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Abst rac t  A new research area, Inductive Logic Programming, is presently 
emerging. While inheriting various positive characteristics of the parent subjects 
of Logic Programming and Machine Learning, it is hoped that the new area will 
overcome many of the limitations of its forebears. The background to present 
developments within this area is discussed and various goals and aspirations for 
the increasing body of researchers are identified. Inductive Logic Programming 
needs to be based on sound principles from both Logic and Statistics. On the 
side of statistical justification of hypotheses we discuss the possible relationship be- 
tween Algorithmic Complexity theory and Probably-Approximately-Correct (PAC) 
Learning. In terms of logic we provide a unifying framework for Muggleton and 
Buntine's Inverse Resolution (IR) and Plotkin's Relative Least General Generali- 
sation (RLGG) by rederiving RLGG in terms of IR. This leads to a discussion of 
the feasibility of extending the RLGG framework to allow for the invention of new 
predicates, previously discussed only within the cor~text of IR. 

Keywords: Learning, logic programming, induction, predicate invention, inverse 
resolution, information compression 

1 Introduct ion 

Before evaluat ing the present developments in Induct ive  Logic P rogramming  it is  
worth briefly reviewing the inter-related histories of deductive and induct ive  logic. 
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1.1 Deduct ive  logic 

Although logic has been studied since the time of Aristotle's Prior Anatytics it was 
only during the 19th and early 20th centuries that  theoreticians such as Boole and 
Frege transformed it into a rigorous mathematical science. During the present cen- 
tury a school of philosophers, known as logical positivists, have promoted the view 
that logic is the ultimate foundation not only of mathematics but of all sciences. 
According to this view, every mathematical statement can be phrased within the 
logical language of first order predicate calculus and all valid scientific reasoning is 
based on logical derivation from a set of pre-conceived axioms. Logical positivism 
was provided with powerful ammunition by Ghdel's demonstration [9] that a small 
collection of sound rules of inference was complete for deriving all consequences 
of formulae in first order predicate calculus. Much later Robinson demonstrated 
[34] that a single rule of inference, called resolution, is both sound and complete 
for proving statements within this calculus (see Appendix A). For the purposes 
of applying resolution, formulae are normalised to what is known as clausal form. 
Robinson's discovery was of fundamental importance to the application of logic 
within computer science. Throughout the early 1970's Colmerauer and Kowalski 
[17] were instrumental in the development of the logic based programming lan- 
guage Prolog. Prolog statements are phrased in a restricted clausal form called 
Horn clause logic. All computations within Prolog take the form of logical proofs 
based on the application of the rule of resolution. Since its inception Prolog has 
developed into a widely used programming language [3, 41] and was chosen as the 
core language for Japan's Fifth Generation Project. Prolog's development has also 
spawned the rigorous theoretical school of Logic Programming [20]. 

1.2 Induct ion 

Despite the self-evident success of logical deduction, a certain question has cropped 
up time and again throughout its development. If all human and computer rea- 
soning proceeds from logical axioms, then where do logical axioms proceed from? 
The widely accepted answer to this is that logical axioms, representing general~sed 
beliefs, can be constructed from particular facts using inductive reasoning. In turn, 
facts are derived from the senses. The history of inductive reasoning interacts with 
every development of its deductive counterpart. In ancient Greece inductive rea- 
soning played a key role in Socrates' dialectic discussions. These are described in 
Plato's The Last days of Socrates. In these discussions concepts were developed 
and refined using a series of examples and counter-examples drawn from every 
day life. In the seventeenth century Bacon in the Novum Organum gave the first 
detailed description of the inductive scientific method. From the eighteenth cen- 
tury onwards, methods developed originally for predicting the outcome of games of 
chance developed into the mathematical discipline of Statistics. In turn, Statistics 
went on to have a central role in the evaluation of scientific hypotheses. 

In 1931, a year after Ghdel's previously mentioned completeness result, Gbdel 
[12] published his more famous incompleteness theorem. According to this theorem 
Peano's axiomisation of arithmetic, and any first order theory containing it, is either 
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Figure 1: Expert systems built with and without use of induction 

self-contradictory or incomplete for the purposes of deriving certain arithmetic 
statements. This discovery prompted Turing to attempt to show [42] that  problems 
concerning incompleteness of logical theories could be overcome by the use of an 
oracle capable of verifying underivable statements. Turing [43] later came to believe 
that GSdel's incompleteness theorem required that  intelligent machines be capable 
of learning from examples. 

