games: TakeAway, Nim, Nimble, Turning Turtles, Northcott’s, Green
Hackenbush respectively. For more details of the game rules see [3]. In general
the predictive accuracy increases with the increase of sample size for each of the
six games. As we can see from the six graphs, at most 26 examples are required
for a predictive accuracy of 100% in each case.

0 5 10 15 20 25 30
20

30

40

50

60

70

80

90

100

110

Sample Size

P
re

d
ic

tiv
e
 A

cc
u
ra

cy
 (

%
)

TakeAway

(a) TakeAway

0 2 4 6 8 10 12 14 16
30

40

50

60

70

80

90

100

110

Sample Size

P
re

d
ic

tiv
e
 A

cc
u
ra

cy
 (

%
)

Nim

(b) Nim

0 2 4 6 8 10 12
30

40

50

60

70

80

90

100

110

120

Sample Size

P
re

d
ic

tiv
e
 A

cc
u
ra

cy
 (

%
)

Turing Turtle

(c) Turning Turtle

0 2 4 6 8 10 12
20

30

40

50

60

70

80

90

100

110

120

Sample Size

P
re

d
ic

tiv
e
 A

cc
u
ra

cy
 (

%
)

Nimble

(d) Nimble

0 5 10 15 20 25 30
20

30

40

50

60

70

80

90

100

110

Sample Size

P
re

d
ic

tiv
e
 A

cc
u
ra

cy
 (

%
)

Northcot’s

(e) Northcott’s

0 5 10 15 20 25 30
20

30

40

50

60

70

80

90

100

110

Sample Size

P
re

d
ic

tiv
e
 A

cc
u
ra

cy
 (

%
)

Green

(f) Green Hachenbush

Fig. 1.



4

3.2 Experiment to Determine Performance on Nim of ANNs,

SVMs and CBRs

We use Matlab 2011B as the reference system and use the ANN toolbox (contains
the ANN method) and the Bioinformatics Toolbox (contains the SVM method)
in Matlab and implemented a CBR system by Matlab to learn the N-P classifier
of a 3-heap Nim. We use 200 randomly generated examples (100 positive and 100
negative) as the total sample dataset. Examples are represented in two forms:
Decimal Form and Binary Form. An example ”3 4 5 1” in the Decimal Form,
which means a positive example of a 3-heap Nim with 3,4,5 objects, is repre-
sented as ”00011 00100 00101 1” in the Binary Form (the last digit represents
the class of the example: 1≡Positive and 0≡Negative). We randomly choose
20,40,60,80,100,120,140,160,180,200 examples (half positive and half negative)
from the total sample dataset as the subsample and use 10-fold cross validation
to find the average predictive accuracy for each size of subsample. Fig.2 shows
the relationships between sample size and predictive accuracy of Nim games
under six different kinds of configurations. In general SVM has higher predic-
tive accuracy than ANN under each sample form and for each machine learning
technique, learning under Binary Form has higher predictive accuracy and CBR
has extremely high predictive accuracy under Binary Form but extremely low
predictive accuracy under Decimal form. According to the Fig.2, the best results
are achieved with SVMs using kernel functions ′linear′ and ′poly′(with max ex-
ponent 3) under Binary Form which makes the predictive accuracy tend to 90%
and with the CBR using similarity measure ′L2′ under Binary Form which makes
the predictive accuracy up to 98% . Even though the predictive accuracies in
these cases are very high, they still cannot reach 100% which is the basis to
construct a winning move generator. The settings of the experiments are shown
in Table 2 .

Fig System Sample Form Parameter Value

2(a) ANN Decimal L/N/Train/Transfer/R 2. . . 3/5. . . 10/trainscg/tansig/e-4
2(b) ANN Decimal L/N/Train/Transfer 2. . . 3/5. . . 10/trainscg/tansig/e-4
2(c) SVM Binary Kernel linear/poly/quad/rbf
2(d) SVM Binary Kernel linear/poly/rbf
2(e) CBR Decimal Similarity Measure dice|| jaccard|| naive|| L2
2(f) CBR Binary Similarity Measure dice|| jaccard|| naive|| L2
Table 2. L means Layers, N means Neuron,Train means training Function, Transfer
means Transfer Function, R means the learning rate and more detail about the meaning
of the ANN Values at www.mathworks.com/help/toolbox/bioinfo/ref/svmtrain and
the SVM Values at www.mathworks.com/help/toolbox/nnet/ and the CBR Values
at [9]

4 Related Work, Conclusions and Future Work

In this paper, four machine learning approaches : ILP, ANN, SVM and CBR for
learning N-P positions of combinatorial games have been demonstrated. Exper-
iments have shown that ILP is able to learn the N-P classifier for the winning
strategy of each of six different combinatorial games given with up to 26 ex-
amples and sufficient background knowledge. Even with 200 randomly sampled



5

20 40 60 80 100 120 140 160 180 200
20

30

40

50

60

70

80

Sample Size

Pr
ed

ic
tiv

e 
Ac

cu
ra

cy
 %

 

 

