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Abstract. ILP systems which use some form of Inverse Entailment (IE)
are based on clause refinement through a hypotheses space bounded by
a most specific clause. In this paper we give a new analysis of refinement
operators in this setting. In particular, Progol’s refinement operator is re-
visited and discussed. It is known that Progol’s refinement operator is in-
complete with respect to the general subsumption order. We introduce a
subsumption order relative to a most specific (bottom) clause. This sub-
sumption order, unlike previously suggested orders, characterises Progol’s
refinement space. We study the properties of this subsumption order and
show that ideal refinement operators exist for this order. It is shown that
efficient operators can be implemented for least generalisation and great-
est specialisation in the subsumption order relative to a bottom clause. We
also study less restricted subsumption orders relative to a bottom clause
and show how Progol’s incompleteness can be addressed.

1 Introduction

Searching a refinement lattice bounded below by a bottom clause is the basis of
several state-of-the-art ILP systems (e.g. Progol [7], Aleph [11]). These systems
use refinement operators together with a search method to explore a bounded
hypotheses space. For example, in the default setting, Progol uses a A*-like
search together with a top-down refinement operator. Progol’s refinement oper-
ator is designed to avoid redundancy in a A*-like search. This, however, leads
to incompleteness of Progol’s refinement operator with respect to the general
subsumption order. There have been previous attempts to characterise Progol’s
refinement space and also to address the Progol’s incompleteness. In particular,
special cases of subsumption have been suggested to characterise Progol’s refine-
ment space [1]. In this paper we give a new analysis of refinement operators in
a Progol-like ILP system. We introduce a subsumption order relative to a most
specific (bottom) clause. This subsumption order, unlike previously suggested
orders, characterises Progol’s refinement space. We show the existence of ideal
refinement operators for this subsumption order. It is also shown that efficient
operators can be designed for least generalisation and greatest specialisation in
the subsumption order relative to a bottom clause. We also study less restricted
subsumption orders relative to a bottom clause and show how Progol’s incom-
pleteness (due to the choice of ordering in the bottom clause) can be addressed.
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The theoretical results presented in this paper can be applied to ILP systems
which use Inverse Entailment (IE) as well as any other ILP system which uses
a most specific clause to restrict the search space. In this paper we first review
clause refinement in Progol as an example of an IE-based ILP system. Section 3,
gives examples of Progol’s incompleteness with respect to the general subsump-
tion order. In order to characterise Progol’s refinement, Sections 4 defines sequen-
tial subsumption order relative to a bottom clause and describes the properties
of this subsumption order. In section 5, refinement operators are defined for sub-
sumption order relative to a bottom clause and the properties of these operators
are discussed. Section 6 describes less restricted subsumption orders relative to a
bottom clause and shows how Progol’s incompleteness can be addressed. Related
work is discussed in Section 7. Section 8 concludes the paper.

2 Clause Refinement in Progol

We assume the reader to be familiar with the basic concepts from logic pro-
gramming and inductive logic programming [8] and also the basic concepts from
ordered sets and lattices [3]. The following definition is a reminder of the concept
of refinement operators and several properties of these operators.

Definition 1 ([8,1]). Let 〈G, �〉 be a quasi-ordered set. A (downward) refine-
ment operator for 〈G, �〉 is a function ρ, such that ρ(C) ⊆ {D|C � D}, for
every C ∈ G.

– The sets of one-step refinements, n-step refinements and refinements of some
C ∈ G are respectively: ρ1(C) = ρ(C), ρn(C) = {D| there is an E ∈ ρn−1(C)
such that D ∈ ρ(E)}, n ≥ 2 and ρ∗(C) = ρ0(C) ∪ ρ1(C) ∪ ..

– A ρ-chain from C to D is a sequence C = C0, C1, . . . , Cn = D, such that
Ci ∈ ρ(Ci − 1) for every 1 ≤ i ≤ n.

– ρ is locally finite if for every C ∈ G, ρ(C) is finite and computable.
– ρ is proper if for every C ∈ G, ρ(C) ⊆ {D|C 
 D}.
– ρ is is complete if for every C, D ∈ G such that C 
 D, there is an E ∈ ρ∗(C)

such that D ∼ E (i.e. D and E are equivalent in the �-order).
– ρ is weakly complete if ρ∗(�) = G, where � is the top element of G.
– ρ is non-redundant if for every C, D, E ∈ G, E ∈ ρ∗(C) and E ∈ ρ∗(D)

implies C ∈ ρ∗(D) or D ∈ ρ∗(C).
– ρ is ideal if it is locally finite, proper and complete.
– ρ is optimal if it is locally finite, non-redundant and weakly complete.

We can define analogous concepts for the dual case of an upward refinement
operator.

The Progol algorithm [7] is based on successive construction of definite clause
hypotheses H from a language L. H must explain the examples E in terms of
background knowledge B. Each clause in H is found by choosing an uncovered
positive example e and searching through the graph defined by the refinement
ordering � bounded below by the bottom clause associated with e. We define
this setting more formally as follows.
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Definition 2 (Progol refinement setting). Let S = 〈B, E, L, �〉 be Progol’s
ILP setting as defined in [7]. Let E consist of a set of positive and negative exam-
ples (ground unit clauses). The empty clause, denoted by �, is the maximal�,L
element in L. The “bottom” clause, denoted by ⊥, is the least�,L element such
that B, ⊥ |= e. Refinement of clause C, denoted by ρ(C), is the set of maximal�,L
clauses D such that C 
 D � ⊥.

The refinement operator in Progol is designed to avoid redundancy and to main-
tain the relationship � � H � ⊥ for each clause H . Since H � ⊥, it is the case
that there exists a substitution θ such that Hθ ⊆ ⊥. Thus for each literal l in H
there exists a literal l′ in ⊥ such that lθ = l′. Clearly there is a uniquely defined
subset ⊥(H) consisting of all l′ in ⊥ for which there exists l in H and lθ = l′. A
non-deterministic approach to choosing an arbitrary subset S′ of a set S involves
maintaining an index k. For each value of k between 1 and n, the cardinality of
S, we decide whether to include the kth element of S in S′. Clearly, the set of
all series of n choices corresponds to the set of all subsets of S. Also for each
subset of S there is exactly one series of n choices. To avoid redundancy and
maintain θ-subsumption of ⊥ Progol’s refinement operator maintains both k and
θ. The refinement operator ρ defined in [7] allows more than one literal in H to
be mapped to the same literal l′ in ⊥. However, in Progol’s implementation of
the refinement operator, index k is incremented after each step for the sake of
efficiency. This means each literal of ⊥ can be considered only once. In Appendix
A, we give a revised definition (ρ0) which describes the refinement operator as
implemented in Progol.