Various logical positivists including Carnap [5] have developed statistical theo- 
ries for confirming scientific hypotheses posed in first order logic. Although Plotkin 
[31] in the 1970's and Shapiro [37] in the 1980's worked on computer-based induc- 
tive systems within the framework of full first order logic, most successes within the 
field of Machine Learning have derived from systems which construct hypotheses 
within the limits of propositional logic. The major successes here have been in the 
area of inductive construction of expert systems (see [27]). The properties of various 
expert systems are given in Figure 1. The first two, MYCIN [38] and XCON [10] 
were built using hand-coding of rules. The second two, GASOIL [39] and BMT [15] 
were built using software derived from Quinlan's inductive decision tree building 
algorithm ID3 [32]. It should be noted that the inductively constructed BMT is by 
far the largest expert system in full-time commercial use. From the perspective of 
software engineering, it is also worth noting the sizeable reductions in development 
and maintenance times for inductively constructed systems. It seems likely that 
technologies based on inductive inference will play an increasingly important role 
in future software development. 
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1 .3  S h o r t c o m i n g s  o f  present  induct ive  s y s t e m s  

Along with the successes of this technology, the following limitations are now be- 
coming apparent. 

�9 Restricted representation. Propositional level systems cannot be used 
in areas requiring essentially relational knowledge representations. These 
areas include temporal reasoning, scheduling, planning, qualitative reasoning, 
natural language and spatial reasoning. Problems also occur in other areas 
involving arbitrarily complex structural relationships such as prediction of 
protein folding and DNA gene mapping. 

�9 Inab i l i ty  to m a k e  use of  backg round  knowledge.  Human inductive 
reasoners make use of vast amounts of background knowledge when learning. 
Inductive algorithms such as ID3 use only a fixed set of attributes attached 
to each example. Explanation-based learning (EBL) [22] attempted to over- 
come this limitation by redefining the learning problem. In EBL hypotheses 
are constrained to being those derivable from background knowledge. Since 
background knowledge is rarely complete in applications, this constraint is 
now generally believed to be over-restrictive. 

�9 S t rong  bias o f  vocabulary .  Present inductive systems construct hypothe- 
ses within the limits of a fixed vocabulary of propositional attributes. An 
increasing amount of Machine Learning research [24, 28, 1, 44, 35, 16, 19] 
is concerned with algorithms capable of inventing auxiliary predicates when 
insufficient background knowledge is provided. 

2 Inductive Logic Programming 

A growing body of researchers have started to work on problems of inductive rea- 
soning within the confines of pure Prolog. In this paper the phrase Inductive Logic 
Programming is used to describe this research area, formed at the intersection 
of Logic Programming and Machine Learning. In line with its parent subjects it 
would seem likely that the area will subdivide into three related strands of research: 
theory, implementation and experimental application. While model-theoretic se- 
mantics [20] and PAC-learning [8] theory are likely to be influential, neither seem 
totally adequate for the problems involved. The general goals of research for such 
an area should be to produce a widely used technology with a firm theoretical 
foundation. Ideally a uniform theory, such as that  behind Logic Programming will 
emerge. 

2.1 Past  and present  r e s e a r c h  

In his thesis Plotkin [31] laid the foundations for much of the present activity. 
Plotkin did not restrict himself to Horn clause logic. This is hardly surprising 
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given that logic programming had not yet come into existence. His major con- 
tributions were 1) the introduction of relative subsumption, a relationship of gen- 
erality between clauses and 2) the inductive mechanism of relative least general 
generalisation (RLGG). Plotkin's main theoretical result was negative. This was 
that there is in general no finite relative least general generalisation of two clauses. 
His implementation of RLGG was thus severely restricted. This negative result 
of Plotkin's prompted Shapiro [37] to investigate an approach to Horn clause in- 
duction in which the search for hypotheses is from general to specific, rather than 
Plotkin's specific to general approach. Shapiro also investigated a technique called 
algorithmic debugging. Given a Prolog program which is either incomplete, incor- 
rect or non-terminating, Shapiro's system diagnoses which clause is faulty and then 
replaces that clause. 

