
Towards E�cient Higher-order Logic Learning in

a First-order Datalog Framework

Niels Pahlavi and Stephen Muggleton

Department of Computing, Imperial College London,
180 Queen's Gate, London SW7 2BZ, UK

niels.pahlavi@imperial.ac.uk, s.muggleton@imperial.ac.uk

Abstract. Within ILP, the concepts to be learned are normally con-
sidered as being succinctly representable in �rst-order logic. In a previ-
ous paper the authors demonstrated that increased predictive accuracy
can be achieved by employing higher-order logic (HOL) in the back-
ground knowledge. In this paper, the �exible higher-order Horn clauses
(FHOHC) framework is introduced. It is more expressive than the for-
malism used previously and can be emulated (with the use of �holds�
statements and �attening) in a fragment of Datalog. The decidability,
compatibility with ILP systems like Progol and positive learnability re-
sults of Datalog are then used towards e�cient higher-order logic learning
(HOLL). We show with experiments that this approach outperforms the
HOLL system λProgol and that it can learn concepts in other HOLL
settings like learning HOL and using HOL for abduction.

1 Introduction

Within inductive logic programming (ILP), it is usual to assume that all concepts
to be learned can be succinctly represented in �rst-order logic (FOL). However,
in [11] the authors demonstrated that in certain learning problems increased
predictive accuracy can be achieved by employing higher-order logic (HOL) in
background knowledge, thus advocating higher-order logic learning (HOLL). In
this paper we explore whether some of the learning advantages provided by a
HOL framework can be achieved within FOL. In particular, we introduce and
explore a HOL formalism called �exible higher-order Horn clauses (FHOHC). We
also show that statements in FHOHC can be emulated in a fragment of Datalog
FOL using "holds" statements (as suggested in [7]) and �attening (as de�ned in
[12]). This fragment of FOL, called �attened holds Datalog programs (FHDP),
has the advantage of being decidable and of having positive ILP learnability
results. Figure 1 presents two examples of such HOL clauses (lines 1 and 3).

Using the power of expressivity of HOL in logic-based Machine Learning
(thus realizing HOLL) to outperform �rst-order logic learning (FOLL) has been
advocated in an ILP context, as in [11] and [4] but also with a di�erent logic in
[6]. Figure 2 summarizes three settings of interest for HOLL in ILP.

In [11], the HOLL system λProgol was introduced. It is based on the ILP
system Progol [8], and its underlying logic is HOL as it is based on Miller and

Fig. 1. Flexible higher-order Horn clauses programs representing transitivity for binary
relations and mathematical induction for Peano numbers (lines 1 and 3, respectively)
and their corresponding �attened holds Datalog programs (lines 2 and 4, respectively)
R(X,Y)← transitive(R), R(X,Z), R(Z, Y). (1)
holds(R,X, Y)← holds(transitive,R), holds(R,X,Z), holds(R,Z, Y). (2)
P (sko_cst). P (X)← P (0), P (succ(sko_cst). (3)
holds(P, sko_cst). holds(P,X)← holds(P, 0), holds(succ, sko_cst, Y), holds(P, Y). (4)

Fig. 2. HOLL settings in ILP
Setting Background Knowledge Hypothesis Examples Learning

1 HOL, Given FOL, To be learned FOL, Given Induction

2 FOL, Given HOL, To be learned FOL, Given Induction

3 HOL, Given FOL/HOL, Given FOL/HOL, To be learned Abduction

Nadathur's Higher-order Horn Clauses (HOHC), de�ned in [9]. The paper ex-
perimentally compared λProgol with Progol in Setting 1 (see Figures 2 and 3). It
was demonstrated that λProgol can achieve considerably higher accuracy in this
setting than Progol, however several issues still need to be addressed. The HOL
formalism HOHC was chosen for its supposed expressivity and soundness. Yet,
several limitations are intrinsic to it. Clauses with �exible heads (atoms whose
predicate is a variable [9]) are not allowed for decidability reasons, which limits
the expressivity and may be a problem in Settings 2 and 3. There is an issue
with complexity. The system has not yet been adapted to handle abduction as
in Progol5 [8] and the Progol theoretical results remain to be proved for HOHC.
We will see how the use of FHOHC and FHDP may overcome these issues.

In Section 2, the frameworks FHOHC and FHDP are described. Section 3
presents results in three di�erent HOLL settings and develops the experiment
detailed in [11]. Finally, Section 4 concludes and suggests further work.

2 HOLL with �rst-order Datalog and Progol

In De�nition 1, we introduce the HOL formalism called �exible higher-order
Horn clauses (FHOHC), which is based on �rst-order Horn clauses and allows
for predicate (at least second-order) variables.

De�nition 1. (Flexible Higher-order Horn Clauses (FHOHC)).
A represents atomic formulas (or atoms), G goal formulas and D programme
formulas (or de�nite formulas, or clauses). Horn clauses are de�ned by the fol-
lowing grammar. G ::= A|G ∧ G and D ::= A|G ⊃ A|∀xD. An atomic formula
is P (t1, ..., tk) where P is a either a predicate symbol or higher-order variable of
arity k and t1, ..., tk are terms. A term is either a variable or f(t1, ..., tj) where f
is a functor of arity j and t1, ..., tj are terms. A functor of arity 0 is a constant.

