
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Learning Higher-Order Programs through Predicate Invention

Andrew Cropper
University of Oxford

andrew.cropper@cs.ox.ac.uk

Rolf Morel
University of Oxford

rolf.morel@cs.ox.ac.uk

Stephen H. Muggleton
Imperial College London

s.muggleton@imperial.ac.uk

Abstract

A key feature of inductive logic programming (ILP) is its
ability to learn first-order programs, which are intrinsically
more expressive than propositional programs. In this paper,
we introduce ILP techniques to learn higher-order programs.
We implement our idea in Metagolho, an ILP system which
can learn higher-order programs with higher-order predicate
invention. Our experiments show that, compared to first-order
programs, learning higher-order programs can significantly
improve predictive accuracies and reduce learning times.

1 Introduction

Suppose we want to learn a decryption program from en-
crypted/decrypted messages. Figure 1 shows such a scenario,
where the encryption algorithm is a +1 Caesar cipher. Given
these examples and suitable background knowledge (BK),
most inductive logic programming (ILP) approaches would
learn a recursive first-order program, such as the one shown
in Figure 2. Although correct, this program is overly complex
and most of the program manipulates the input and output list.
In this paper1, we introduce techniques to learn higher-order
programs that abstract away this boilerplate code. Specifi-
cally, we extend meta-interpretive learning (MIL) (Muggle-
ton, Lin, and Tamaddoni-Nezhad 2015) to support learning
higher-order programs. Using this new approach, we can
learn an equivalent2 yet smaller program, such as the one
shown in Figure 3, which uses map/3 to abstract away the
recursion and list manipulation.

Encrypted Decrypted

joevdujwf inductive
mphjd logic
qsphsbnnjoh programming

Figure 1: Example encrypted and decrypted messages.

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1This is a shortened version of a MLJ paper presented at ILP19
(Cropper, Morel, and Muggleton 2019)

2Success set equivalent when restricted to the predicate f/2.

f(A,B):-empty(A),empty(B).
f(A,B):-head(A,C),tail(A,G),head(B,F),tail(B,H),
int_to_chr(E,F),chr_to_int(C,D),succ(E,D),f(G,H).

Figure 2: A first-order decryption program.

f(A,B):-map(A,B,f1).
f1(A,B):-chr_to_int(A,C),succ(D,C),int_to_chr(D,B).

Figure 3: A higher-order decryption program.

We implement our idea in Metagolho, which extends Metagol
(Cropper and Muggleton 2016), a MIL implementation based
on a Prolog meta-interpreter, to support learning higher-order
programs. The key novelty of Metagolho is the combination
of abstraction (learning higher-order programs) and invention
(predicate invention), allowing for higher-order arguments to
be invented, such as the predicate f1/2 in Figure 3. Our main
contributions are:

• We show that learning higher-order programs can reduce
the size of the hypothesis space and sample complexity in
MIL.

• We introduce Metagolho, which extends Metagol to sup-
port learning higher-order programs.

• We experimentally show that, compared to learning first-
order programs, learning higher-order programs can sub-
stantially improve predictive accuracies and reduce learn-
ing times.

2 Related Work

The goal of program induction is to learn a program from
an incomplete specification, typically input/output examples.
ILP is a form of program induction which learns logic pro-
grams. MIL is a powerful form of ILP that supports predicate
invention, the ability to introduce new predicate symbols to
improve learning performance.

Most ILP systems, including the popular system Progol
(Muggleton 1995), learn first-order programs. Given appro-
priate mode declarations (Muggleton 1995) for higher-order
predicates such as map/3, Progol could learn higher-order

13655

Name Metarule

precon P (A,B)← Q(A), R(A,B)
curry P (A,B)← Q(A,B,R)
chain P (A,B)← Q(A,C), R(C,B)

Figure 4: Example metarules. The letters P , Q, and R denote
existentially quantified higher-order variables. The letters A,
B, and C denote universally quantified first-order variables.

programs, such as f(A,B) ← map(A,B,succ). However, be-
cause these systems do not support predicate invention they
cannot invent any arguments for map/3, and would instead
need the arguments to be predefined. Likewise, the main
MIL implementation, Metagol, cannot learn the program in
Figure 3 without being given the definition for the predi-
cate f1. Metagolho overcomes this limitation and can invent
arguments for higher-order predicates.

3 Meta-Interpretive Learning

We now extend MIL to support learning higher-order pro-
grams and show the potential sample complexity benefits.