Both Plotkin and Shapiro managed to prove that their learning systems could 
identify first order theories in the limit, according to Gold's definition [13]. Nowa- 
days Valiant's definition of PAC-learning [14] (see Section 3.4) is generally agreed 
to provide a better approach to identification than Gold's methodology. However, 
PAC methods have largely been applied to propositional-level learning and have as 
yet to be demonstrated capable of dealing with inductive learning in full first order 
logic. It is also worth noting that despite the identification in the limit guarantees 
for Plotkin's and Shapiro's systems, both were very inefficient and were in practice 
only demonstrated on very limited problems. 

Sammut and Banerji [36] describe a system called MARVIN which generalises a 
single example at a time with reference to a set of background clauses. At each stage 
a set of ground atoms F representing the example are matched against the body of 
a background clause H ~- B. The matching facts BO are replaced by H8 within F, 
where 0 is a ground substitution. This was the sole generalisation operation used. 
The method was demonstrated on a wide set of problems. Muggleton and Buntine 
[28] later showed that Sammut and Banerji's generalisation operation was a special 
case of inverting a step in a resolution proof. A set of more general constraints 
were derived, and two related operations were named the 'V' operators (see Section 
4.1). Another pair of operators ('W'), also based on inverting resolution, were 
shown to be capable of "inventing" predicates which were not available within the 
background knowledge (Section 5.1). Banerji [1], Wirth [44] Ishizaka [16], Ling 
and Dawes [19] and Rouveirol and Puget [35] have also described related methods 
for "inventing" new predicates. However, although predicate invention has been 
demonstrated on large scale problems within a propositional setting [24, 25] this is 
not yet the case for any first order learning systems. 

Recently Quinlan [33] has described a highly efficient program, called FOIL, 
which induces first order Horn clauses. The method relies on a general to specific 
heuristic search which is guided by an information criterion related to entropy. 
Quinlan sees his approach as being a natural extension of ID3 [32]. He notes 
that the search can be highly myopic, and is unable to learn predicates such as 
list-reversal and integer-multiplication. 

Attempts have been made recently by Buntine [4], Frisch and Page [11] and 
Muggleton and Feng [29] to find ways around Plotkin's negative RLGG results. 
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Domain Clause No. of No. of atoms 
examples in background 

169 5408 Qualitative 
modelling 
(U-tube) 

Temporal 
reasoning 
(satellite 
power 
supply) 
Protein 
folding 

state(la:A/B,lb:C/D,fab:E/B,fba:F/D) #-- 
deriv(la:A/B,fba:F/D), 
deriv(lb:C/D,fab:E/B), 
minus(la:A/S,lb:G/D,[]), 
minus(la:G/S,lb:C/D,[]). 

bus_voltage(0,TimeA) 
asr_switchA (Val,TimeA), 
relay_a011 (0,TimeA), 
successor(TimeC,TimeA), 
insunlight (Val,TimeC). 

alpha(Prot,Pos) 

position(Prot,Pos,Res), 
hydrophobic(Res), 
less_hydrophobic(Rminus4,Res), 
less._hydrophobic(Rplusl,Res), 

131 

1612 

3584 

4185 

Figure 2: Clauses built by Golem in real-world domains 

Using a Horn clause framework Buntine tried restricting the model of the back- 
ground knowledge to being a finite depth Herbrand model. The approach had 
limited success due to the complexity of constructed clauses. Frisch and Page have 
tried restricting the hypothesis language to being a strictly sorted logic with more 
success. Muggleton and Feng [29] apply a "determinate" restriction to hypotheses. 
By this it is meant that  there is a unique choice of ground substitution for every 
resolution involved in the refutation of any ground goal using the hypothesised 
clause. Muggleton and Feng's learning program, Golem, has been demonstrated 
[29] to have a level of efficiency similar to Quinlan's FOIL but without the accom- 
panying loss of scope. Although predicates such as list-reverse, integer-multiply 
and quick-sort were reported in [29], the following section provides some details of 
real world applications of Golem. 