3 Characterising Progol’s Refinement

In this section we show that Progol’s refinement cannot be described by the
general subsumption order and that we need the notion of “sequential subsump-
tion” in order to capture Progol’s refinement. It can be shown that a refinement
operator cannot be both complete and non-redundant [1]. However, a refinement
operator can be weakly complete and non-redundant (optimal). As mentioned
in the previous section, Progol’s ρ is designed to be non-redundant and therefore
it cannot be complete. However, it is known that Progol’s refinement operator
is also not weakly complete with respect to the general subsumption order [7].
This is demonstrated in the following example1.

Example 1. Let B contain definitions for decrementation (dec), addition (plus)
and the clause mult(0, X, 0) ← with appropriate mode declarations M and let
the example e be the clause mult(1, 1, 1) ←. Then ⊥ is the clause

mult(A, A, A) ← dec(A, B), plus(B, A, A), plus(B, B, B),
mult(B, A, B), mult(B, B, B).

1 This example is a corrected version of Example 30 in [7].
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Now consider clause C:

C = mult(U, V, W ) ← dec(U, X), mult(X, V, Y ), plus(Y, V, W ).

Clause C is in L, but given the ordering over ⊥ there will be no element of
Progol’s ρ∗(�) containing this clause or a subsume-equivalent of this clause. �

This first type of incompleteness is due to the choice of ordering in the bottom
clause and the variable dependencies in the literals. As mentioned in the previous
section, Progol’s refinement uses an indexing over the literals and the literals in
⊥ can only be considered from left to right.

As mentioned in the previous section, each literal from ⊥ can be selected
only once. This leads to the second type of incompleteness. The example below
shows that Progol’s refinement space is not a lattice with respect to the general
subsumption, as the least general generalisation of clauses is not always in the
refinement space.

Example 2. Let C, D and ⊥ be clauses as defined below

C = p(X, Y ) ← q(X, X), q(Y, W ).
D = p(X, Y ) ← q(Z, X), q(Y, Y ).
⊥ = p(X, Y ) ← q(X, X), q(Y, Y ).

C and D can be generated by Progol’s refinement given ⊥, however, clause
E below which is the least general generalisation (lgg) of C and D cannot be
generated.

E = p(X, Y ) ← q(Z, X), q(U, U), q(Y, W ). �

As another example of the second type of incompleteness, consider the following
example adopted from [1].

Example 3. Let ⊥ = p(X) ← q(X, X), then Progol’s refinement only considers
the following hypotheses.

C1 = p(X)
C2 = p(X) ← q(X, X)
C3 = p(X) ← q(X, Y )

However, the following clauses which subsume ⊥ are not considered by Pro-
gol’s refinement.

C′1 = p(X) ← q(X, Y ), q(Y, X)
C′2 = p(X) ← q(X, Y ), q(Y, Z), q(Z, X)
. . . �

It has been suggested [1] that the second type of incompleteness is not a draw-
back as it can be justified by the examples and the MDL heuristic. In order
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to characterise Progol’s refinement, the authors of [1] suggested a special case
of subsumption, called weak subsumption, which does not allow substitutions
that identify literals (i.e. for Cθ there are no literals L1 and L2 in C such that
L1θ = L2θ). For example, the clause p(X ′) ← q(X ′, Y ′), q(Y ′, X ′) subsumes
⊥ = p(X) ← q(X, X) with respect to the general subsumption, but it does not
weakly subsume it. This is because substitution {X ′/X, Y ′/X} identifies liter-
als q(X ′, Y ′) and q(Y ′, X ′). The weak subsumption ordering, therefore, char-
acterises the second type of incompleteness. However, it does not capture the
incompleteness due to the ordering of the literals. For example, consider clauses
C and ⊥ in Example 1. C weakly subsumes ⊥ but clause C is not considered by
Progol’s refinement.

As mentioned in the previous section, Progol’s refinement operator scans ⊥
from left to right and for each literal l′ of ⊥ decides whether to include a general-
isation of it (i.e. l, where lθ = l′) in H or not. Hθ can be, therefore, characterised
as a “subsequence” of ⊥ rather than a “subset” of ⊥. In the following sections we
first define a special case of subsumption based on the idea of subsequences, and
then we study the properties of this subsumption order. We show that Progol’s
refinement can be characterised by sequential subsumption relative to ⊥. We also
show that ideal refinement operators exist for this special case of subsumption.

4 Sequential Subsumption

Even though Progol does not use an explicit representation for ordered clauses,
clauses in L are defined with a total ordering over the literals (Definition 21
in [7]). In order to characterise Progol’s refinement we adopt an explicit repre-
sentation for ordered clauses. The idea of ordered (or sequential) clauses is to
consider a clause as a sequence of literals rather than a set of literals. This idea
has been used in logic programming, in particular in the context of resolution
(e.g. [2]). The concept of ordered clauses has been also used in ILP. For example,
when defining upward refinement operators it is sometime necessary to duplicate
literals in order to correctly invert an elementary substitution. Duplication of
literals is not allowed for conventional clauses (which use a set notation) and
therefore ordered clauses are used instead [8]. A subsumption relation for or-
dered clauses is studied in [4]. The difference between this subsumption order
and the subsumption order considered in this paper is discussed in Section 7.
There are also other applications of ordered clauses, for example in the context
of data mining from sequential data(e.g. [6]). In this paper we use the same
notion used in [8] and an ordered clause is represented as a disjunction of liter-
als (i.e. L1 ∨ L2 ∨ · · · ∨ Ln). The set notation (i.e. {L1, L2, . . . , Ln}) is used to
represent conventional clauses.

Definition 3 (Ordered clause). An ordered clause
−→
C is a sequence of literals

L1, L2, . . . , Ln and denoted by
−→
C = L1 ∨ L2 ∨ · · · ∨ Ln. The set of literals in

−→
C

is denoted by C.
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Unlike conventional clauses, the order and duplication of literals matter for
ordered clauses. For example,

−→
C = p(X) ∨ ¬q(X),

−→
D = ¬q(X) ∨ p(X) and

−→
E = p(X) ∨ ¬q(X) ∨ p(X) are different ordered clauses while they all corre-
spond to the same conventional clause, i.e. C = D = E = {p(X), ¬q(X)}.

