
New Generation Computing, 8 (1991) 295-318
OHMSHA, LTD. and Springer-Verlag

(~ OHMSHA, LTD. 1991

Induct ive Logic Programming

Stephen M U G G L E T O N
The Turing Institute,

36 North Hanover St.,
Glasgow G1 2AD,
United Kingdom.

Received 30 November 1990

Abst rac t A new research area, Inductive Logic Programming, is presently
emerging. While inheriting various positive characteristics of the parent subjects
of Logic Programming and Machine Learning, it is hoped that the new area will
overcome many of the limitations of its forebears. The background to present
developments within this area is discussed and various goals and aspirations for
the increasing body of researchers are identified. Inductive Logic Programming
needs to be based on sound principles from both Logic and Statistics. On the
side of statistical justification of hypotheses we discuss the possible relationship be-
tween Algorithmic Complexity theory and Probably-Approximately-Correct (PAC)
Learning. In terms of logic we provide a unifying framework for Muggleton and
Buntine's Inverse Resolution (IR) and Plotkin's Relative Least General Generali-
sation (RLGG) by rederiving RLGG in terms of IR. This leads to a discussion of
the feasibility of extending the RLGG framework to allow for the invention of new
predicates, previously discussed only within the cor~text of IR.

Keywords: Learning, logic programming, induction, predicate invention, inverse
resolution, information compression

1 Introduct ion

Before evaluat ing the present developments in Induct ive Logic P rogramming it is
worth briefly reviewing the inter-related histories of deductive and induct ive logic.

296 S. Muggleton

1.1 Deduct ive logic

Although logic has been studied since the time of Aristotle's Prior Anatytics it was
only during the 19th and early 20th centuries that theoreticians such as Boole and
Frege transformed it into a rigorous mathematical science. During the present cen-
tury a school of philosophers, known as logical positivists, have promoted the view
that logic is the ultimate foundation not only of mathematics but of all sciences.
According to this view, every mathematical statement can be phrased within the
logical language of first order predicate calculus and all valid scientific reasoning is
based on logical derivation from a set of pre-conceived axioms. Logical positivism
was provided with powerful ammunition by Ghdel's demonstration [9] that a small
collection of sound rules of inference was complete for deriving all consequences
of formulae in first order predicate calculus. Much later Robinson demonstrated
[34] that a single rule of inference, called resolution, is both sound and complete
for proving statements within this calculus (see Appendix A). For the purposes
of applying resolution, formulae are normalised to what is known as clausal form.
Robinson's discovery was of fundamental importance to the application of logic
within computer science. Throughout the early 1970's Colmerauer and Kowalski
[17] were instrumental in the development of the logic based programming lan-
guage Prolog. Prolog statements are phrased in a restricted clausal form called
Horn clause logic. All computations within Prolog take the form of logical proofs
based on the application of the rule of resolution. Since its inception Prolog has
developed into a widely used programming language [3, 41] and was chosen as the
core language for Japan's Fifth Generation Project. Prolog's development has also
spawned the rigorous theoretical school of Logic Programming [20].

1.2 Induct ion

Despite the self-evident success of logical deduction, a certain question has cropped
up time and again throughout its development. If all human and computer rea-
soning proceeds from logical axioms, then where do logical axioms proceed from?
The widely accepted answer to this is that logical axioms, representing general~sed
beliefs, can be constructed from particular facts using inductive reasoning. In turn,
facts are derived from the senses. The history of inductive reasoning interacts with
every development of its deductive counterpart. In ancient Greece inductive rea-
soning played a key role in Socrates' dialectic discussions. These are described in
Plato's The Last days of Socrates. In these discussions concepts were developed
and refined using a series of examples and counter-examples drawn from every
day life. In the seventeenth century Bacon in the Novum Organum gave the first
detailed description of the inductive scientific method. From the eighteenth cen-
tury onwards, methods developed originally for predicting the outcome of games of
chance developed into the mathematical discipline of Statistics. In turn, Statistics
went on to have a central role in the evaluation of scientific hypotheses.

In 1931, a year after Ghdel's previously mentioned completeness result, Gbdel
[12] published his more famous incompleteness theorem. According to this theorem
Peano's axiomisation of arithmetic, and any first order theory containing it, is either

Inductive Logic Programming 297

Application

MYCIN medical
diagnosis

XCON

GASOIL

BMT

VAX computer
configuration
hydrocarbon
separation
system
configuration
configuration
of fire-protection
equipment in
buildings

No. of I Development
Rules I (Man-Yrs)

400 i00

8,000

2,800

30,000

180

Maintenance
(Man-Yrs/Yr)

N/A

30

0.1

2.0

Inductive Tools

N/A

N/A

ExpertEase and
Extran 7

1st Class and
RuleMaster

Figure 1: Expert systems built with and without use of induction

self-contradictory or incomplete for the purposes of deriving certain arithmetic
statements. This discovery prompted Turing to attempt to show [42] that problems
concerning incompleteness of logical theories could be overcome by the use of an
oracle capable of verifying underivable statements. Turing [43] later came to believe
that GSdel's incompleteness theorem required that intelligent machines be capable
of learning from examples.

Various logical positivists including Carnap [5] have developed statistical theo-
ries for confirming scientific hypotheses posed in first order logic. Although Plotkin
[31] in the 1970's and Shapiro [37] in the 1980's worked on computer-based induc-
tive systems within the framework of full first order logic, most successes within the
field of Machine Learning have derived from systems which construct hypotheses
within the limits of propositional logic. The major successes here have been in the
area of inductive construction of expert systems (see [27]). The properties of various
expert systems are given in Figure 1. The first two, MYCIN [38] and XCON [10]
were built using hand-coding of rules. The second two, GASOIL [39] and BMT [15]
were built using software derived from Quinlan's inductive decision tree building
algorithm ID3 [32]. It should be noted that the inductively constructed BMT is by
far the largest expert system in full-time commercial use. From the perspective of
software engineering, it is also worth noting the sizeable reductions in development
and maintenance times for inductively constructed systems. It seems likely that
technologies based on inductive inference will play an increasingly important role
in future software development.

298 S. Muggleton

1 .3 S h o r t c o m i n g s o f present induct ive s y s t e m s

Along with the successes of this technology, the following limitations are now be-
coming apparent.

�9 Restricted representation. Propositional level systems cannot be used
in areas requiring essentially relational knowledge representations. These
areas include temporal reasoning, scheduling, planning, qualitative reasoning,
natural language and spatial reasoning. Problems also occur in other areas
involving arbitrarily complex structural relationships such as prediction of
protein folding and DNA gene mapping.