2.2 R e a l - w o r l d  d o m a i n s  

A great deal of research has been invested in inductive logic programming al- 
gorithms. A general feeling is emerging that it is time to move on from the toy 
worlds of arch building and list and number theoretic predicates. Figure 2 shows 
various clauses developed as part of ongoing real-world application projects using 
Muggleton and Feng's [29] Golem. The first clause represents a qualitative model 
of a U-tube, developed in a collaborative project between the author and Ivan 
Bratko. The clause was built using Kuipers' [18] theory of qualitative reasoning 
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as background knowledge, encoded as 5408 ground atoms. The clause relates the 
levels of the two water surfaces, la and lb to the directions of flow fab and fba. 
Various qualitative relationships concerning the derivative of flow (deriv) and re- 
lationships between the signs (minus) of various qualitative values were discovered 
by Golem. 

In the second clause, constructed by Feng for a satellite application, a simple 
temporal relationship was discovered. The clause predicts the bus voltage at Time 
A on the basis of various relay and switch values together with whether the satel- 
lite's solar panels are in sunlight. Simple temporal reasoning is achieved by the use 
of a time variable associated with each predicate. 

The third clause was developed in collaborative work being carried out between 
the author and Ross King. In this clause a particular amino acid residue position 
(Pos) within a protein (Prot) is predicted to be part of a secondary structure 
known as an alpha-helix (alpha). The clause takes into account whether the residue 
(Res) at position Pos is hydrophobic, i.e. water rejecting. It also compares the 
hydrophobicity of Res to that of the residues at positions four before (Rminus4) 
and one after Res. 

Each of the clauses in Table 2 were constructed in under 30 seconds on a Sparc- 
Station330, and each involved the use of relatively large amounts of foreground and 
background information. 

The application areas of qualitative model construction, construction of tem- 
poral models and protein structure prediction are ideally suited to inductive logic 
programming techniques. However, the author believes these are only a foot in the 
door of a new world of untried application areas for induction. 

3 T h e o r e t i c a l  f o u n d a t i o n s  

In this section we discuss issues concerning the theoretical foundations of inductive 
logic programming. Definitions from logic can be found in Appendix A. This section 
serves as a basis for the discussion of inverse resolution and relative least general 
generalisation within the following sections. 

3.1 Generality 

The relationship of generality between formulae can be defined as follows. 

Def in i t ion  1 Formula A is more general than formula B if and only if  A ~ B 
and B ~ A. 

This definition imposes the lattice shown in Figure 3 on the set of all formulae. In 
Logic Programming terms the top of the lattice is the empty clause (or [::3) and the 
bot tom of the lattice is the empty program (or It). Infinite ascending and descending 
chains exist within the lattice. Ascending chains can be constructed by conjoining 
formulae. Conversely, descending chains can be constructed by disjoining formulae. 

The notion of relative generality of formulae will be used in the discussion of 
inductive inference in the next subsection. Relative generality is defined as follows. 
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Increasing 
Generality 

Figure 3: The generality lattice for formulae 

Def ini t ion 2 Formula A is more general than formula B relative to formula C if 
and only if C A A ~ B and C A B ~ A. 

Formulae are partitioned into a set of equivalence classes using the following deft- 
nition. 

Def ini t ion 3 Formula A is logically equivalent to formula B if and only i rA  ~ B 
and B ~ A. 

This definition suggests general-purpose methods for finding redundancy within 
formulae. Thus 

Def ini t ion 4 Clause C is redundant within logic program P A C if  and only if  
P A C is logically equivalent to P. 

Logic programs can be reduced by removing all redundant clauses using theorem 
proving. Also 

Def ini t ion 5 Literal l is logically redundant within the clause C V l in the logic 
program P A (C V l) i f  and only if P A (C V l) is logically equivalent to P A C. 

Maher in [21] discusses a number of different notions of equivalence for logic pro- 
grams including that of Definition 3. See also Buntine [4] and Niblett [30] for a 
detailed discussion of generality. 