Selection of two clauses is defined as a pair of compatible literals and this
concept was used by Plotkin to define least generalisation for clauses [9]. How-
ever, in this paper we use selections to define mappings of literals between two
ordered clauses.

Definition 4 (Compatible literals). Literals L and M are compatible if they
have the same sign and predicate symbol.

Definition 5 (Selection of clauses). Let
−→
C = L1 ∨ L2 ∨ · · · ∨ Ln and

−→
D =

M1 ∨ M2 ∨ · · · ∨ Mm be ordered clauses. A selection of
−→
C and

−→
D is a pair (i, j)

where Li and Mj are compatible literals.

Definition 6 (Selection function). Let
−→
C = L1 ∨ L2 ∨ · · · ∨ Ln and

−→
D =

M1∨M2 ∨· · ·∨Mm be ordered clauses. A set s of selections of
−→
C and

−→
D is called

a selection function if it is a total function of {1, 2, . . . , n} into {1, 2, . . . , m}.

Example 4. Let
−→
C = L1 ∨L2 ∨L3 and

−→
D = M1 ∨M2 ∨M3 ∨M4 be two ordered

clauses and the set of all selections of
−→
C and

−→
D be S = {(1,1), (1,2), (2,1), (2,2),

(3,4)}. Then, s1 = {(1,1), (2,2), (3,4)}, s2 = {(1,1), (2,1), (3,4)} and s3 = {(1,2),
(2,1), (3,4)} are examples of selection functions of

−→
C and

−→
D . �

Definition 7 (Subsequence). Let
−→
C = L1 ∨L2 ∨· · ·∨Ll and

−→
D = M1 ∨M2 ∨

· · · ∨ Mm be ordered clauses.
−→
C is a subsequence of

−→
D , denoted by

−→
C �s −→

D , if
there exists a strictly increasing selection function s such that for each (i, j) ∈ s,
Li = Mj.

Example 5. Suppose that in Example 4, we have L1 = L2 = M1 = M2 and
L3 = M4.

−→
C is then a subsequence of

−→
D because there exists strictly increasing

selection function s1 which maps each literal Li from
−→
C to an equivalent literal

Mj from
−→
D . �

Definition 8 (Ordered substitution). Let
−→
C = L1∨L2∨· · ·∨Ll be an ordered

clause and θ be a substitution.
−→
C θ is defined as follows,

−→
C θ = L1θ∨L2θ∨· · ·∨Llθ.

Definition 9 (Sequential subsumption). Let
−→
C and

−→
D be ordered clauses.

We say
−→
C is a sequential generalisation of

−→
D , denoted by

−→
C �s

−→
D , if there exists

a substitution θ such that
−→
C θ is a subsequence of

−→
D .

−→
C is a proper sequential

generalisation of
−→
D , denoted by

−→
C 
s

−→
D , if

−→
C �s

−→
D and

−→
D ��s

−→
C .

−→
C and−→

D are equivalent with respect to sequential subsumption, denoted by
−→
C ∼s

−→
D , if−→

C �s
−→
D and

−→
D �s

−→
C .
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Example 6. Let
−→
B =p(X1, Y1)∨q(X1, Y1)∨r(X1, Y1)∨r(Y1, X1),

−→
C =p(X2, Y2)∨

r(U2, Y2)∨r(Y2 , V2) and
−→
D = p(X3, Y3)∨r(Y3 , V3)∨r(U3, Y3) be ordered clauses.

Let θ1 = {X2/X1, Y2/Y1, U2/X1, V2/X1}, then
−→
C θ1 is a subsequence of

−→
B and

therefore
−→
C �s

−→
B . However, there is no substitution θ2 such that

−→
Dθ2 is a subse-

quence of
−→
B and therefore

−→
D ��s

−→
B . Note that for conventional clauses B, C and

D we have Cθ1 ⊆ B and similarly for θ2 = {X3/X1, Y3/Y1, V3/X1, U3/X1} we
have Dθ2 ⊆ B and therefore C � B and D � B. �

The following theorem shows the relationship between sequential subsumption
and the general subsumption order.

Theorem 1. Let
−→
C and

−→
D be ordered clauses. If

−→
C �s

−→
D , then C � D.

Proof. Suppose
−→
C �s

−→
D , then according to Definition 9 there exists a substitu-

tion θ such that
−→
C θ is a subsequence of

−→
D . Let

−→
C θ = L1θ ∨ L2θ ∨ · · · ∨ Llθ and−→

D = M1 ∨ M2 ∨ · · · ∨ Mm. Then for every literal Liθ in
−→
C θ there exists a literal

Mj in
−→
D such that Liθ = Mj, and therefore Cθ ⊆ D. Hence, C � D. �

Note that as shown in Example 6, the converse of Theorem 1 does not hold in
general.

The languages which we consider in this paper (e.g. L,
−→L⊥, etc.) correspond

to a set of clauses which are generalisations of a flattened bottom clause [7].
Therefore, all clauses in L,

−→L⊥, etc. are function-free and all substitutions we
consider are variable substitutions2. Progol’s refinement considers a subset of
clauses in L which are sequential generalisation of the bottom clause. This subset
of ordered clauses are defined as follows.

Definition 10 (
−→L⊥). Let

−→⊥ be the bottom clause as defined in Definition 2.
−→
C

is in
−→L⊥ if and only if there exists a substitution θ such that

−→
C θ is a subsequence

of
−→⊥ .

Let us consider the examples in the previous section with respect to Definition 10.
In Example 1, if we now consider

−→
C and

−→⊥ as ordered clauses then
−→
C �∈ −→L⊥,

because there is no substitution θ such that
−→
C θ can be a subsequence of

−→⊥ .
Similarly in Example 3,

−→
C′1 �∈ −→L⊥, etc.

According to Definition 10, for each ordered clause
−→
C in

−→L⊥ there exists a
substitution θ such that

−→
C θ is a subsequence of

−→⊥ . Thus, there exists a selection
function s which maps each literal of

−→
C θ to a literal of

−→⊥ and this selection func-
tion is strictly increasing. This implies that there is an injective mapping from
the literals of

−→
C θ to the literals of

−→⊥ . Therefore, clause
−→
C can be encoded by

the substitution θ and a set of integers K, i.e. the range of the selection function
s. In Progol’s refinement operator, θ and K are maintained for each clause in

2 Substitution θ = {vj/uj} is a variable substitution if all vj and uj are variables.
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order to decode the clause from
−→⊥ . Moreover, according to Definition 21, refine-

ments of a clause are constructed by adding literals which are generalisations of
a literal from

−→⊥ . These literals are generated by δ and they all correspond to
the same literal lk from

−→⊥ . This means that a literal Li from
−→
C is comparable

(with respect to Progol’s refinement) to a literal Mj from
−→
D if Li and Mj are

both mapped to the same literal of
−→⊥ . This leads to more specific definitions for

subsequence and sequential subsumption.