�9 Inab i l i ty to m a k e use of backg round knowledge. Human inductive
reasoners make use of vast amounts of background knowledge when learning.
Inductive algorithms such as ID3 use only a fixed set of attributes attached
to each example. Explanation-based learning (EBL) [22] attempted to over-
come this limitation by redefining the learning problem. In EBL hypotheses
are constrained to being those derivable from background knowledge. Since
background knowledge is rarely complete in applications, this constraint is
now generally believed to be over-restrictive.

�9 S t rong bias o f vocabulary . Present inductive systems construct hypothe-
ses within the limits of a fixed vocabulary of propositional attributes. An
increasing amount of Machine Learning research [24, 28, 1, 44, 35, 16, 19]
is concerned with algorithms capable of inventing auxiliary predicates when
insufficient background knowledge is provided.

2 Inductive Logic Programming

A growing body of researchers have started to work on problems of inductive rea-
soning within the confines of pure Prolog. In this paper the phrase Inductive Logic
Programming is used to describe this research area, formed at the intersection
of Logic Programming and Machine Learning. In line with its parent subjects it
would seem likely that the area will subdivide into three related strands of research:
theory, implementation and experimental application. While model-theoretic se-
mantics [20] and PAC-learning [8] theory are likely to be influential, neither seem
totally adequate for the problems involved. The general goals of research for such
an area should be to produce a widely used technology with a firm theoretical
foundation. Ideally a uniform theory, such as that behind Logic Programming will
emerge.

2.1 Past and present r e s e a r c h

In his thesis Plotkin [31] laid the foundations for much of the present activity.
Plotkin did not restrict himself to Horn clause logic. This is hardly surprising

Inductive Logic Programming 299

given that logic programming had not yet come into existence. His major con-
tributions were 1) the introduction of relative subsumption, a relationship of gen-
erality between clauses and 2) the inductive mechanism of relative least general
generalisation (RLGG). Plotkin's main theoretical result was negative. This was
that there is in general no finite relative least general generalisation of two clauses.
His implementation of RLGG was thus severely restricted. This negative result
of Plotkin's prompted Shapiro [37] to investigate an approach to Horn clause in-
duction in which the search for hypotheses is from general to specific, rather than
Plotkin's specific to general approach. Shapiro also investigated a technique called
algorithmic debugging. Given a Prolog program which is either incomplete, incor-
rect or non-terminating, Shapiro's system diagnoses which clause is faulty and then
replaces that clause.

Both Plotkin and Shapiro managed to prove that their learning systems could
identify first order theories in the limit, according to Gold's definition [13]. Nowa-
days Valiant's definition of PAC-learning [14] (see Section 3.4) is generally agreed
to provide a better approach to identification than Gold's methodology. However,
PAC methods have largely been applied to propositional-level learning and have as
yet to be demonstrated capable of dealing with inductive learning in full first order
logic. It is also worth noting that despite the identification in the limit guarantees
for Plotkin's and Shapiro's systems, both were very inefficient and were in practice
only demonstrated on very limited problems.

Sammut and Banerji [36] describe a system called MARVIN which generalises a
single example at a time with reference to a set of background clauses. At each stage
a set of ground atoms F representing the example are matched against the body of
a background clause H ~- B. The matching facts BO are replaced by H8 within F,
where 0 is a ground substitution. This was the sole generalisation operation used.
The method was demonstrated on a wide set of problems. Muggleton and Buntine
[28] later showed that Sammut and Banerji's generalisation operation was a special
case of inverting a step in a resolution proof. A set of more general constraints
were derived, and two related operations were named the 'V' operators (see Section
4.1). Another pair of operators ('W'), also based on inverting resolution, were
shown to be capable of "inventing" predicates which were not available within the
background knowledge (Section 5.1). Banerji [1], Wirth [44] Ishizaka [16], Ling
and Dawes [19] and Rouveirol and Puget [35] have also described related methods
for "inventing" new predicates. However, although predicate invention has been
demonstrated on large scale problems within a propositional setting [24, 25] this is
not yet the case for any first order learning systems.

Recently Quinlan [33] has described a highly efficient program, called FOIL,
which induces first order Horn clauses. The method relies on a general to specific
heuristic search which is guided by an information criterion related to entropy.
Quinlan sees his approach as being a natural extension of ID3 [32]. He notes
that the search can be highly myopic, and is unable to learn predicates such as
list-reversal and integer-multiplication.

Attempts have been made recently by Buntine [4], Frisch and Page [11] and
Muggleton and Feng [29] to find ways around Plotkin's negative RLGG results.

300 S. Muggleton

Domain Clause No. of No. of atoms
examples in background

169 5408 Qualitative
modelling
(U-tube)

Temporal
reasoning
(satellite
power
supply)
Protein
folding

state(la:A/B,lb:C/D,fab:E/B,fba:F/D) #--
deriv(la:A/B,fba:F/D),
deriv(lb:C/D,fab:E/B),
minus(la:A/S,lb:G/D,[]),
minus(la:G/S,lb:C/D,[]).

bus_voltage(0,TimeA)
asr_switchA (Val,TimeA),
relay_a011 (0,TimeA),
successor(TimeC,TimeA),
insunlight (Val,TimeC).

alpha(Prot,Pos)

position(Prot,Pos,Res),
hydrophobic(Res),
less_hydrophobic(Rminus4,Res),
less._hydrophobic(Rplusl,Res),

131

1612

3584

4185

Figure 2: Clauses built by Golem in real-world domains

Using a Horn clause framework Buntine tried restricting the model of the back-
ground knowledge to being a finite depth Herbrand model. The approach had
limited success due to the complexity of constructed clauses. Frisch and Page have
tried restricting the hypothesis language to being a strictly sorted logic with more
success. Muggleton and Feng [29] apply a "determinate" restriction to hypotheses.
By this it is meant that there is a unique choice of ground substitution for every
resolution involved in the refutation of any ground goal using the hypothesised
clause. Muggleton and Feng's learning program, Golem, has been demonstrated
[29] to have a level of efficiency similar to Quinlan's FOIL but without the accom-
panying loss of scope. Although predicates such as list-reverse, integer-multiply
and quick-sort were reported in [29], the following section provides some details of
real world applications of Golem.