3 . 2  A g e n e r a l  s e t t i n g  f o r  i n d u c t i o n  

In the general inductive setting we are provided with three languages. 

s : the language of observations 
Z:s : the language of background knowledge 
~ H  : the language of hypotheses 



Inductive Logic Programming 303 

The general inductive problem is as follows: given a consistent set of examples 
or observations O C /3o and consistent background knowledge B C_ / : s  find an 
hypothesis H E ~H such that 

B A H t - O  (1) 

As such, the problem is under-constrained. Usually,/ :o is required to contain only 
ground literals. This still leaves a very unconstrained choice for H. Often H is 
restricted to being a single clause. This is the case for Plotkin [31] and Shapiro [37] 
though not the case in Muggleton and Buntine [28] in which predicate invention 
introduces a set of clauses. H can be constrained to be the most general hypothesis 
relative B as in Shapiro [37] or the least general relative to B as in Plotkin [31]. 
Alternatively, H can be chosen to be that which produces the maximum informa- 
tion compression of O relative to B as in [26]. The choice of which constraint to 
apply is necessarily tied to our notions of justification of hypotheses. 

3.3 Induct ive  inference  and just i f icat ion 

As already stated, inductive inference involves the use of background knowledge to 
construct an hypothesis which agrees with some set of observations according to 
relationship (1). Clearly such a form of inference is not sound in the logical sense 
since H does not necessarily follow from B and O. In the worst case there could 
be an infinite number of contending hypotheses all of which fit the relationship 
shown above. For this reason we require some additional non-logical constraint to 
justify any particular hypothesis. In the 1950's Carnap [5] and others suggested 
"confirmation theories" aimed at providing a statistical underpinning to the prob- 
lem of inductive inference. Various difficulties and paradoxes were encountered 
with these approaches which meant that they were never applied within machine 
learning programs [23]. 

3.4 PAC- learn ing  

One popular machine learning approach to the problem of constructing highly prob- 
able hypotheses is the PAC (Probably Approximately Correct) model of learning 
proposed by Valiant [14]. According to Valiant's model a learning agent is not 
concerned with constructing an exact concept definition. Instead we choose a class 
of hypotheses that we would like to be able to deal with. We are then given a set of 
examples of the target concept. The cardinality of this example set must be at most 
a polynomial function of the size of the vocabulary used in constructing hypotheses. 
A class of hypotheses is PAC-learnable whenever we can guarantee with high prob- 
ability that an arbitrarily chosen hypothesis which is consistent with the examples 
will agree with most subsequently presented examples. This has been shown to 
be possible when various constraints are placed on the hypothesis language. For 
instance, one such constraint involves placing a constant bound k on the allowable 
size of conjunctions within a boolean DNF concept description (called k-DNF). In 



304 S. Muggleton 

a recent paper Dietterich [7] showed that for the purposes of learning DNF propo- 
sitional descriptions the class of PAC-learnable concepts is highly restricted. There 
are 22" different boolean functions of m input values. However, Dietterich shows 
on the basis of general Valiant-learnability results due to Ehrenfeucht, Haussler et 
al [8] that given n examples at most 0(2 ~m) of these functions are PAC-learnable. 
Dietterich [7] expresses concern over these results since it would seem that  inductive 
learning algorithms must be restricted to searching highly constrained hypothesis 
spaces. This might be taken to suggest that it is not worth straying from propo- 
sitional logic as a hypothesis language, since it is not even possible to PAC-learn 
the whole class of propositional descriptions. 

3.5 Informat ion  compress ion  

The following observation defeats this line of argument. Given n examples of a 
concept, consider the class of boolean hypotheses which imply these n examples, 
but whose minimal DNF description length is less than the description length of the 
examples. Since each example is defined in terms of m input values and one output 
value, the description length of the examples will be n(m + 1) bits. However, at 
most 2 n('~+l) different hypotheses are describable in n(m + 1) bits. Note the close 
similarity between this upper bound and that given by Dietterich. This seems to 
provide at least strong circumstantial evidence for the belief that the class of PAC- 
learnable hypotheses is the same as the class of hypotheses which are textually less 
complex than the examples on which they are based. For the purposes of reference 
we will call this the PAC-Information-Compression-Equivalence (PICE) conjecture. 
This conjecture, if true would have a number of desirable side-effects. Firstly, the 
textual simplicity of examples relative to a given hypothesis is easy to measure. 
Secondly, it is relatively straightforward to interpret textual compression within any 
formalism, be it propositional logic, first-order logic or context-free grammar rules. 
Thirdly, this would bring the PAC-learning model into line with other approaches 
developed from algorithmic complexity theory [40, 6, 2] and Bayesian statistics. 
According to Bayes' Law 