Definition 11 (Subsequence relative to ⊥). Let
−→⊥ and

−→L⊥ be as defined
in Definition 10 and

−→
C = L1 ∨ L2 ∨ · · · ∨ Ll and

−→
D = M1 ∨ M2 ∨ · · · ∨ Mm be

ordered clauses in
−→L⊥ such that

−→
C �s1

−→⊥ and
−→
D �s2

−→⊥ .
−→
C is a subsequence

of
−→
D relative to ⊥, denoted by

−→
C �s

⊥
−→
D , if there exists a strictly increasing

selection function s such that for each (i, j) ∈ s, Li = Mj and there exists k,
1 ≤ k ≤ n and (i, k) ∈ s1 and (j, k) ∈ s2.

In Definition 11 the selection function s maps literal Li from
−→
C to an equivalent

literal Mj from
−→
D if they both correspond to the same literal from

−→⊥ .

Definition 12 (Sequential subsumption relative to ⊥). Let
−→⊥ and

−→L⊥ be
as defined in Definition 10 and

−→
C and

−→
D be ordered clauses in

−→L⊥. We say
−→
C

is a sequential generalization of
−→
D relative to ⊥, denoted by

−→
C �⊥

−→
D , if there

exists a substitution θ such that
−→
C θ is a subsequence of

−→
D relative to ⊥.

As shown in Example 1, Progol’s refinement cannot be weakly complete for
〈L, �〉, however, it can be weakly complete for 〈−→L⊥, �⊥〉.

Theorem 2. ρ0 is weakly complete for 〈−→L⊥, �⊥〉.

A sketch proof for this theorem is given in the Appendix.

5 Ideal Refinement Operators for Sequential
Subsumption Order Relative to ⊥

In this section we define a refinement operator ρ1 and show that ρ1 is ideal for
〈−→L⊥, �⊥〉. First we define a mapping function which is used in the refinement
operator. As mentioned in the previous section, in Progol’s refinement operator,
a substitution θ and a set of integers K are maintained for each clause in order
to decode the clause from

−→⊥ . In this setting, substitution θ maps variables from−→
C to the variables of

−→⊥ . The decoding, therefore, requires inverse substitution
θ−1. This can be achieved by maintaining the position of variables when the
substitution θ is constructed [8]. However, in the mapping function used in this
section, substitution θ maps variables from

−→� to the variables of
−→
C , where

−→�
is

−→⊥ with all variables replaced with new and distinct variables.
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Definition 13 (Mapping function c). Let
−→⊥ and

−→L⊥ be as defined in Def-
inition 10, n be the number of literals in ⊥.

−→� is
−→⊥ with all variables re-

placed with new and distinct variables. θ� is a variable substitution such that−→�θ� =
−→⊥ . Let θ be a variable substitution in Θ, where Θ = {θ′|θ′ ⊆ θ̂� and

if {x/z, z/y} ⊆ θ′ then x/y ∈ θ′} and θ̂� = {y/x|{x/z, y/z} ⊆ θ�}. Let K be
power-set of {1, . . . , n}. The mapping function c : K × Θ → −→L⊥ is defined as
follows:

c(〈K, θ〉) = (
n∨

i=1

li|i ∈ K and li is the ith literal of
−→�)θ.

The mapping function c, maps a tuple 〈K, θ〉 into an ordered clause
−→
C in

−→L⊥.
This mapping function also makes sure that the literals in

−→
C follow the same

order as literals in
−→⊥ . This condition is required for the refinement operator ρ1

which is intended to be complete for 〈−→L⊥, �⊥〉.
The refinement operator ρ1 is based on Laird’s refinement operator [5] adopted

for sequential subsumption and a refinement space bounded below by a bottom
clause.

Definition 14 (ρ1). Let
−→⊥ and

−→L⊥ be as defined in Definition 10,
−→
C be an

ordered clause in
−→L⊥, n be the number of literals in ⊥, k be a natural number,

1 ≤ k ≤ n,
−→� , Θ and K be defined as in Definition 13. Let K ∈ K, θ ∈ Θ,

−→
C =

c(〈K, θ〉) and the mapping function c be defined as in Definition 13. 〈
−→
C′, K ′, θ′〉

is in ρ1(〈
−→
C , K, θ〉) if and only if

−→
C′ = c(〈K ′, θ′〉) and either

1. K ′ = K ∪ {k}, k �∈ K and θ′ = θ or
2. K ′ = K, θ′ = θ{y′/x′} and {y′/x′} ∈ Θ where x′ and y′ are distinct variables

in the k1th and k2th literals of
−→� respectively and k1th and k2th are in K ′.

In Definition 14, ρ1 adds a most general literal from
−→� which has not been

added before (item 1) or it applies an elementary variable substitution such
that the clause subsumes

−→⊥ (item 2). We show that ρ1 is ideal for 〈−→L⊥, �⊥〉.
The completeness proof below is similar to the completeness proof for Laird’s
refinement operator [8,13] adopted for subsumption order relative to ⊥.

Lemma 1. Let
−→
C ,

−→
D be two ordered clauses in

−→L⊥ such that
−→
C θ =

−→
D for

some substitution θ. Then, there exists a ρ1-chain from
−→
C to

−→
D .

Proof. Suppose
−→
C ,

−→
D are ordered clauses and

−→
C θ =

−→
D . Then according to

Definition 8,
−→
C and

−→
D have the same predicate symbols at the same positions

and therefore can be regarded as atoms. We need to show that there exists a
ρ1-chain from

−→
C to

−→
D by repeatedly selecting step 2 in Definition 14. The proof

is then similar to the proof of this lemma for atoms (Theorem 4 in [10]). �

Lemma 2. Let
−→
C ,

−→
D be two ordered clauses in

−→L⊥ such that
−→
C is a subse-

quence of
−→
D relative to ⊥. Then, there exists a ρ1-chain from

−→
C to

−→
D .
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Proof. The proof is by induction on i the number of literals in
−→
D but not in

−→
C .