2.2 R e a l - w o r l d d o m a i n s

A great deal of research has been invested in inductive logic programming al-
gorithms. A general feeling is emerging that it is time to move on from the toy
worlds of arch building and list and number theoretic predicates. Figure 2 shows
various clauses developed as part of ongoing real-world application projects using
Muggleton and Feng's [29] Golem. The first clause represents a qualitative model
of a U-tube, developed in a collaborative project between the author and Ivan
Bratko. The clause was built using Kuipers' [18] theory of qualitative reasoning

Inductive Logic Programming 301

as background knowledge, encoded as 5408 ground atoms. The clause relates the
levels of the two water surfaces, la and lb to the directions of flow fab and fba.
Various qualitative relationships concerning the derivative of flow (deriv) and re-
lationships between the signs (minus) of various qualitative values were discovered
by Golem.

In the second clause, constructed by Feng for a satellite application, a simple
temporal relationship was discovered. The clause predicts the bus voltage at Time
A on the basis of various relay and switch values together with whether the satel-
lite's solar panels are in sunlight. Simple temporal reasoning is achieved by the use
of a time variable associated with each predicate.

The third clause was developed in collaborative work being carried out between
the author and Ross King. In this clause a particular amino acid residue position
(Pos) within a protein (Prot) is predicted to be part of a secondary structure
known as an alpha-helix (alpha). The clause takes into account whether the residue
(Res) at position Pos is hydrophobic, i.e. water rejecting. It also compares the
hydrophobicity of Res to that of the residues at positions four before (Rminus4)
and one after Res.

Each of the clauses in Table 2 were constructed in under 30 seconds on a Sparc-
Station330, and each involved the use of relatively large amounts of foreground and
background information.

The application areas of qualitative model construction, construction of tem-
poral models and protein structure prediction are ideally suited to inductive logic
programming techniques. However, the author believes these are only a foot in the
door of a new world of untried application areas for induction.

3 T h e o r e t i c a l f o u n d a t i o n s

In this section we discuss issues concerning the theoretical foundations of inductive
logic programming. Definitions from logic can be found in Appendix A. This section
serves as a basis for the discussion of inverse resolution and relative least general
generalisation within the following sections.

3.1 Generality

The relationship of generality between formulae can be defined as follows.

Def in i t ion 1 Formula A is more general than formula B if and only if A ~ B
and B ~ A.

This definition imposes the lattice shown in Figure 3 on the set of all formulae. In
Logic Programming terms the top of the lattice is the empty clause (or [::3) and the
bot tom of the lattice is the empty program (or It). Infinite ascending and descending
chains exist within the lattice. Ascending chains can be constructed by conjoining
formulae. Conversely, descending chains can be constructed by disjoining formulae.

The notion of relative generality of formulae will be used in the discussion of
inductive inference in the next subsection. Relative generality is defined as follows.

302 S. Muggleton

Increasing
Generality

Figure 3: The generality lattice for formulae

Def ini t ion 2 Formula A is more general than formula B relative to formula C if
and only if C A A ~ B and C A B ~ A.

Formulae are partitioned into a set of equivalence classes using the following deft-
nition.

Def ini t ion 3 Formula A is logically equivalent to formula B if and only i rA ~ B
and B ~ A.

This definition suggests general-purpose methods for finding redundancy within
formulae. Thus

Def ini t ion 4 Clause C is redundant within logic program P A C if and only if
P A C is logically equivalent to P.

Logic programs can be reduced by removing all redundant clauses using theorem
proving. Also

Def ini t ion 5 Literal l is logically redundant within the clause C V l in the logic
program P A (C V l) i f and only if P A (C V l) is logically equivalent to P A C.

Maher in [21] discusses a number of different notions of equivalence for logic pro-
grams including that of Definition 3. See also Buntine [4] and Niblett [30] for a
detailed discussion of generality.

3 . 2 A g e n e r a l s e t t i n g f o r i n d u c t i o n

In the general inductive setting we are provided with three languages.

s : the language of observations
Z:s : the language of background knowledge
~ H : the language of hypotheses

Inductive Logic Programming 303

The general inductive problem is as follows: given a consistent set of examples
or observations O C /3o and consistent background knowledge B C_ / : s find an
hypothesis H E ~H such that

B A H t - O (1)

As such, the problem is under-constrained. Usually,/ :o is required to contain only
ground literals. This still leaves a very unconstrained choice for H. Often H is
restricted to being a single clause. This is the case for Plotkin [31] and Shapiro [37]
though not the case in Muggleton and Buntine [28] in which predicate invention
introduces a set of clauses. H can be constrained to be the most general hypothesis
relative B as in Shapiro [37] or the least general relative to B as in Plotkin [31].
Alternatively, H can be chosen to be that which produces the maximum informa-
tion compression of O relative to B as in [26]. The choice of which constraint to
apply is necessarily tied to our notions of justification of hypotheses.

3.3 Induct ive inference and just i f icat ion

As already stated, inductive inference involves the use of background knowledge to
construct an hypothesis which agrees with some set of observations according to
relationship (1). Clearly such a form of inference is not sound in the logical sense
since H does not necessarily follow from B and O. In the worst case there could
be an infinite number of contending hypotheses all of which fit the relationship
shown above. For this reason we require some additional non-logical constraint to
justify any particular hypothesis. In the 1950's Carnap [5] and others suggested
"confirmation theories" aimed at providing a statistical underpinning to the prob-
lem of inductive inference. Various difficulties and paradoxes were encountered
with these approaches which meant that they were never applied within machine
learning programs [23].

3.4 PAC- learn ing

One popular machine learning approach to the problem of constructing highly prob-
able hypotheses is the PAC (Probably Approximately Correct) model of learning
proposed by Valiant [14]. According to Valiant's model a learning agent is not
concerned with constructing an exact concept definition. Instead we choose a class
of hypotheses that we would like to be able to deal with. We are then given a set of
examples of the target concept. The cardinality of this example set must be at most
a polynomial function of the size of the vocabulary used in constructing hypotheses.
A class of hypotheses is PAC-learnable whenever we can guarantee with high prob-
ability that an arbitrarily chosen hypothesis which is consistent with the examples
will agree with most subsequently presented examples. This has been shown to
be possible when various constraints are placed on the hypothesis language. For
instance, one such constraint involves placing a constant bound k on the allowable
size of conjunctions within a boolean DNF concept description (called k-DNF). In

304 S. Muggleton

a recent paper Dietterich [7] showed that for the purposes of learning DNF propo-
sitional descriptions the class of PAC-learnable concepts is highly restricted. There
are 22" different boolean functions of m input values. However, Dietterich shows
on the basis of general Valiant-learnability results due to Ehrenfeucht, Haussler et
al [8] that given n examples at most 0(2 ~m) of these functions are PAC-learnable.
Dietterich [7] expresses concern over these results since it would seem that inductive
learning algorithms must be restricted to searching highly constrained hypothesis
spaces. This might be taken to suggest that it is not worth straying from propo-
sitional logic as a hypothesis language, since it is not even possible to PAC-learn
the whole class of propositional descriptions.