3.1 Preliminaries

We assume familiarity with logic programming notation, but
we restate specific terminology. We denote the predicate and
constant signatures asP and C respectively. A variable is first-
order if it can be bound to a constant symbol or another first-
order variable. A variable is higher-order if it can be bound
to a predicate symbol or another higher-order variable. We
denote the sets of first-order and higher-order variables as V1
and V2 respectively. A first-order term is a variable or a con-
stant symbol. A higher-order term is a higher-order variable
or a predicate symbol. An atom is a formula p(t1, . . . , tn),
where p is a predicate symbol of arity n and each ti is a term.
An atom is first-order if all of its terms are first-order. An
atom is higher-order if it has at least one higher-order term.
A literal is an atom or its negation. A Horn clause is a clause
with at most one positive literal. A clause is higher-order if it
contains at least one higher-order literal. A logic program is
a set of Horn clauses. A logic program is higher-order if it
contains at least one higher-order Horn clause.

3.2 Abstracted Meta-Interpretive Learning

MIL uses metarules (Cropper and Tourret 2019) as a form
of inductive bias to define the structure of learnable pro-
grams. A metarule is a higher-order formula of the form
∃π∀μ l0 ← l1, . . . , lm, where each li is a literal, π ⊆
V1 ∪ V2, μ ⊆ V1 ∪ V2, and π and μ are disjoint. When de-
scribing metarules, we omit the quantifiers and instead denote
existentially quantified higher-order variables as uppercase
letters starting from P and universally quantified first-order
variables as uppercase letters starting from A. Figure 4 shows
example metarules.

To extend MIL to support learning higher-order programs
we introduce higher-order definitions. A higher-order defi-
nition is a set of higher-order Horn clauses where the head
atoms have the same predicate symbol. Figure 5 shows an

map([],[],F)←
map([A|As],[B|Bs],F)← F(A,B), map(As,Bs)

Figure 5: Higher-order map definition. The variables are all
universally quantified first-order variables except the symbol
F , which is a higher-order variable.

example higher-order definition. We extend the standard MIL
input to support higher-order definitions:

Definition 1 (Abstracted MIL input). An abstracted MIL
input is a tuple (B,E+, E−,M) where:

• B = BC ∪BI where BC is a set of Horn clauses and BI

is (the union of) a set of higher-order definitions
• E+ and E− are disjoint sets of ground atoms representing

positive and negative examples respectively
• M is a set of metarules.

We define the abstracted MIL problem:

Definition 2 (Abstracted MIL problem). Given an ab-
stracted MIL input (B,E+, E−,M), the abstracted MIL
problem is to return a logic program hypothesis H such
that (1) ∀h ∈ H, ∃m ∈ M such that h = mθ, where θ is a
substitution that grounds all the existentially quantified vari-
ables in m, (2) H ∪ B |= E+, and (3) H ∪ B �|= E−. We
call H a solution to the MIL problem.

3.3 Sample Complexity

The size of the MIL hypothesis space is a function of the
number of metarules m and their form, the number of back-
ground predicate symbols p, and the maximum program size
n (the maximum number of clauses allowed in a program).
We restrict metarules by their body size and literal arity. A
metarule is in the fragmentMi

j if it has at most j literals in
the body and each literal has arity at most i. For instance,
the chain metarule in Figure 4 is in the fragmentM2

2. By
restricting the form of metarules we can calculate the size of
a MIL hypothesis space:

Proposition 1 (MIL hypothesis space). Given p predicate
symbols and m metarules inMi

j , the number of programs
expressible with n clauses is at most (mpj+1)n.

We update this bound for the abstracted MIL framework:

Proposition 2 (Number of abstracted Mi
j programs).

Given p predicate symbols and m metarules in Mi
j with

at most k additional existentially quantified higher-order vari-
ables, the number of abstractedMi

j programs expressible
with n clauses is at most (mpj+1+k)n.

We use this result to develop sample complexity results for
unabstracted MIL:

Proposition 3 (Sample complexity of unabstracted MIL).
Given p predicate symbols, m metarules inMi

j , and a max-
imum program size nu, unabstracted MIL has sample com-
plexity su ≥ 1

ε (nu ln(m) + (j + 1)nu ln(p) + ln(1δ)).

We likewise develop sample complexity results for abstracted
MIL:

13656

Proposition 4 (Sample complexity of abstracted MIL).
Given p predicate symbols, m metarules inMi

j augmented
with at most k higher-order variables, and a maximum
program size na, abstracted MIL has sample complexity
sa ≥ 1

ε (na ln(m) + (j + 1 + k)na ln(p) + ln(1δ)).