Pr(HIO ) = Pr(H)'Pr(OIH) 
Pr(O) 

If we treat bit-encoded descriptions as though they were the outcome of repeat- 
edly tossing an unbiased coin, the prior probability of a string of bits s of length l 
is simply 2 -t. Now by taking logs we can rewrite Bayes' Law in information terms 
as follows. 

I(H[O) = I(H) + I(OIH) - I(O) 

where I(X) represents the minimal encoding length of X. For the probability 
Pr(HIO ) to approach 1, I(HIO ) must approach 0, in which case I(H) + I(OIH) 
must be at least as great and approximately equal to I(O). Although the minimal 
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C1(+) C2(-) 

C 

Figure 4: Single resolution 

encodings I(H) and I(0) have a clear interpretation, one might ask what the 
meaning of I(OIH ) should be in terms of logic. The natural interpretation that we 
choose here is that I(O[H) is the minimal encoding of the derivation or proof of 
O from H.  This interpretation has been shown to give good results elsewhere [26]. 
Note that this interpretation also has the desirable side-effect of discriminating 
against hypotheses which require very long proofs to derive the examples on which 
they are based, thus nicely combining the notions of space and time complexity of 
hypotheses in terms of a single information measure. 

4 T h e  re la t ionsh ip  b e t w e e n  IR  and R L G G  

In this section we review and extend Muggleton and Buntine's [28] Inverse Reso- 
lution (IR) techniques leading to a unified framework for IR and Plotkin's RLGG. 

4 . 1  T h e  ' V '  o p e r a t o r s  

Figure 4 is a diagrammatic representation of a resolution step. Resolution derives 
the clause at the base of the 'V' given the two clauses on the arms. In contrast, a 
'V' operator derives one of the clauses on the arm of the 'V' given the clause on 
the other arm and the clause at the base. In Figure 4, the literal resolved on is 
positive (+) in C1 and negative (-) in C2. 

Note that within any logic program containing C1 and C2, C is redundant 
according to Definition 4. Other clauses within the background theory may also be 
made redundant by the addition of C1 or C2 to the growing theory. It is the ability 
to discard redundant clauses that allows these operators to simplify and compact 
theories (see section 3.5). 
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The absorption operator constructs C2 given C1 and C. Conversely, the con- 
struction of Ca from (?2 and C is called the identification operator. Together these 
operators are called the 'V' operators. 

In [28] the 'V' operators are derived as a set of constraints from the following 
equation of resolution (see section A.3). 

C = ( C  1 - {/1})01 U (C2 - {/2})02 (2) 

where ll is a positive literal in C1, 12 is a negative literal in C2 and 0102 is the 
mgu of -'ll and 12. Muggleton and Buntine [28] base the algebraic manipulation 
required to produce constraint equations for the 'V' operators on a number of 
assumptions. Among these is the assumption that the clauses (C1 - {/1})01 and 
(C2-{h  })02 contain no common literals. This they call the separability assumption. 
The separability assumption will be avoided in this paper. Instead we develop the 
constraints necessary for most specific 'V' operators. 

4 . 2  M o s t  s p e c i f i c  ~V' o p e r a t o r s  

With reference to equation (2), let e l '  be (C1 - {h})01 and C2' be (C2 - {/2})02. 
Thus C = C I ' U C 2 ' .  Also let D = C 1 ' -  C2 ~. Thus C2 ~ = C -  D or rather 
(C2 - {/2})02 = C - D. Rewriting this we get 

62 = (C - D)O~ 1 U {/2} (3) 

Now, since 0102 is the mgu of -,ll and 12, we know that ~1101 = 1202 and thus 

12 = -"11010~ 1 (4) 