3.5 Informat ion compress ion

The following observation defeats this line of argument. Given n examples of a
concept, consider the class of boolean hypotheses which imply these n examples,
but whose minimal DNF description length is less than the description length of the
examples. Since each example is defined in terms of m input values and one output
value, the description length of the examples will be n(m + 1) bits. However, at
most 2 n('~+l) different hypotheses are describable in n(m + 1) bits. Note the close
similarity between this upper bound and that given by Dietterich. This seems to
provide at least strong circumstantial evidence for the belief that the class of PAC-
learnable hypotheses is the same as the class of hypotheses which are textually less
complex than the examples on which they are based. For the purposes of reference
we will call this the PAC-Information-Compression-Equivalence (PICE) conjecture.
This conjecture, if true would have a number of desirable side-effects. Firstly, the
textual simplicity of examples relative to a given hypothesis is easy to measure.
Secondly, it is relatively straightforward to interpret textual compression within any
formalism, be it propositional logic, first-order logic or context-free grammar rules.
Thirdly, this would bring the PAC-learning model into line with other approaches
developed from algorithmic complexity theory [40, 6, 2] and Bayesian statistics.
According to Bayes' Law

Pr(HIO) = Pr(H)'Pr(OIH)
Pr(O)

If we treat bit-encoded descriptions as though they were the outcome of repeat-
edly tossing an unbiased coin, the prior probability of a string of bits s of length l
is simply 2 -t. Now by taking logs we can rewrite Bayes' Law in information terms
as follows.

I(H[O) = I(H) + I(OIH) - I(O)

where I(X) represents the minimal encoding length of X. For the probability
Pr(HIO) to approach 1, I(HIO) must approach 0, in which case I(H) + I(OIH)
must be at least as great and approximately equal to I(O). Although the minimal

Inductive Logic Programming 305

C1(+) C2(-)

C

Figure 4: Single resolution

encodings I(H) and I(0) have a clear interpretation, one might ask what the
meaning of I(OIH) should be in terms of logic. The natural interpretation that we
choose here is that I(O[H) is the minimal encoding of the derivation or proof of
O from H. This interpretation has been shown to give good results elsewhere [26].
Note that this interpretation also has the desirable side-effect of discriminating
against hypotheses which require very long proofs to derive the examples on which
they are based, thus nicely combining the notions of space and time complexity of
hypotheses in terms of a single information measure.

4 T h e re la t ionsh ip b e t w e e n IR and R L G G

In this section we review and extend Muggleton and Buntine's [28] Inverse Reso-
lution (IR) techniques leading to a unified framework for IR and Plotkin's RLGG.

4 . 1 T h e ' V ' o p e r a t o r s

Figure 4 is a diagrammatic representation of a resolution step. Resolution derives
the clause at the base of the 'V' given the two clauses on the arms. In contrast, a
'V' operator derives one of the clauses on the arm of the 'V' given the clause on
the other arm and the clause at the base. In Figure 4, the literal resolved on is
positive (+) in C1 and negative (-) in C2.

Note that within any logic program containing C1 and C2, C is redundant
according to Definition 4. Other clauses within the background theory may also be
made redundant by the addition of C1 or C2 to the growing theory. It is the ability
to discard redundant clauses that allows these operators to simplify and compact
theories (see section 3.5).

306 S. Muggleton

The absorption operator constructs C2 given C1 and C. Conversely, the con-
struction of Ca from (?2 and C is called the identification operator. Together these
operators are called the 'V' operators.

In [28] the 'V' operators are derived as a set of constraints from the following
equation of resolution (see section A.3).

C = (C 1 - {/1})01 U (C2 - {/2})02 (2)

where ll is a positive literal in C1, 12 is a negative literal in C2 and 0102 is the
mgu of -'ll and 12. Muggleton and Buntine [28] base the algebraic manipulation
required to produce constraint equations for the 'V' operators on a number of
assumptions. Among these is the assumption that the clauses (C1 - {/1})01 and
(C2-{h })02 contain no common literals. This they call the separability assumption.
The separability assumption will be avoided in this paper. Instead we develop the
constraints necessary for most specific 'V' operators.

4 . 2 M o s t s p e c i f i c ~V' o p e r a t o r s

With reference to equation (2), let e l ' be (C1 - {h})01 and C2' be (C2 - {/2})02.
Thus C = C I ' U C 2 ' . Also let D = C 1 ' - C2 ~. Thus C2 ~ = C - D or rather
(C2 - {/2})02 = C - D. Rewriting this we get

62 = (C - D)O~ 1 U {/2} (3)

Now, since 0102 is the mgu of -,ll and 12, we know that ~1101 = 1202 and thus

12 = -"11010~ 1 (4)

Substituting (4) into (3) we get

C2 = (C - D) O ; 1 U { - , l l) 0 1 0 ~ 1

= ((C - D) U { - , l l } 0 1) 0 ; 1 (5)

For Horn clauses the choice of 11 is unique since it is a positive literal, and is
therefore the head of C1. However, it should be noted that given C and C1 equation
(5) represents a whole range of possible solutions. These depend on the choice of
D, 0 C D C C1', the choice of 01 and the choice of 0~ 1. However, given 01 and 0~ -1
there is a unique most specific solution for C2. Thus with D = !~ we get

= (c o {-,11)Ol)O; 1)

Again there is a range of solutions dependent on our choice of 01 and 02 -1. However,
if we are interested only in most specific solutions we can choose 0~ 1 to be empty as
well. Any other assignment produces a more general clause. Using C2J. to denote
the most specific solution for the absorption operator we get

C2~. = (C (_J {-nll}01)

Inductive Logic Programming 307

Note that 01 can be partly determined from C and C1. From equation (2) we can
see that C D (C1 - {ll}0~), i.e. C 0-subsumes (C - {l~}) with substitution 01.
Thus a substitution 0~1 C 01 can be constructed by matching literals within C and
C1. However, what should be done with variables in ll which are not in the domain
of 0~x? In fact, we are free to apply any substitution to these variables, since 01 is
part of the mgu of -~11 and 12 and we are not given 12. The problem can be avoided
by assuming that every variable found in ll is found in some other literal in C1. In
this case 0~ = 01 since 0~ is constructed by matching all literals within (Ca - {ll})
with literals in C. The constraint that all variables in the head (ll) of a background
clause (C1) be found within the body of the clause (C~ - {l}) is used by Muggleton
and Feng [29] for construction of RLGG's. They call a logic program containing
only such clauses syntactically generative and prove that all atoms derivable using
resolution are ground. If we apply the stronger constraint that every variable in
every background clause must be found in at least two literals we can, using the
same reasoning as above, show that the most specific solution for the identification
operator is

= (c u {%}o2) (6)

For the purposes of this paper we use the phrase weakly generative in place of Mug-
gleton and Feng's [29] syntactically generative. The phrase strongly generative is
used to describe sets of clauses in which every variable in every clause is found
in at least two literals of that clause. Note that for every application of the un-
restricted absorption operator C2 0-subsumes C25 with substitution 02. Similarly
for every application of the unrestricted identification operator C1 0-subsumes C1
with substitution 01.