If i = 0 then
−→
C =

−→
D , and the empty chain satisfies the lemma. Assume for some

j, 0 ≤ j < i, the lemma is true. This implies that there is a ρ1-chain from
−→
C to−→

C j such that
−→
C j is

−→
C with j literals inserted such that

−→
C j is a subsequence of

−→
D relative to ⊥. We show that there is a ρ1-chain from

−→
C to

−→
C j+1. Let l be the

leftmost literal in
−→
D which is not in

−→
C j . Given that

−→
D ∈ −→L⊥ we can assume

that l is mapped to the k-th literal of ⊥. We consider the following two cases:
(a) if l is a most general literal with respect to

−→
C j , then l is the k-th literal of

−→�
and using item 1 in the definition of ρ1, 〈−→C j+1, K

′, θ〉 ∈ ρ1(〈
−→
C j , K, θ〉), where

K ′ = K∪{k}. (b) otherwise there is a most general literal l′ such that l′θ′ = l. In
this case, first using item 1 in the definition of ρ1, 〈

−→
C′j+1, K

′, θ〉 ∈ ρ1(〈
−→
C j , K, θ〉)

and then according to Lemma 1 (and using item 2 in the definition of ρ1),
〈−→C j+1, K

′, θ′′〉 ∈ ρ∗1(〈
−→
C′j+1, K

′, θ〉), where K ′ = K ∪ {k} and θ′′ = θθ′. Thus,
in both cases (a) and (b), there exists a ρ1-chain from

−→
C to

−→
C j+1 and this

completes the proof. �

Theorem 3. ρ1 is complete for 〈−→L⊥, �⊥〉.

Proof. Let
−→
C ,

−→
D be two ordered clauses in

−→L⊥ such that, for some θ,
−→
C θ is a

subsequence of
−→
D relative to ⊥. If we define

−→
E =

−→
C θ then

−→
E and

−→
C satisfy

Lemma 1, hence there is a ρ1-chain from
−→
C to

−→
E .

−→
E is a subsequence of

−→
D

relative to ⊥ and according to Lemma 2, there is a ρ1-chain from
−→
E to

−→
D . Thus,

there is a ρ1-chain from
−→
C to

−→
D via

−→
E . �

According to Definition 14, the refinement operator ρ1 works on an encoding of
a clause, i.e. 〈K, θ〉 rather than the clause itself. In the following we define the
order relation for the encoding tuples 〈K, θ〉, used in the mapping function c.
Then, we show that the mapping function c is order-embedding.

Definition 15. Let K and Θ be defined as in Definition 13 and K1, K2 ∈ K and
θ1, θ2 ∈ Θ. 〈K1, θ1〉 ⊆ 〈K2, θ2〉 if and only if K1 ⊆ K2 and θ1 ⊆ θ2. θ1 ⊆ θ2 if
and only if there exists a substitution θ such that θ2 = θ1θ. 〈K1, θ1〉 ∼ 〈K2, θ2〉
if and only if 〈K1, θ1〉 ⊆ 〈K2, θ2〉 and 〈K2, θ2〉 ⊆ 〈K1, θ1〉.

Theorem 4. Let K and Θ and mapping function c be defined as in Defini-
tion 13 and K1, K2 ∈ K and θ1, θ2 ∈ Θ. c(〈K1, θ1〉) �⊥ c(〈K2, θ2〉) if and only
if 〈K1, θ1〉 ⊆ 〈K2, θ2〉.

Proof. ⇒ : Let
−→
C ,

−→
D be ordered clauses such that

−→
C = c(〈K1, θ1〉) and

−→
D =

c(〈K2, θ2〉). Assume
−→
C �⊥

−→
D , then according to Theorem 3 there is a ρ1-chain

from
−→
C to

−→
D . Let this ρ1-chain be C = C′0 �⊥ C′1 �⊥ · · · �⊥ C′m = D where

〈
−→
C′i+1, K

′
i+1, θ

′
i+1〉 ∈ ρ1(〈

−→
C′i, K ′i, θ

′
i〉), 0 ≤ i < m. According to the definition of

ρ1, in each refinement step either 1) K ′i ⊆ K ′i+1 and θ′i+1 = θ′i or 2) K ′i+1 = K ′i
and θ′i ⊆ θ′i+1. Then it is always the case that K ′i ⊆ K ′i+1 and θ′i ⊆ θ′i+1, where
K ′0 = K1, K

′
m = K2, θ

′
0 = θ1, θ

′
m = θ2. Thus, K1 ⊆ K2 and θ1 ⊆ θ2.
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⇐ : Let
−→
C = c(K1, θ1) = (

∨
li|i ∈ K1)θ1 and

−→
D = c(K2, θ2) = (

∨
lj |j ∈

K2)θ2 such that K1 ⊆ K2 and θ1 ⊆ θ2. According to Definition 15, θ2 = θ1θ for
some substitution θ. Then, given K1 ⊆ K2, for every literal liθ1 from

−→
C θ, we

have a literal liθ1θ from
−→
D where liθ1 and liθ1θ are both mapped to the same

literal li from
−→� (Definition 13). Thus,

−→
C θ is a subsequence of

−→
D relative to ⊥

and therefore
−→
C �⊥

−→
D . �

In the following we show the properness and the idealness of ρ1 for 〈−→L⊥, �⊥〉.

Lemma 3. Let
−→
C and

−→
D be ordered clauses.

−→
C ∼⊥

−→
D if and only if

−→
C and

−→
D

are alphabetical variants.

Proof. ⇒ : Suppose
−→
C ∼⊥

−→
D , then we have

−→
C �⊥

−→
D and

−→
D �⊥

−→
C . Thus,

there are substitutions θ1 and θ2 such that
−→
C θ1 is a subsequence of

−→
D relative

to ⊥ and
−→
Dθ2 is a subsequence of

−→
C relative to ⊥. Let

−→
C = L1 ∨ L2 ∨ · · · ∨ Ll

and
−→
D = M1 ∨ M2 ∨ · · · ∨ Mm. Therefore, there are strictly increasing selection

functions s1 and s2 such that for each (i, j) ∈ s1, Liθ1 = Mj and for each
(i, j) ∈ s2, Miθ2 = Lj . Given that s1 and s2 are strictly increasing functions,
there is a one-to-one mapping between literals of

−→
C and

−→
D such that m = n,

Liθ1 = Mi and Miθ2 = Li. Therefore it holds that
−→
C θ1 =

−→
D and

−→
Dθ2 =

−→
C .

Hence,
−→
C and

−→
D are alphabetical variants.