Substituting (4) into (3) we get 

C2 = ( C  - D ) O ;  1 U { - , l l ) 0 1 0 ~  1 

= ( ( C  - D )  U { - , l l } 0 1 ) 0 ;  1 (5) 

For Horn clauses the choice of 11 is unique since it is a positive literal, and is 
therefore the head of C1. However, it should be noted that given C and C1 equation 
(5) represents a whole range of possible solutions. These depend on the choice of 
D, 0 C D C C1', the choice of 01 and the choice of 0~ 1. However, given 01 and 0~ -1 
there is a unique most specific solution for C2. Thus with D = !~ we get 

= ( c  o {-,11)Ol)O; 1) 

Again there is a range of solutions dependent on our choice of 01 and 02 -1. However, 
if we are interested only in most specific solutions we can choose 0~ 1 to be empty as 
well. Any other assignment produces a more general clause. Using C2J. to denote 
the most specific solution for the absorption operator we get 

C2~. = ( C  (_J {-nll}01) 
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Note that 01 can be partly determined from C and C1. From equation (2) we can 
see that C D (C1 - {ll}0~), i.e. C 0-subsumes (C - {l~}) with substitution 01. 
Thus a substitution 0~1 C 01 can be constructed by matching literals within C and 
C1. However, what should be done with variables in ll which are not in the domain 
of 0~x? In fact, we are free to apply any substitution to these variables, since 01 is 
part of the mgu of -~11 and 12 and we are not given 12. The problem can be avoided 
by assuming that every variable found in ll is found in some other literal in C1. In 
this case 0~ = 01 since 0~ is constructed by matching all literals within (Ca - {ll}) 
with literals in C. The constraint that all variables in the head (ll) of a background 
clause (C1) be found within the body of the clause (C~ - {l}) is used by Muggleton 
and Feng [29] for construction of RLGG's. They call a logic program containing 
only such clauses syntactically generative and prove that all atoms derivable using 
resolution are ground. If we apply the stronger constraint that every variable in 
every background clause must be found in at least two literals we can, using the 
same reasoning as above, show that the most specific solution for the identification 
operator is 

= ( c  u {%}o2)  (6) 

For the purposes of this paper we use the phrase weakly generative in place of Mug- 
gleton and Feng's [29] syntactically generative. The phrase strongly generative is 
used to describe sets of clauses in which every variable in every clause is found 
in at least two literals of that clause. Note that for every application of the un- 
restricted absorption operator C2 0-subsumes C25 with substitution 02. Similarly 
for every application of the unrestricted identification operator C1 0-subsumes C1 
with substitution 01. 

4 . 3  T h e  f u n c t i o n  12" 

We now give a function which describes the set of most specific clauses that can be 
constructed by iterative application of the 'V' operators. The function ]3n(P, C) : 
GenerativeLogicPrograms x Clauses --~ ClauseTheories is defined recursively in 
a manner analogous to Robinson's function 7~n(P) 

V~ C) = {C} 
Yn(P, C) = y n - l ( p ,  C) U {(C' U {--l}0) : l C Cl,2 E P and 

C' e ]2n-l(P, C) and (C1,2 - {l})0 C_ C'} 

The closure 12*(P, C) is simply (1)I(P, C) U 122(P, C) U . . . ) .  Note that 13~(P, C) 
contains not only all the most specific absorptions but also all the most specific 
identifications to depth n. In fact, the definition of 12 n does not require that P be 
a logic program. The definition works equally well when P is an arbitrary set of 
strongly generative clauses. 

T h e o r e m  6 C o m p l e t e n e s s  of  12 n wrt .  l inea r  de r iva t ion .  Let {D1, . . . ,  Dk-1} 
be a subset of the clauses in the strongly generative logic program P. Let C be 
the resolvent of the linear derivation (01" (D2" . . .  (Ok-1 �9 Ck). . . ) )  where ( X .  Y)  
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c 