4 . 3 T h e f u n c t i o n 12"

We now give a function which describes the set of most specific clauses that can be
constructed by iterative application of the 'V' operators. The function]3n(P, C) :
GenerativeLogicPrograms x Clauses --~ ClauseTheories is defined recursively in
a manner analogous to Robinson's function 7~n(P)

V~ C) = {C}
Yn(P, C) = y n - l (p , C) U {(C' U {--l}0) : l C Cl,2 E P and

C' e]2n-l(P, C) and (C1,2 - {l})0 C_ C'}

The closure 12*(P, C) is simply (1)I(P, C) U 122(P, C) U . . .) . Note that 13~(P, C)
contains not only all the most specific absorptions but also all the most specific
identifications to depth n. In fact, the definition of 12 n does not require that P be
a logic program. The definition works equally well when P is an arbitrary set of
strongly generative clauses.

T h e o r e m 6 C o m p l e t e n e s s of 12 n wrt . l inea r de r iva t ion . Let {D1, . . . , Dk-1}
be a subset of the clauses in the strongly generative logic program P. Let C be
the resolvent of the linear derivation (01" (D2" . . . (Ok-1 �9 Ck). . .)) where (X . Y)

308 S. Muggleton

c

/
/

Figure 5: Linear derivation

represents a resolvent of the clauses X and Y and Ck ~- P. For every such linear
derivation ~)k(p, C) contains a clause Ck+ such that Ck O-subsumes CkJ..
Proof . Proof by induction on k. Trivial for k = O. Assume k = i and prove for
k = i + 1. By the definition and inductive assumption Vi(P, C) contains Ci$ which
is O-subsumed by Ci. Let C -- (Dl" (D2"... (Di" Ci+l). . .)) and Ci = D~. Ci+a
where Di E P, l is the literal resolved on in Di and # is the mgu in this resolution.
By definition)2i+l(P, C) contains Ci+1+= C d u{-~l}O. Due to the fact that P is
strongly generative the domain of O is vats(l). Since (C,+1 - {~t}) O-subsumes the
resolvent C~ with substitution # it follows that C~+1 O-subsumes (C~ U {-~l}O) and
therefore Ci+l O-subsumes Ci+l J,. []

Figure 5 illustrates Theorem 6. The depicted linear derivation of C represents
(O1" (D2" . . . (0k_1" Ck)-..)).

As a corollary to Theorem 6 we note that the clause formed by taking the
union of clauses in V~(P, C) is subsumed by every clause constructed by iterative
application of 'V' operators to C and members of P.

Coro l l a ry 7 M o s t specific inverse l inear der iva t ion . Let {D1, . . . , Dk-1} be a
subset of the clauses in the strongly generative logic program P. Let C = (D1" (D:.
�9 .. (0~-1" Ck) . . .)) and Ck r P. For every such linear derivation Ck O-subsumes
U v~(P, c).
Proof . Follows trivially from Theorem 6.

4.4 Lgg of inverse linear derivations

Suppose we are given two clause, C and D and told that there is a clause Ck ~ P
such that both C and D have a linear derivation of depth at most k from Ck and P.
From Corollary 7 we know that Ck 0-subsumes both [.J Vk(P, C) and U Vk(P, D).

Inductive Logic Programming 309

/ \

E / \ F2

c D

Figure 6: Inverse linear derivations of C and D with common Ck

Plotkin [31] investigated the lattice that 0-subsumption defines over the set of
all clauses. He defines the least general generalisation (lgg) C of two clauses D1
and D2 as being the greatest lower bound within the clause lattice induced by 0-
subsumption and describes the following method for constructing lggs. The lgg of
the terms f (s l , . . , s ,) and f (t l , .., t ,) is f (lgg(s l , tl), .., lgg(s, , t ,)). The lgg of the
terms f(sa, .., s ,) and 9(tl, .., t ,) where f r 9 is the variable v where v represents
this pair of terms throughout. The lgg of two atoms p(s l , . . , s ,) and p(tl , . . , tn)
is p(lgg(sl, tl), .., Igg(s,, t ,)) , the lgg being undefined when the sign or predicate
symbols are unequal. The lgg of two clauses C1 and C2 is {l : 11 E Cx and 12 E C2
and 11 has the same sign and predicate symbol as 12 and l = lg9(ll , 12)}.

Thus the least general solution for Ck is simply the least general generalisation
of O]2k(P, C) and U Vk(P, D).

T h e o r e m 8 Lgg of inverse l inear der ivat ions . Let { E l , . . . , Ei} and {FI , . . . , Fj}
be subsets of the strongly generative logic program P. Let C =(El �9 (E2 �9 . . . (El �9
G). . .)) and D =(El- (F2.... (5" G). . .)) where G r P, k > i and k >_ j . For
every such pair of derivations Ck O-subsumes lgg(U])k(p, C),U ldk(P, D)).
P r oo f . Follows from Corollary 7 and Plotkin's definition of lgg. []

Figure 6 illustrates the linear derivations of C and D from the common clause Ck.

E x a m p l e 9 The following is a simple example illustrating the construction of the
Ig9 of two inverse linear derivations.

Let Cz = has_wings(X) +- bird(X)
C~ = has_beak(X) ~ bird(X)
P = {C2, C~}
C = has_wings(penguin)
D = has_beak(penguin)

310 S. Muggleton

k = 1
Thus V~ C) = {has_wings(penguin) e-}

Applying equation (6) to C and C2, with 12 = -.bird(X) and 02 = {X/penguin} we get

U Vx(P, C) = has_wings(penguin), bird(penguin) e--

Applying equation (6) to D and C~, with 12 = ~bird(X) and 02 = {X/penguin} we get

U Y 1 (P, D) = has_beak(penguin), bird(penguin) *--

Ck O-subsumes lgg(U])l(p, C), U Vl(P, D)) -- bird(penguin) ~--
Letting E~ = C2 and F~ = C~ we get C = (El" Ck) and D = (FI " Ck) as expected.