Compared with HOHC [9], FHOHC allows for �exible heads and therefore for
more expressivity. These were prevented in HOHC because of decidability issues

but we will now show how FHOHC can be emulated with a fragment of �rst-
order Datalog. Datalog [1] is a restriction of Logic Programming that allows only
variables and constants as terms (and hence avoids the use of function symbols).
It has the advantage of being decidable. It has a declarative semantics and one
can bene�t from some positive ILP learnability results within it, as summarized
in [5] and [2]. The use of �holds� statements as suggested in [7] allows us to turn
a higher-order atom into a �rst-order one. Moreover the �attening/un�attening
procedures [12] can translate generic Horn clauses into Datalog ones and vice-
versa, without loss of generality. This is why we introduce the �attened holds
Datalog programs (FHDP) in De�nition 2 to emulate HOL and FHOHC.

De�nition 2. (Flattened Holds Datalog Programs (FHDP)).
A �attened holds Datalog program is a �exible higher-order Horn clause pro-
gram which has been transformed as follows. First, every atom P (t1, ..., tk),
P being a predicate symbol or a higher-order variable, is replaced by the atom
holds(P, t1, ..., tk) of arity k + 1. Then the �attening algorithm, de�ned in [12],
is applied to the modi�ed program.

In Figure 1, two examples of such FHDP programs are presented (lines 2
and 4). With such an underlying framework, we can obviously use any of the
�rst-order ILP systems available. Progol [8] is a popular implementation, which
allows us to learn in the HOLL Settings 1 and 2 requiring inductive reasoning
but also in Setting 3 requiring abductive reasoning with Progol5 (see Figure 2).
Developing HOLL with the Datalog fragment FHDP and Progol enables us to
directly use an ILP system like Progol and its results (including Progol5), to
bene�t from the e�ciency of deduction of Datalog and its decidability, and to
have more expressivity than HOHC with �exible heads to handle more learning
settings. In terms of learnability and predictability, the existing positive results
for Datalog can be used but the higher-order nature of the programs may also
provide more complex and better choices of features, as analysed in [2].

3 Experiments

In this section, we show how our Datalog approach can be applied on three
examples covering the three HOLL settings de�ned in Section 1. All the corre-
sponding �les and experiments can be found at [10]. In Examples 1,2 and 3, (...)
corresponds to omitted parts.

HOLL Setting1: Inductive learning of FOL hypothesis with HOL background .
This follows the experiment fully described in [11], about the learning of the
predicate ancestor given the predicate parent. Progol rarely �nds the de�nition
(either returning incorrect recursive de�nitions, non-recursive de�nitions or not
being able to induce clauses that compress the data). On the other hand, λProgol
learns the correct de�nition in all the cases, which is non recursive and can be
learned from any given positive example. This is due to the presence of the
higher-order predicate trans_closure, which represents the transitive closure of

any binary relation. Here we use our FHDP approach in the comparison. The
λProgol �les (see Example 1) are totally emulated (with the exception of the
addition of a prune statement to prevent higher-order tautologies in Progol).
Hence the same learned hypothesis and the same predicative accuracy results
(see Figure 3). In Figure 3, the running times are also added, which show that the
FHDP approach is considerably faster compared to standard Progol and λProgol
(both being similar), which illustrates the e�ciency of the Datalog framework.
This type of learning can be used with multiple higher-order predicates and with
non-IID problems.

Example 1. Setting1: Input �le for learning ancestor.

:- modeh(*,holds(ancestor,+person,+person))?
:- modeb(*,holds(#predso,#predpp,+person,+person))?
predso(trans_clos). predpp(parent). predpp(married).
person(X) :- male(X). person(X) :- female(X).
holds(trans_clos,R,X,Y) :- holds(R,X,Y).
holds(trans_clos,R,X,Z) :- holds(R,X,Y), holds(trans_clos,R,Y,Z).
prune(holds(P,A,B),Body) :- in(holds(trans_clos,P,A,B),Body).
holds(married,michael_I,eudoxia_stresh). (...) holds(parent,michael_I,alexis_I). (...)
:-holds(ancestor,maria_1,nat_narysh). (...) holds(ancestor,alex_II,maria_6). (...)
Learned clause: holds(ancestor,X,Y) :- holds(trans_clos,parent,X,Y).

Fig. 3. Left: Comparison between Progol, Progol with FHDP and λProgol on the An-
cestor example (upper graph: predictive accuracy; lower graph: running times). Right:
Part (around one third) of the Romanov dynasty tree used in the experiment

HOLL Setting2: Inductive learning of HOL hypothesis with FOL background
knowledge. In Example 2, a higher-order clause representing the transitivity
of any binary relation (as in Figure 1) is learned from examples of two binary
relations (one being transitive, the other not). The running time is under a sec-
ond. This learning could not be done with λProgol, as it involves a clause with
a �exible head. This type of learning can be used for transfer learning.

Example 2. Setting2: Input �le for learning transitivity.