⇐ : Suppose
−→
C and

−→
D are alphabetical variants. Therefore there are substi-

tutions θ1 and θ2 such
−→
C θ1 =

−→
D and

−→
Dθ2 =

−→
C . Then it follows from Definition

12 that
−→
C �⊥

−→
D and

−→
D �⊥

−→
C and therefore

−→
C ∼⊥

−→
D . �

Lemma 4. Let K and Θ and mapping function c be defined as in Definition 13
and K, {k} ∈ K such that k �∈ K and θ ∈ Θ. Then, c(〈K ∪ {k}, θ〉) 
⊥ c(K, θ).

Proof. Suppose c(〈K ∪ {k}, θ〉) �
⊥ c(K, θ). We know from Theorem 4 that
c(〈K∪{k}, θ〉) �⊥ c(K, θ), and therefore c(〈K∪{k}, θ〉) ∼⊥ c(K, θ). According to
Lemma 3, c(〈K∪{k}, θ〉) and c(K, θ) must be alphabetical variants, contradicting
k �∈ K. Thus, c(〈K ∪ {k}, θ〉) 
⊥ c(K, θ). �

Lemma 5. Let K and Θ, � and mapping function c be defined as in Defi-
nition 13 and K ∈ K, {y/x}, θ ∈ Θ where x and y are distinct variables in
the k1th and k2th literals of

−→� respectively and k1th and k2th are in K. Then,
c(〈K, θ{y/x}〉) 
⊥ c(K, θ).

Proof. Suppose c(〈K, θ{y/x}〉) �
⊥ c(K, θ). We know from Theorem 4 that
c(〈K, θ{y/x}〉) �⊥ c(K, θ), and therefore c(〈K, θ{y/x}〉) ∼⊥ c(K, θ). According
to Lemma 3, c(〈K, θ{y/x}〉) and c(K, θ) must be alphabetical variants. Thus,
{y/x} must be a renaming subsumption, i.e. x is either equal to y or it does not
occur in c(K, θ), contradicting the assumption. Thus, c(〈K, θ{y/x}〉) 
⊥ c(K, θ).

�

Theorem 5. ρ1 is proper for 〈−→L⊥, �⊥〉.
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Proof. If 〈C′, θ′, K ′〉 ∈ ρ1(〈C, θ, K〉) is generated by item 1 in the definition of
ρ1, then

−→
C 
⊥

−→
D follows from Lemma 4. If it is generated by item 2 in the

definition of ρ1, then
−→
C 
⊥

−→
D follows from Lemma 5. �

Theorem 6. ρ1 is ideal for 〈−→L⊥, �⊥〉.

Proof. Locally finiteness follows from the definition of ρ1 and the fact that there
are finite number of literals and variables in ⊥. Completeness and properness
were proved in Theorem 3 and Theorem 5 respectively. �

In the following we study the morphism between 〈−→L⊥, �⊥〉 and 〈K × Θ, ⊆〉.
According to Theorem 4, the mapping function c is an order-embedding. The
following theorem shows that c is also an order-isomorphism.

Theorem 7. The mapping function c : K×Θ → −→L⊥ as defined in Definition 13
is an order-isomorphism.

Proof. According to Theorem 4, the mapping function c is an order-embedding,
so we only need to prove that c is onto. Let

−→
C be an ordered clause in

−→L⊥,
then according to Definition 10, there exist substitution θ and selection function
s such that

−→
C θ �s −→⊥ . From Definition 13 we have

−→�θ� =
−→⊥ and there-

fore
−→
C θ �s −→�θ� and this implies

−→
C �s �θ�θ−1. Thus,

−→
C can be defined as−→

C = c(K, θ′) = (
∨

li|i ∈ K)θ′, where θ′ = θ�θ−1 and K is the range of the
selection function s. �

The proposition below follows directly from Theorem 7.

Proposition 1. Let K and Θ and mapping function c be defined as in Defi-
nition 13 and K1, K2 ∈ K and θ1, θ2 ∈ Θ. c(K, θ) ∼⊥ c(K ′, θ′) if and only if
〈K, θ〉 ∼ 〈K ′, θ′〉.

It is known that if a mapping is order-isomorphism it is also a lattice
isomorphism.

Theorem 8 ([3]). Let 〈L, ∧, ∨〉 and 〈K, ∩, ∪〉 be lattices and f : L → K. f is
order-isomorphism if and only if it is a lattice isomorphism.

According to this theorem the mapping c is a lattice isomorphism. Thus, it can
be shown that 〈−→L⊥, �⊥〉 and 〈K × Θ, ⊆〉 are two isomorphic lattices. This also
means that the mapping c is a lattice homomorphism. The proposition below
follows from c being a homomorphism.

Proposition 2. Let K and Θ and mapping function c be defined as in Defi-
nition 13 and K1, K2 ∈ K and θ1, θ2 ∈ Θ. Mapping c is joint-preserving and
meet-preserving that is:

1. lgg⊥(c(〈K1, θ1〉, c(〈K2, θ2〉) = c(〈K1 ∩ K2, θ1 ∩ θ2〉)
2. mgi⊥(c(〈K1, θ1〉, c(〈K2, θ2〉) = c(〈K1 ∪ K2, θ1 ∪ θ2〉)
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According to Proposition 2, the least general generalisation (lgg⊥) and the most
specific instance (mgi⊥) for 〈−→L⊥, �⊥〉 can be defined based on the the joint
and the meet operations for 〈K ×Θ, ⊆〉. Note that if two lattices are isomorphic
then for practical purposes they are identical and differ only in the notation of
their elements. The morphism between 〈−→L⊥, lgg⊥, mgi⊥〉 and 〈K × Θ, ∩, ∪〉 is
important from a practical point of view. For example, the least general gen-
eralisation (lgg) of clauses, introduced by Plotkin [9], is an important operator
for ILP. However, in the general subsumption order the construction of lgg can
be inefficient (e.g. the cardinality of the lgg of two clauses is bounded by the
product of the cardinalities of the two clauses). On the other hand, efficient op-
erators can be implemented for least generalisation and greatest specialisation
in the sequential subsumption order relative to a bottom clause.