From the example it should be noted that UVk(P, C) and lgg(UVk(P, C), Ul;k(P, D))
are not necessarily Horn clauses.

4 . 5 R e l a t i v e l e a s t g e n e r a l g e n e r a l i s a t i o n

In this subsection we describe the relationship between Plotkin's RLGG and the lgg
of inverse linear derivations of the previous subsections. Let P be a logic program
and C and D be two Horn clauses. The relative least general generalisation of C
and D, rlggp(C,D) is the least general clause within the 0-subsumption lattice
for which P A rlggp(C, D) F- C A D where rlggp(C, D) is used only once in the
derivation of C and D.

This definition corresponds almost entirely to lgg(U Vk(P, C), U Vk(P, D)). The
only differences are that [3 Vk(P, C) and U rk(p , D) only take account of linear
derivations of C and D with respect to P and the depth of derivation is limited
to k. However it is well known that linear derivation is sound and complete. In
the case of the depth parameter k, Muggleton and Feng [29] describe a method for
constructing RLGG's that uses a parameter h in the same way as k is used here.

T h e o r e m 10 Equiva lence of R L G G and lgg of inverse l inear der iva t ions .
Let P be a logic program and let C and D be Horn clauses, r lggp(C,D) =
lgg(U])*(P, C), U V*(P, D)).
Proof . The theorem follows from the definitions of rlggp(C, D) and Igg(U V* (P, C),
U v'(P, D)). D

Obviously, the clause lgg(U V*(P, C),UY*(P, D)) can be infinite. Plotkin [31]
showed that r lggp(C,D) can be infinite even when logically reduced. Note how-
ever that whereas Plotkin intended the reduced RLGG to be the hypothesis, within
Muggleton and Buntine's [28] IR framework the most compact consistent clause
which subsumes lgg(O Vk(P, C), U Vk(P, D)) will be chosen. A similar approach is
found to be essential within Muggleton and Feng [29], since RLGG clauses can be
very large, even when reduced using Definition 5.

Inductive Logic Programming 311

C I A C 2

B~ B 2

Figure 7: Two resolution steps with common clause A

5 P r e d i c a t e i n v e n t i o n

In the last section we described a unified framework covering both RLGG and IR.
However, in Muggleton and Buntine's [28] description of IR a salient feature was
the invention of new predicates. Predicate invention within the IR framework is
carried out using the ' W ' operators. In this section we review 'W' operators and
discuss a method of incorporating a generalised 'W' operator into the combined
IR-RLGG framework.

5.1 The ~W' operators

By combining together two resolution 'V's back-to-back we get a 'W ' of the form
shown in Figure 7. Assume that C1 and 6'2 resolve on a common literal l within A
to produce B1 and B2 respectively. The 'W' operators construct the clauses A, 6'1
and C2 given B1 and B2. In the in t ra-cons t ruc t ion operator l is assumed negative
while in the i n t e r -cons t ruc t ion operator l is assumed positive, Note that since the
common literal l in A is resolved away, the clauses A, C1 and C2 can contain a
literal with a predicate symbol not found in B1 and B2. It is in this sense that a
new predicate is i nven t ed by the 'W' operators. From equation (2) we get

Bi = (A - {l})OA,i U (Ci - {li})Oc, i

where i E {1,2} and OA,iOc,i is the mgu of ~l and Ii. Thus (A - {/}) 0-subsumes
each clause Bi. Clearly one possible solution is that (A - {l}) -- lgg(B1, B2). With
this choice OA,~ can be constructed by matching (A - {l}) with the corresponding
literals of Bi. Muggleton and Buntine make the assumption that each Ci is a unit
clause, i.e.

Ci = { l l}

312 S. Muggleton

C 1 A C 2

/ \
/ \

B 1 B2

Figure 8: Generalised 'W' operator

and thus

B~ = (A - {/})0A,,

They then construct a literal containing the variables in dom(0Aj). Assuming 0v,~
is empty gives

=

and

A = Igg(B1, B2) (J {/} (7)

5 . 2 G e n e r a l i s e d ' W ' o p e r a t o r s

A more general form for the 'W' operators is shown in Figure 8. In this case 'W'
forms the crown of a pair of inverse derivations of B1 and B2. Note the similarity
to Figure 6. Equation (7) thus becomes

A = rlggp(B1, B2) (3 {/}

As in the intra-construction operator we assume that l is negative. The most spe-
cific solutions for 0Aj will be found as a bi-product of the formation of rlggp(B1,B2).
Thus the only choice is that of the variables and terms from rlggp(B1, B2) which
will appear in I. This is not an easy choice since rlgg's can contain many literals,
terms and variables. We leave this as an open problem for further investigation.

Inductive Logic Programming 313

6 C o n c l u s i o n

Interest in inductive logic programming has increased substantially in the last few
years. There now seems to be a new technology emerging which is capable of dealing
with a wide number of application areas (see Section 2.2). Such a technology
requires a uniform underlying theory in order to be successful in the same way as
Logic Programming. The discovery of a common framework for IR and RLGG
(section 4.5) is one step in this direction. Surprisingly both approaches demand
that the logic programs involved be generative (see [29] and Section 4.2), but for
independent reasons. It is rather intriguing that IR and RLGG should converge in
this way since RLGG was based initially on the idea of inverting unification while
IR is based on inverting resolution.

The IR-RLGG framework has a distinct advantage over the use of the 'V' op-
erator in Muggleton and Buntine [28]. Whereas Muggleton and Buntine's method
requires heuristic search to choose which 'V' operator to apply, the new approach
constructs a unique solution for multiple 'V' operations without recourse to search.
Other systems such as Quinlan's FOIL [33] also use heuristic search. The disad-
vantages of heuristic search are not only that it can be inefficient, but also that
solutions can be missed due to local minima in the search space. These problems
are avoided within the new IR-RLGG framework.

Rouveirol and Puget [35] describe an operator called saturation which carries
out multiple 'V' operations. There is a clear relationship between the saturation
operator and the function]2~ (Section 4.3). The definition of t3]; n can be seen as
a formalisation of the saturation operator. Also Wirth [44] describes a method in
which he takes the lgg of a number of 'V' operations. Wirth's method is a special
case of lgg(U121(P, C),U'I31(p, D)).

Although the generalised 'W' method described in Section 5.2 seems promising,
it needs much further investigation. For instance it might seem natural to devise
a }/Y ~ operator along the lines of the ~2~ function. Clearly we are in need of a
stronger formal framework for predicate invention. This should be tightly coupled
with the IR-RLGG framework.