:- modeh(*,holds(+predicate,+argument,+argument))?
:- modeb(*,holds(#predicate,+predicate))?
:- modeb(*,holds(+predicate,+argument,+argument))?
predicate(trans). predicate(cause). predicate(pred). argument(a). (...)
holds(trans,cause). :- holds(trans,pred).
holds(cause,a,b). (...) holds(pred,c,d). (...)
:- holds(cause,b,a). (...) :- holds(pred,a,c). (...)
Learned clause: holds(R,X,Y) :- holds(trans,R),holds(R,X,Z),holds(R,Z,Y).

HOLL Setting3: Abductive learning of FOL hypothesis with HOL background
knowledge. In Example 3, we follow the approach in [3], to formulate and adapt
the general (second-order) concept of mathematical induction for Peano numbers
(f(0) ∧ (f(x) → f(Sx)) → f(y)) in the FHOHC and FHDP frameworks (as in
Figure 1). It is included with the less_than predicate and is used to abduce
the �base case� of a particular (�rst-order) predicate f . We also have to include
the Clark completion of the �step case� of the de�nition of f for mathematical
induction to be utilized. The running time is under �ve seconds. This learning
can be adapted to structural induction, to predicate invention and to abduce
higher-order hypothesis.

Example 3. Setting3: Input �le for abduction with mathematical induction.

:-modeh(*,holds(lt,#peano_int,+peano_int))?
:-modeb(*,holds(s,+peano_int,+peano_int))? :-observable(holds/2)?
peano_int(0). peano_int(s(X)) :- peano_int(X). holds(s,W,s(W)).
holds(F,sko_x). holds(F,X) :- holds(F,0),holds(s,sko_x,Y),holds(F,Y).
holds(lt,U,V) :- holds(s,X,U),holds(s,Y,V),holds(lt,X,Y).
holds(f,X) :- holds(s,X,Y),holds(lt,X,Y). holds(lt,X,Y) :- holds(s,X,Y),holds(f,X).
holds(f,s(s(s(s(0))))). (...) :- holds(lt,s(0),0). (...)
Learned clause: holds(lt,0,Y) :- holds(s,X,Y).

4 Conclusion and Further Work

In this paper, the HOL framework FHOHC is introduced, which is more ex-
pressive than HOHC and can be emulated (with the use of �holds� statements
and �attening) in the FHDP fragment of Datalog, which is decidable, e�cient,
can be directly used by ILP systems like Progol and has positive learnability re-
sults. We have showed on concrete experiments that this approach learns as well
as λProgol (based on HOHC) on HOLL Setting1 (learning of FOL with HOL
background) but with better running times. Moreover, it can learn examples in
HOLL Settings 2 (learning of HOL with FOL background) and 3 (abduction

of FOL with HOL background), in which λProgol can not be used or has not
yet been implemented to learn. We are currently �nishing more experiments in
order to have more insight on the performances of this new approach (includ-
ing one about the learning of the move of a bishop in chess involving multiple
HOLL settings). We are also completing the formalization of the equivalence
between FHOHC and FHDP. These could be both included in a longer version
of the paper. We think that this approach could be used further, including in
more complex situations, to abduce HOL, for predicate invention and for transfer
learning.

References

1. S. Ceri, G. Gottlob, and L. Tanca. What You Always Wanted to Know About
Datalog (And Never Dared to Ask). IEEE Transactions on Knowledge and Data
Engineering, 1:146�166, 1989.

2. W. Cohen and C.D. Page. Polynomial learnability and Inductive Logic Program-
ming: methods and results. New Generation Computing, 13:369�409, 1995.

3. J.L. Darlington. Automatic Theorem Proving with Equality Substitutions and
Mathematical Induction. In Machine Intelligence 3, pages 113�127. 1968.

4. C. Feng and S.H. Muggleton. Towards inductive generalisation in higher order
logic. In Proc. Ninth Int. Work. on Machine Learning, pages 154�162, 1992.

5. Jörg-Uwe Kietz and Saso Dzeroski. Inductive Logic Programming and Learnability.
SIGART Bulletin, 5(1):22�32, 1994.

6. J.W. Lloyd. Logic for Learning. Springer, Berlin, 2003.
7. John McCarthy and Patrick J. Hayes. Some Philosophical Problems from the

Standpoint of Arti�cial Intelligence. In Machine Intelligence 4. 1969.
8. S. Muggleton and C. Bryant. Theory completion using inverse entailment. 10th

Intern. Workshop on Inductive Logic Programming (ILP-00), pages 130�146, 2000.
9. G. Nadathur and D. Miller. Higher-order Horn Clauses. Journal of the ACM, 1990.
10. N. Pahlavi. ILP11 Experiments. http://www.doc.ic.ac.uk/ namdp05/ilp11.
11. N. Pahlavi and S.H. Muggleton. Can HOLL Outperform FOLL? In Proceedings of

the 20th Intern. Conf. on Inductive Logic Programming. Springer-Verlag, 2010.
12. Céline Rouveirol. Flattening and Saturation: Two Representation Changes for

Generalization. Machine Learning, 14(1):219�232, 1994.