6 Subsumption Order Relative to ⊥

The purpose of the previous sections was to characterise Progol’s refinement and
the subsumption sub-lattice which is searched by Progol. We defined sequential
subsumption order relative to ⊥ and studied the properties of this special case of
subsumption. In this section we show how some limitations of Progol’s refinement
operator can be addressed by relaxing conditions of sequential subsumption. In
particular we address the first type of incompleteness, which is believed to be
more problematic than the second type of incompleteness[1]. In this section we
define a refinement operator which is less restricted than ρ1. As demonstrated
in section 3, the first type of Progol’s refinement incompleteness is due to the
choice of ordering of literals in ⊥ and the fact that clauses are considered as
subsequences of ⊥. This condition was embedded in the definitions of the se-
quential subsumption and the refinement operator ρ1. However, more relaxed
conditions can be defined for subsumption and refinement operators relative to
⊥. Note that in the previous definitions and theorems we only needed to assume
that the selection functions are injective so that we can encode every literal of a
clause by a k index from ⊥. Therefore a less restricted ordering can be defined
by using a selection function which is injective rather than strictly increasing.

Definition 16 (Ordered subset). Let
−→
C = L1 ∨ L2 ∨ · · · ∨ Ll and

−→
D =

M1 ∨ M2 ∨ · · · ∨ Mm be ordered clauses.
−→
C is an ordered subset of

−→
D , denoted

by
−→
C ⊆s −→

D , if there exists an injective selection function s such that for each
(i, j) ∈ s, Li = Mj.

By choosing s to be an injective function, we make sure that clauses can still be
encoded by a set of k indexes. However, these clauses do not need to follow the
same order as literals in ⊥. In the following, we give new definitions for the map-
ping function and the refinement operator for this less restricted subsumption
order.
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Definition 17 (L⊥). Let
−→⊥ be the bottom clause as defined in Definition 2.

−→
C

is in L⊥ if and only if there exists a substitution θ such that
−→
C θ is an ordered

subset of
−→⊥ .

Definition 18 (Mapping function c′). Let
−→⊥ and L⊥ be as defined in Defi-

nition 17, n be the number of literals in ⊥. Let
−→� , θ�, θ, Θ, K be as defined in

Definition 13. The mapping function c′ : K × Θ → L⊥ is defined as follows:

c′(〈K, θ〉) = (
∨

i∈K

li|li is the ith literal of
−→�)θ.

In the definition of c′, unlike in c, literals li do not need to follow the same order
as literals in

−→� . In the following we define a refinement operator, ρ2, which is
similar to ρ1 but uses the mapping function c′ instead of c.

Definition 19 (ρ2). Let
−→⊥ and L⊥ be as defined in Definition 17,

−→
C be an

ordered clause in L⊥, n be the number of literals in ⊥, k be a natural number,
1 ≤ k ≤ n,

−→� , Θ and K be defined as in Definition 18. Let K ∈ K, θ ∈ Θ,−→
C = c′(〈K, θ〉) and the mapping function c′ be defined as in Definition 18.
〈
−→
C′, K ′, θ′〉 is in ρ2(〈

−→
C , K, θ〉) if and only if

−→
C′ = c′(〈K ′, θ′〉) and either

1. K ′ = K ∪ {k}, k �∈ K and θ′ = θ or
2. K ′ = K, θ′ = θ{y′/x′} and {y′/x′} ∈ Θ where x′ and y′ are distinct variables

in the k1th and k2th literals of
−→� respectively and k1th and k2th are in K ′.

The following example demonstrates how the first type of incompleteness (in
Example 1) is addressed in ρ2.

Example 7. Let
−→
C and

−→⊥ be as defined in Example 1. Progol’s refinement
cannot generate C (i.e. C �∈ ρ∗(�))) and also 〈−→C , K, θ〉 �∈ ρ∗1(〈�, ∅, ∅〉). How-
ever, Table 1 shows that 〈−→C , K, θ〉 ∈ ρ∗2(〈�, ∅, ∅〉), where K = {1, 2, 5, 3} and
θ = {V4/V1, V12/V5, V13/V2, V6/V14, V7/V2} and

−→� is the clause:

mult(V1, V2, V3) ← dec(V4, V5), plus(V6, V7, V8), plus(V9, V10, V11),
mult(V12, V13, V14), mult(V15, V16, V17). �

This example shows that ρ2 can address the incompleteness of ρ demonstrated
in Example 1. However, ρ2 is also more redundant than ρ (e.g. different permu-
tations of the same clause could be generated). On the other hand, as mentioned
in Section 3, a refinement operator cannot be both complete and non-redundant.
Given that in the new definitions the selection functions are injective, we can
encode every literal of a clause by a k index from ⊥. Therefore, the properties
mentioned in Section 5 for the mapping function c also hold for c′. By different
conditions on the selection functions in Definition 16 we can get different kind
of subsumption orders. For example, if the selection function is monotonically
increasing then we will have a subsumption order which allows each literal of ⊥
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Table 1. Application of ρ2 in Example 7

C′ θ′ K′

� ∅ ∅
mult(V1, V2, V3)← ∅ {1}
mult(V1, V2, V3)← dec(V4, V5) ∅ {1, 2}
mult(V1, V2, V3)← dec(V1, V5) {V4/V1} {1, 2}
mult(V1, V2, V3)← dec(V1, V5), mult(V12, V13, V14) {V4/V1} {1, 2, 5}
mult(V1, V2, V3)← dec(V1, V5), mult(V5, V13, V14) {V4/V1, V12/V5} {1, 2, 5}
mult(V1, V2, V3)← dec(V1, V5), mult(V5, V2, V14) {V4/V1, V12/V5, V13/V2} {1, 2, 5}
mult(V1, V2, V3)← dec(V1, V5), mult(V5, V2, V14), {V4/V1, V12/V5, V13/V2} {1, 2, 5, 3}
plus(V6, V7, V8)

mult(V1, V2, V3)← dec(V1, V5), mult(V5, V2, V14), {V4/V1, V12/V5, V13/V2, {1, 2, 5, 3}
plus(V14, V7, V8) V6/V14}

mult(V1, V2, V3)← dec(V1, V5), mult(V5, V2, V14), {V4/V1, V12/V5, V13/V2, {1, 2, 5, 3}
plus(V14, V2, V8) V6/V14, V7/V2}

to be selected more than once3. This will address the second type of Progol’s
incompleteness mentioned before. However, the selection functions are not in-
jective and therefore the encoding and the morphism we described in this paper
are not applicable.