Finally, the author believes that work should be done on applying PAC-learning
theory to inductive logic programming. A possible starting point might be the
PICE conjecture of Section 3.5.

With the promise of solid theoretical foundations to come, Inductive Logic Pro-
gramming has the potential of a very exciting future.

A c k n o w l e d g e m e n t s . The author would like to thank Wray Buntine, Cao Feng,
Michael Bain and Donald Michie for their helpful discussions and advice. This
work was carried out at the Turing Institute and was supported by the Esprit
Basic Research Action project ECOLES and the IED's Temporal Databases and
Planning project. The author is presently supported by an SERC post-doctoral
fellowship.

314 S. Muggleton

A Def in i t ions from logic

A.1 F o r m u l a e in f irst order p r e d i c a t e c a l c u l u s

A variable is represented by an upper case letter followed by a string of lower case
letters and digits. A function symbol is a lower case letter followed by a string of
lower case letters and digits. A predicate symbol is a lower case letter followed by
a string of lower case letter and digits. The negation symbol is: --. A variable is a
term, and a function symbol immediately followed by a bracketed n-tuple of terms
is a term. Thus f(g(X), h) is a term when f , g and h are function symbols and X
is a variable. A predicate symbol immediately followed by a bracketted n-tuple of
terms is called an atomic formula. Both A and --A are literals whenever A is an
atomic formula. In this case A is called a positive literal and --A is called a negative
literal. The literals A and -~A are said to be each others complements and form,
in either order, a complementary pair. A finite set (possibly empty) of literals
is called a clause. The empty clause is represented by o. A clause represents
the disjunction of its literals. Thus the clause {A1, A2, ..-~Ai,-'Ai+l, ...} can be
equivalently represented as (A1 VA2V..-,AiV--,Ai+I V...) or A1, A2, .. ~-- Ai, Ai+l,
A Horn clause is a clause which contains exactly one positive literal. The positive
literal in a Horn clause is called the head of the clause while the negative literals are
collectively called the body of the clause. A set of clauses is called a clausal theory.
The empty clausal theory is represented by �9 A clausal theory represents the
conjunction of its clauses. Thus the clausal theory {C1, C2, ...} can be equivalently
represented as (C1 A C2 A ...). A set of Horn clauses is called a logic program.
Apart from representing the empty clause and the empty theory, the symbols o
and �9 represent the logical constants False and True respectively. Literals, clauses
and clausal theories are all well-formed-formulae. Let E be a wff or term. vars(E)
denotes the set of variables in E. E is said to be ground if and only if vars(E) = 0.

A . 2 M o d e l s a n d s u b s t i t u t i o n s

A set of ground literals which does not contain a complementary pair is called a
model. Let M be a model, C be a clause and C be the set of all ground clauses
obtained by replacing the variables in C by ground terms. We say that M is a
model of C if and only if each clause in C contains at least one literal found in M.
M is a model for clausal theory T if and only if M is a model for each clause in T.
Let F1 and F2 be two wff's. We say that F1 semantically entails F2, or F1 ~ F2 if
and only if every model of F1 is a model of F2. We say that F1 syntactically entails
F2 using I , or Fit-IF2, if and only if F2 can be derived from F1 using the set of
deductive inference rules I . The set of inference rules I is said to be deductively
sound and complete if and only if F1PIF2 whenever F1 [--= F2. In this case we can
drop the subscript and merely write F1 I-/12. Let F1 and F2 be two wff's. We say
that F1 is more general than F2 if and only if F1 F- F2. A wff F is satisfiable if
there is a model for F and unsatisfiable otherwise. F is unsatisfiable if and only if

Inductive Logic Programming 315

Let 0 = {v l / t x , . . , vJ t~} . 0 is said to be a substitution when each v~ is a
variable and each ti is a term, and for no distinct i and j is vi the same as vj.
The set {vl, .., v,} is called the domain of 0, or dom(0), and {tl, . . , t ,} the range
of 0, or rng(0). We use lower case Greek letters to denote substitutions. Let E be
a well-formed formula or a term and 0 = {vx/tl , . . ,v , / t~} be a substitution. The
instantiation of E by 0, written EO, is formed by replacing every occurrence of vl in
E by ti. Every sub-term within a given term or literal W can be uniquely referenced
by its place within W. Places within terms or literals are denoted by n-tuples of
natural numbers and defined recursively as follows. The term at place (i) within
f(to, .., tin) is tl. The te rm at place (i0, .., in) within f(to, .., tin) is the te rm at place
(il, ..,i~) in ti0. Let t be a term found at place p in literal L, where L is a literal
within clause C. The place of t in C is denoted by the pair (L, p). Let E be a clause
or a term and 0 = { v l / t l , . . , v J t ~ } be a substitution. The corresponding inverse
substitution 0 -1 is {(ta, {P1,1, ..,Pl,ml})/Vl, .., (t , , {P,,a, . . ,pl ,m,})/v,} . An inverse
substitution is applied by replacing all ti at places Pi,1,..,Pi,mi within E by vl.
Clearly EO0 -1 = E. Note that an inverse substitution is not strictly a substitution
but rather a rewrite. Let C and D be clauses. We say that C 0-subsumes D if and
only if there exists a substitution 0 such that CO C_ D.

A.3 Reso lu t ion

Let F1 and F2 be two wff's and 0 be the substitution {u l /v~ , . .u , / v , } in which
for every distinct i and j , vl is different from vj. FIO and ['20 are said to be
standardised apart whenever there is no variable which occurs in both FIO and
['20. The substitution 0 is said to be the unifier of the atoms A and A t whenever
AO = A'O. # is the most general unifier (mgu) of A and A' if and only if for
all unifiers -y of A and A t there exists a substitution 6 such that (A#)5 = A'7.
((C - {A}) U (D - {-~A'}))0 is said to be the resolvent of the clauses C and D
whenever C and D are standardised apart, A E C, -~A t E D, 0 is the mgu of A
and A t. That is to say that (AO,-,AtO) is a complementary pair. The resolvent
of clauses C and D is denoted (C �9 D) when the complementary pair of literals is
unspecified. The ' . ' operator is commutative, non-associative and non-distributive.

Let T be a clausal theory. Robinson [34] defined the function ~ (T) recursively
as follows. ~ ~ = T. TC'(T) is the set of all resolvents constructed from pairs of
clauses in ~ - I (T) . Robinson showed that T is unsatisfiable if and only if there is
some n for which T~(T) contains the empty clause (o) .