L1N5
L1N6
L1N7
L1N8
L1N9
L1N10
L2N5
L2N6
L2N7
L2N8
L2N9
L2N10

(a) Learn 3-heap Nim using ANN

20 40 60 80 100 120 140 160 180 200
50

55

60

65

70

75

80

Sample Size

Pr
ed

ic
tiv

e 
Ac

cu
ra

cy
 %

 

 
linear
poly
quad
rbf

(b) Learn 3-heap Nim using SVM

60 80 100 120 140 160 180 200 220

40

45

50

55

60

65

70

75

Sample Size

P
re

d
ic

ti
v
e
 A

c
c
u
ra

ry
 %

 

 
L1N5
L1N6
L1N7
L1N8
L1N9
L1N10
L2N5
L2N6
L2N7
L2N8
L2N9
L2N10

(c) Learn 3-heap Nim using ANN under Bi-
nary Form

20 40 60 80 100 120 140 160 180 200

50

55

60

65

70

75

80

85

90

Sample Size

Pr
ed

ic
tiv

e 
Ac

cu
ra

cy
 %

 

 

linear
poly
rbf

(d) Learn 3-heap Nim using SVM under Bi-
nary From

20 40 60 80 100 120 140 160 180 200
50

55

60

65

70

75

Sample Size

Pr
ed

ic
tiv

e 
Ac

cu
ra

cy
 %

 

 
Dice
Jaccard
L2
Naive

(e) Learn 3-heap Nim using CBR

20 40 60 80 100 120 140 160 180 200
40

50

60

70

80

90

100

Sample Size

Pr
ed

ic
tiv

e 
Ac

cu
ra

cy
 %

 

 

Dice
Jaccard
L2
Naive

(f) Learn 3-heap Nim using CBR under Binary
From

Fig. 2.



6

examples, 100% predictive accuracy is not achieved in any case by ANNs, SVMs
CBRs. Another disadvantage of ANNs, SVMs, CBRs compared with ILP sys-
tems is that they are unable to give the players useful hints to play the Nim
game as the learned N-P classifier is not human readable. The proposed method
can be applied for any partisan games whose winning strategies are based on
P and N-positions. Mihai Oltean uses the Multi-Expression Programming-a ge-
netic programming variant to compute the winning strategy for Nim [12]. The
idea is to read the game tree, check N and P-positions during the traversing of
the game tree and count the number of configurations that violates the rules
of the winning strategy. However, the Genetic Programming is not guaranteed
to converge and the approach is only tested on a single game. By contrast, our
approach has been demonstrated to produce correct solutions across a variety
of combinatorial games. M. Bain and S. Muggleton [1] applied the ILP system
Golem to learn the optimal strategies of certain the Chess endgame King-and-
Rook-against-King but were only able to learn a complete strategy for depths
0,1 and 2. Future work will aim to extend our ILP approach to learn strategies
across a broader range of combinatorial games, including impartial game under
Misre play(the player that is forced to take the last stone loses) and complex
partisan games and apply multi-clause learning to learn game strategies.

References

1. M. Bain and S. Muggleton. Learning Optimal Chess Strategies. Oxford University
Press, 1994.

2. Elwyn R. Berlekamp. Blockbusting and domineering. J. Comb. Theory Ser.A,
49(1), 1988.

3. Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning ways for

your mathematical plays, volume 1. A K Peters/CRC Press, London, 2001.
4. Charles L. Bouton. Nim, a game with a complete mathematical theory. In The

Annals of Mathematics, 2, pages 35–39, Princeton, 1902. Annals of Mathematics.
5. Martin Gardner. Hexaflexagons and other mathematical diversions: the first Sci-

entific American book of puzzles & games. University of Chicago Press, 1988.
6. P. M. Grundy. Mathematics and games. Eureka, 2:6–8, 1939.
7. Richard K. Guy and Cedric A.B. Smith. The g-values of various games. pages

514–526, Princeton, 1956. Proceedings of the Cambridge Philosophical Society.
8. D.E. Knuth. The art of computer programming, volume 1. Addison-Wesley, 1997.
9. T. Warren Liao, Zhiming Zhang, and Claude R Mount. Similarity measures for

retrieval in case-based reasoning systems, volume 12. 1998.
10. S.H. Muggleton. Inverse entailment and Progol. New Generation Computing,

13:245–286, 1995.
11. S.H. Muggleton and J. Firth. CProgol4.4: a tutorial introduction. In S. Dzeroski

and N. Lavrac, editors, Relational Data Mining, pages 160–188. Springer-Verlag,
2001.

12. Mihai Oltean. Evolving winning strategies for nim-like games. World Computer

Congress, 9(2):353–364, August 2004.
13. S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson,

New Jersey, 2010. Third Edition.
14. R. P. Sprague. ber mathematische kampfspiele. Tohoku Mathematical Journal,

41:438–444, June 1936.


	Can ILP Learn Complete and Correct Game Strategies?
	Introduction
	ILP Representation of Games
	Learning Schema

	Experiments
	Learning N-P Position of Impartial Games by ILP
	Experiment to Determine Performance on Nim of ANNs, SVMs and CBRs

	Related Work, Conclusions and Future Work