We compare these bounds:

Theorem 1 (Unabstracted and abstracted bounds). Let
m be the number ofMi

j metarules, nu and na be the mini-
mum numbers of clauses necessary to express a target theory
with unabstracted and abstracted MIL respectively, su and sa
be the bounds on the number of training examples required
to achieve error less than ε with probability at least 1 − δ
with unabstracted and abstracted MIL respectively, and k ≥ 1
be the number of additional higher-order variables used by

abstracted MIL. Then su > sa when nu − na >
k

j + 1
na.

The results from this section motivate the use of abstracted
MIL and help explain the experimental results (Section 5).

4 Metagolho

4.1 Metagol

Metagolho is based on Metagol, a MIL learner based on a
Prolog meta-interpreter. Given a set of atoms which repre-
sent positive examples, Metagol tries to prove each atom in
turn. Metagol first tries to deductively prove an atom using
standard BK by delegating the proof to Prolog. If this deduc-
tive step fails, Metagol tries to unify the atom with the head
of a metarule and tries to bind the existentially quantified
variables in a metarule to symbols in the predicate signature.
Metagol saves the resulting substitutions and tries to prove
the body of the metarule through meta-interpretation. After
proving all atoms, Metagol induces a Prolog program by pro-
jecting the substitutions onto their corresponding metarules.
Metagol checks the consistency of the learned program with
the negative examples. If the program is inconsistent, then
Metagol backtracks to explore different programs.

4.2 Metagolho

Metagolho extends Metagol with an additional clause in the
meta-interpreter. This additional clause allows Metagolho
to prove an atom using a clause in a higher-order definition
(such as map/3), and, as with metarules, proves the body of
the clause through meta-interpretation. This meta-interpretive
approach allows for predicate invention to be driven by the
proof of conditions (as in filter/3) and functions (as in map/3).
It is important to note that proving a clause in a higher-order
definition is different to using a metarule because the vari-
ables in a higher-order definition are all universally quantified.
By contrast, metarules contain existentially quantified vari-
ables whose substitutions form the hypothesised program,
and thus requires a search for appropriate substitutions.

5 Experiments

We now experimentally test our claim that, compared to
learning first-order programs, learning higher-order programs
can improve learning performance. In the experiments we use

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

No. training examples

A
cc

ur
ac

y
(%

)

Metagol
Metagolho
default

2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

No. training examples

Se
co

nd
s

Metagol
Metagolho

(a) Predictive accuracies (b) Learning times

Figure 6: Robot waiter experiment results.

10 general-purpose metarules and the higher-order definitions
map/3, until/4, and ite/5 (if then else).

5.1 Robot Waiter

This experiment focuses on learning a general robot waiter
strategy (Cropper and Muggleton 2015) from a set of exam-
ples, where the goal is to serve drinks at a table.

Materials Examples are f/2 atoms where the first argument
is the initial state and the second is the final state. A state is
a list of ground Prolog atoms. In the initial state, the robot
starts at position 0, there are d cups facing down at positions
0, . . . , d − 1; and for each cup there is a preference for tea
or coffee. In the final state, the robot is at position d; all the
cups are facing up; and each cup is filled with the preferred
drink. We allow the robot to perform the fluents (monadic
predicates) at end, wants tea, and wants coffee, and to per-
form the actions (dyadic predicates) move left, move right,
turn cup over, pour tea, and pour coffee.

Method For each learning system s in {Metagol,
Metagolho} and for each m in {1, 2, . . . , 10}, we (1) gener-
ate m positive and m negative training examples, (2) generate
1000 positive and 1000 negative testing example, (3) use s to
learn a program p using the training examples, and (4) mea-
sure the predictive accuracy of p using the testing examples.
We measure mean predictive accuracies, mean learning times,
and standard errors of the mean over 10 repetitions.

Results Figure 6 shows that in all cases Metagolho learns
programs with higher predictive accuracies and lower learn-
ing times than Metagol. Figures 7 and 8 show example pro-
grams learned by Metagol and Metagolho respectively. Al-
though both programs are general, the program learned by
Metagolho is smaller. Whereas Metagol learns a first-order
recursive program, Metagolho avoids recursion and instead
uses the higher-order abstraction until/4, which removes the
need to learn a recursive two clause definition. Likewise,
Metagolho uses the abstraction ite/5 (if then else) to remove
the need to learn two clauses to decide which drink to pour.

5.2 Droplast

In this experiment, we try to learn a program that drops the
last character from each string in a list of strings, for instance
[alice,bob,carol] maps to [alic,bo,caro].

13657

f(A,B):-turn_cup_over(A,C),f1(C,B).
f1(A,B):-move_right(A,B),at_end(B).
f1(A,B):-f2(A,C),f1(C,B).
f2(A,B):-wants_coffee(A),pour_coffee(A,B).
f2(A,B):-move_right(A,C),turn_cup_over(C,B).
f2(A,B):-wants_tea(A),pour_tea(A,B).