7 Related Work and Discussion

Progol’s refinement operator and its incompleteness with respect to the general
subsumption order were initially discussed in [7]. The purpose of the present
paper was to characterising Progol’s refinement space and to give an analysis of
refinement operators for this space. In a previous attempt, the authors of [1] sug-
gested weak subsumption for characterising Progol’s refinement space. However,
as we have shown in this paper, weak subsumption cannot capture all aspects
of Progol’s refinement. They also considered refinement operators which, as the
operators considered in this paper, are based on Laird’s operator. In this paper
we used an encoding of clauses with respect to a bottom clause. In this encoding
each clause is represented by a tuple 〈K, θ〉 and it can be constructed from

−→� as
described in Definition 13. This idea was first used in [12] where the substitution
θ is encoded as a binding matrix which maps the variables of

−→� to the variables
of a clause with respect to the bottom clause. The morphism between the lattice
of variable bindings and the subsumption lattice was also studied in [12]. A sub-
sumption relation for ordered clauses (i.e. ordered subsumption) is studied in [4].
It is shown that, in the defined subsumption, the least generalisation of two or-
dered clauses does not exist and that the subsumption testing for ordered clauses
is NP-complete. The subsequence relation considered in [4], assumes a mapping
function which is monotonically increasing (rather than strictly increasing). As
mentioned in the previous section, this leads to a different subsumption from the
one considered in this paper (i.e. sequential subsumption) and the results from
this paper are not applicable.
3 In this case, Definition 16 will be identical to the definition of subsequence considered

in [4].
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8 Conclusions

In this paper we have studied refinement operators for a hypotheses space
bounded by a most specific (bottom) clause. We introduced a subsumption
order relative to a bottom clause and demonstrated how Progol’s refinement
can be characterised with respect to this order. We also proved that ideal re-
finement operators exist for this order. It was shown that efficient operators
can be defined for least generalisation and greatest specialisation in the sub-
sumption order relative to a bottom clause. The theoretical results presented in
this paper can be applied to ILP systems which use Inverse Entailment (IE) as
well as any other ILP system which uses a bottom clause to restrict the search
space.
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A Progol’s Refinement Operator ρ0

The following definition describes a bottom clause ⊥i for a depth-bounded mode
language Li(M) as defined in [7]. In this paper, we refer to ⊥i and Li(M) as ⊥
and L respectively.

Definition 20. Most-specific clause ⊥i. Let h, i be natural numbers B be a
set of Horn clauses, e = a ← b1, .., bn be a definite clause, M be a set of mode
declarations containing exactly one modeh m such that a(m) � a and ⊥ be the
most-specific (potentially infinite) definite clause such that B ∧ ⊥ ∧ e �h �. ⊥i

is the most-specific clause in Li(M) such that ⊥i � ⊥.

The refinement operator ρ defined in [7] allows more than one literal in a clause
to be mapped to the same literal in ⊥. However, in Progol’s implementation of
the refinement operator, index k is incremented after each step for the sake of
efficiency. This means each literal of ⊥ can be considered only once. In the fol-
lowing, we give a revised definition (ρ0) which describes the refinement operator
as implemented in Progol. This also includes a revised definition for function δ.

Definition 21. Progol refinement operator ρ0. Let h, i, B, e, M and ⊥i be
defined as in Definition 20 and let n be the cardinality of ⊥i. Let k be a natural
number, 1 ≤ k ≤ n. Let C be a clause in Li(M) and θ be a substitution such that
Cθ ⊆ ⊥i. Below a literal l corresponding to a mode ml in M is denoted simply
as p(v1, .., vm) despite the sign of ml and function symbols in a(ml). A variable
is splittable if it corresponds to a +type or -type in a modeh or if it corresponds
to a -type in a modeb. 〈C′, θ′, k′〉 is in ρ0(〈C, θ, k〉) if and only if either

1. C′ = C ∨ l, k′ = k + 1, k < n and 〈l, θ′〉 is in δ(θ, k) and C′ ∈ Li(M) or
2. C′ = C, k′ = k + 1, θ′ = θ and k < n.

〈p(v1, .., vm), θ′m〉 is in δ(θ, k) if and only if lk = p(u1, .., um) is the kth literal of
⊥i, θ′0 = θ and θ′j for each j, 1 ≤ j ≤ m is defined as follows:

1. if vj/uj ∈ θ′j−1 then θ′j = θ′j−1 or
2. if uj is splitable then θ′j = θ′j−1 ∪ {vj/uj} where vj is a new variable not in

dom(θ′j−1).

In Definition 21, the refinement operator ρ0, as ρ in [7], is defined for clauses
in Li(M). However, ρ0 can be also defined for clauses in

−→L⊥ if we let C and
C′ to be ordered clauses in

−→L⊥ and
−→
C θ be a subsequence of the bottom clause
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(rather than a subset). In this case, it can be shown that ρ0 is weakly complete
for 〈−→L⊥, �⊥〉.

Theorem 2. ρ0 is weakly complete for 〈−→L⊥, �⊥〉.

Sketch proof. We need to show that ρ∗0(〈�, ∅, 1〉) =
−→L⊥. We show that for each

−→
C ∈ −→L⊥, there exists a ρ0-chain from � to

−→
C′ where

−→
C′ and

−→
C are alphabetical

variants. The proof is by induction on i, the number of literals in
−→
C . If i = 0

then
−→
C = �, and the empty chain satisfies the theorem. Assume for some j,

0 ≤ j < i, that the lemma is true. This implies that there is a ρ0-chain from
� to

−→
C j such that

−→
C j is an ordered clause in

−→L⊥ with j literals added from
−→
C . Therefore, there is a substitution θ such that

−→
C jθ is a subsequence of ⊥

and we assume that the j-th literal of
−→
C j is mapped to the k-th literal of ⊥.

Let
−→
C j+1 =

−→
C j ∨ l, where l is the leftmost literal of

−→
C which is not in

−→
C j

and l is mapped to the k′-th literal of ⊥, where k < k′ (because
−→
C j and

−→
C j+1

are sequential generalisations of ⊥). Then there exists a ρ0-chain from 〈−→C j , θ, k〉
to 〈−→C j , θ, k

′〉 by repeatedly selecting item 2 in the definition of ρ0 in order to
skip k′ − k literals of ⊥. According to the definition of δ, there exists 〈l′, θ′〉 in
δ(θ, k′) such that, by construction, l and l′ are variants. Therefore, by selecting
item 1 in the definition of ρ0,

−→
C′j+1 =

−→
C j ∨ l is a variant of

−→
C j+1 =

−→
C j ∨ l,

where 〈
−→
C′j+1, θ

′, k′ + 1〉 ∈ ρ0(〈
−→
C j , θ, k

′〉). Thus, there is a ρ0-chain from � to a
a variant of

−→
C j+1 and this completes the proof. �
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