R e f e r e n c e s

[1] R.B. Banerji. Learning in the limit in a growing language. In IJCAI-87, pages
280-282, Los Angeles, CA, 1987. Kaufmann.

[2] C. Bennett. Logical depth and physical complexity. In R. Herken, editor, The
Universal Turing Machine A Half Century Survey, pages 227-257. Kammerer
and Unverzagt, Hamburg, 1988.

316 S. Muggleton

[3] I. Bratko. Prolog for artificial intelligence. Addison-Wesley, London, 1986.

[4] W. Buntine. Generalised subsumption and its applications to induction and
redundancy. Artificial Intelligence, 36(2):149-176, 1988.

[5] R. Carnap. The Continuum of Inductive Methods. Chicago University,
Chicago, 1952.

[6] G. Chaitin. Information, Randomness and Incompleteness - Papers on Algo-
rithmic Information Theory. World Scientific Press, Singapore, 1987.

[7] Dietterich. Limitations of inductive learning. In Proceedings of the Sixth
International Workshop on Machine Learning, pages 124-128, San Mateo,
CA, 1989. Morgan-Kaufmann.

[8] A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower bound
on the number of examples needed for learning. In COLT 88: Proceedings of
the Conference on Learning, pages 110-120, Los Altos, CA, 1988. Morgan-
Kaufmann.

[9] S. Feferman et al., editor. Gb'del's Collected Works. Oxford University Press,
Oxford, 1980.

[10] M.S. Fox and J. McDermott. The role of databases in knowledge-based
systems. Technical Report CMU-RI-TR-86-3, Carnegie-Mellon University,
Robotics Institute, Pittsburgh, PA, 1986.

[111 A.M. Frisch and C.D. Page. On inductive generalisation with taxonomic back-
ground knowledge. Technical report, University of Illinois, Urbana, 1989.

[12] K. G5del. l)ber formal unentscheidbare Ss der Principia Mathematica und
verwandter System I. Monats. Math. Phys., 32:173-198, 1931.

[13] E.M. Gold. Language identification in the limit. Information and Control,
10:447-474, 1967.

[14] D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant's
learning framework. Artificial intelligence, 36:177 - 221, 1988.

[15] J. Hayes-Michie. News from Brainware. Pragmatica, 1:10-11, 1990.

[16] H. Ishizaka. Learning simple deterministic languages. In Computational learn-
ing theory: proceedings of the second annual workshop, San Mateo, CA, 1989.
Kaufmann.

[17] R.A. Kowalski. Logic for Problem Solving. North Holland, 1980.

/18] B. Kuipers. Qualitative simulation. Artificial Intelligence, 29:289-338, 1986.

[19] X. Ling and M. Dawes. Theory reduction with uncertainty: A reason for
theoretical terms. Technical Report 271, University of Western Ontario, 1990.

Inductive Logic Programming 317

[20] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1984.

[21] M.J. Maher. Equivalences of logic programs. In Proceedings of Third Interna-
tional Conference on Logic Programming, Berlin, 1986. Springer.

[22] T.M. Mitchell, R.M. Keller, and S.T. Kedar-Cabelli. Explanation-based gen-
eralization: A unifying view. Machine Learning, 1(1):47-80, 1986.

[23] H. Mortimer. The Logic of Induction. Ellis Horwood, Chichester, England,
1988.

[24] S.H. Muggleton. Duce, an oracle based approach to constructive induction.
In IJCAI-87, pages 287-292. Kaufmann, 1987.

[25] S.H. Muggleton. Inverting the resolution principle. In Machine Intellience 12
(in press). Oxford University Press, 1988.

[26] S.H. Muggleton. A strategy for constructing new predicates in first order
logic. In Proceedings of the Third European Working Session on Learning,
pages 123-130. Pitman, 1988.

[27] S.H. Muggleton. Inductive Acquisition of Expert Knowledge. Addision-Wesley,
Wokingham, England, 1990.

[28] S.H. Muggleton and W. Buntine. Machine invention of first-order predicates
by inverting resolution. In Proceedings of the Fifth International Conference
on Machine Learning, pages 339-352. Kaufmann, 1988.

[29] S.H. Muggleton and C. Feng. Efficient induction of logic programs. In Pro-
ceedings of the First Conference on Algorithmic Learning Theory, Tokyo, 1990.
Ohmsha.

[30] T. Niblett. A study of generalisation in logic programs. In EWSL-88, London,
1988. Pitman.

[31] G.D. Plotkin. Automatic Methods of Inductive Inference. PhD thesis, Edin-
burgh University, August 1971.

[32] J.R. Quinlan. Discovering rules from large collections of examples: a case
study. In D. Michie, editor, Expert Systems in the Micro-electronic Age, pages
168-201. Edinburgh University Press, Edinburgh, 1979.

[33] J.R. Quinlan. Learning relations: comparison of a symbolic and a connectionist
approach. Technical Report 346, University of Sydney, 1989.

[34] J.A. Robinson. A machine-oriented logic based on the resolution principle.
JACM, 12(1):23-41, January 1965.

[35] C. Rouveirol and J-F Puget. A simple and general solution for inverting
resolution. In EWSL-89, pages 201-210, London, 1989. Pitman.

318 S. Muggleton

[36] C. Sammut and R.B Banerji. Learning concepts by asking questions. In
R. Michalski, J. Carbonnel, and T. Mitchell, editors, Machine Learning: An
Artificial Intelligence Approach. Vol. 2, pages 167-192. Kaufmann, Los Altos,
CA, 1986.

[37] E.Y. Shapiro. Algorithmic program debugging. MIT Press, 1983.

[38] E.H. Shortliffe and B. Buchanan. A model of inexact reasoning in me&icine.
Mathematical Biosciences, 23:351-379, 1975.

[39] S. Slocombe, K. Moore, and M. Zelonf. Engineering expert systems applica-
tions. In Proceedings of the Annual Conference of the BCS Specialist Group
on Expert Systems. British Computer Society, London, 1986.

[40] R.J. Solomonoff. A formal theory of inductive inference. J. Comput. Sys.,
7:376-388, 1964.

[41] L. Sterling and E. Shapiro. The art of Prolog: advanced programming tech-
niques. MIT-Press, Cambridge, MA, 1986.

[42] A. Turing. Systems of logic based on ordinals. Proceedings of the London
Mathematical Society, pages 161-228, 1939.

[43] A. Turing. The automatic computing engine. Lecture to the London Mathe-
matical Society, 1947.

[44] R. Wirth. Completing logic programs by inverse resolution. In EWSL-89,
pages 239-250, London, 1989. Pitman.