Figure 7: A first-order waiter program learned by Metagol.

f(A,B):-until(A,B,at_end,f1).
f1(A,B):-turn_cup_over(A,C),f2(C,B).
f2(A,B):-f3(A,C),move_right(C,B).
f3(A,B):-ite(A,B,wants_coffee,pour_coffee,pour_tea).

Figure 8: A higher-order waiter program learned by
Metagolho.

Materials Examples are f/2 atoms where the first argument
is the initial list and the second is the final list. We generate
positive examples as follows. To form the input, we select a
random integer from the interval [1, 10] as the number of sub-
lists. For each sublist i, we select a random integer k from the
interval [1, 10] and then sample with replacement a sequence
of k letters from the alphabet a-z to form the sublist i. To
form the output, we wrote a Prolog program to drop the last
element from each sublist. We generate negative examples
using a similar procedure, but instead of dropping the last
element from each sublist, we drop j random elements (but
not the last one) from each sublist, where 1 < j < k. We use
the BK predicates empty/1, head/2, tail/2, and reverse/2.

Method The experimental method is the same as in Exper-
iment 1.

Results Figure 9 shows that Metagolho achieved 100% ac-
curacy after two examples at which point it learned the pro-
gram shown in Figure 10. The predicate f/2 maps over the
input list and applies f1/2 to each sublist to form the output
list, thus abstracting away the reasoning for iterating over a
list. The invented predicate f1/2 drops the last element from
a single list by reversing the list, calling tail/2 to drop the
head element, and then reversing the shortened list back to
the original order. By contrast, Metagol was unable to learn
any solutions because the corresponding first-order program
is too long and the search is impractical.

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

No. training examples

A
cc

ur
ac

y
(%

)

Metagol
Metagolho
default

2 4 6 8 10 12 14 16 18 20
0

200

400

600

No. training examples

Se
co

nd
s

Metagol
Metagolho

(a) Predictive accuracies (b) Learning times

Figure 9: Droplast experimental results.

f(A,B):-map(A,B,f1).
f1(A,B):-f2(A,C),reverse(C,B).
f2(A,B):-reverse(A,C),tail(C,B).

Figure 10: A higher-order droplast program learned by
Metagolho.

Further Discussion To further demonstrate invention and
abstraction, consider learning a double droplast program
which extends the droplast problem so that, in addition to
dropping the last character from each string, it also drops
the last string, e.g. [alice,bob,carol] maps to [alic,bo]. Given
two examples of this problem, Metagolho learns the program
shown in Figure 11. This program is similar to the program
shown in Figure 10 but it makes an additional call to the
invented predicate f1/2 which is used twice in the program,
once as a higher-order argument in map/3 and again as a
first-order predicate. This form of higher-order abstraction
and invention goes beyond anything in the existing literature.

f(A,B):-map(A,C,f1),f1(C,B).
f1(A,B):-f2(A,C),reverse(C,B).
f2(A,B):-reverse(A,C),tail(C,B).

Figure 11: A double droplast program learned by Metagolho.

6 Conclusions and Limitations

We have shown that learning higher-order programs can re-
duce the size of the hypothesis space and sample complexity
in MIL. We introduced Metagolho, a MIL learner which can
learn higher-order programs with predicate invention. Our
experiments showed that, compared to learning first-order
programs, learning higher-order programs can significantly
improve predictive accuracies and reduce learning times.

One limitation of this work is that we need pre-defined
higher-order definitions, such as map/3. In future work we
want to invent such definitions. For instance, when learning
the decryption program in the introduction, it may be benefi-
cial to learn and invent a sub-definition that corresponds to
map/3.

References
Cropper, A., and Muggleton, S. H. 2015. Learning efficient logical
robot strategies involving composable objects. In IJCAI 2015, 3423–
3429. AAAI Press.
Cropper, A., and Muggleton, S. H. 2016. Metagol system.
https://github.com/metagol/metagol.
Cropper, A., and Tourret, S. 2019. Logical reduction of metarules.
Machine Learning.
Cropper, A.; Morel, R.; and Muggleton, S. 2019. Learning higher-
order logic programs. Machine Learning.
Muggleton, S. H.; Lin, D.; and Tamaddoni-Nezhad, A. 2015. Meta-
interpretive learning of higher-order dyadic datalog: predicate in-
vention revisited. Machine Learning 100(1):49–73.
Muggleton, S. 1995. Inverse entailment and progol. New Generation
Comput. 13(3&4):245–286.

13658