/ 
/ 

Figure 5: Linear derivation 

represents a resolvent of  the clauses X and Y and Ck ~- P.  For every such linear 
derivation ~)k(p, C) contains a clause Ck+ such that Ck O-subsumes CkJ.. 
Proof .  Proof by induction on k. Trivial for k = O. Assume k = i and prove for 
k = i + 1. By the definition and inductive assumption Vi(P, C) contains Ci$ which 
is O-subsumed by Ci. Let C -- (Dl" (D2"... (Di" Ci+l). . .))  and Ci = D~. Ci+a 
where Di E P, l is the literal resolved on in Di and # is the mgu in this resolution. 
By definition )2i+l(P, C) contains Ci+1+= C d  u{-~l}O. Due to the fact that P is 
strongly generative the domain of O is vats(l). Since (C,+1 - {~t}) O-subsumes the 
resolvent C~ with substitution # it follows that C~+1 O-subsumes (C~ U {-~l}O) and 
therefore Ci+l O-subsumes Ci+l J,. [] 

Figure 5 illustrates Theorem 6. The depicted linear derivation of C represents 
(O1" (D2" . . .  (0k_1" Ck)-..)). 

As a corollary to Theorem 6 we note that  the clause formed by taking the 
union of clauses in V~(P, C) is subsumed by every clause constructed by iterative 
application of 'V' operators to C and members of P. 

Coro l l a ry  7 M o s t  specific inverse l inear der iva t ion .  Let {D1, . . . ,  Dk-1} be a 
subset of the clauses in the strongly generative logic program P. Let C = (D1" ( D:.  
�9 .. (0~-1" Ck) . . . ) )  and Ck r P.  For every such linear derivation Ck O-subsumes 
U v~(P, c). 
Proof .  Follows trivially from Theorem 6. 

4.4 Lgg of  inverse linear derivations 

Suppose we are given two clause, C and D and told that there is a clause Ck ~ P 
such that both C and D have a linear derivation of depth at most k from Ck and P. 
From Corollary 7 we know that Ck 0-subsumes both [.J Vk(P, C) and U Vk(P, D). 
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Figure 6: Inverse linear derivations of C and D with common Ck 

Plotkin [31] investigated the lattice that 0-subsumption defines over the set of 
all clauses. He defines the least general generalisation (lgg) C of two clauses D1 
and D2 as being the greatest lower bound within the clause lattice induced by 0- 
subsumption and describes the following method for constructing lggs. The lgg of 
the terms f ( s l , . . ,  s , )  and f ( t l ,  .., t , )  is f ( lgg(s l  , tl), .., lgg(s, , t ,)). The lgg of the 
terms f(sa, .., s , )  and 9(tl, .., t , )  where f r 9 is the variable v where v represents 
this pair of terms throughout. The lgg of two atoms p(s l , . . , s , )  and p(tl , . . , tn) 
is p(lgg(sl, tl), .., Igg(s,, t , )) ,  the lgg being undefined when the sign or predicate 
symbols are unequal. The lgg of two clauses C1 and C2 is {l : 11 E Cx and 12 E C2 
and 11 has the same sign and predicate symbol as 12 and l = lg9(ll , 12)}. 

Thus the least general solution for Ck is simply the least general generalisation 
of O ]2k(P, C) and U Vk(P, D). 

T h e o r e m  8 Lgg of  inverse  l inear der ivat ions .  Let { E l , . . . ,  Ei} and {FI , . . . ,  Fj} 
be subsets of the strongly generative logic program P. Let C =(El  �9 (E2 �9 . . .  (El �9 
G). . . ) )  and D =(El- (F2.... (5" G). . . ))  where G r P,  k > i and k >_ j .  For 
every such pair of derivations Ck O-subsumes lgg(U ])k(p, C),U ldk(P, D)).  
P r oo f .  Follows from Corollary 7 and Plotkin's definition of lgg. [] 

Figure 6 illustrates the linear derivations of C and D from the common clause Ck. 

E x a m p l e  9 The following is a simple example illustrating the construction of the 
Ig9 of two inverse linear derivations. 

Let Cz = has_wings(X) +- bird(X) 
C~ = has_beak(X) ~ bird(X) 
P = {C2, C~} 
C = has_wings(penguin) 
D = has_beak(penguin ) 



310 S. Muggleton 

k = 1 
Thus V~ C) = {has_wings(penguin) e-} 

Applying equation (6) to C and C2, with 12 = -.bird(X) and 02 = {X/penguin} we get 

U Vx( P, C) = has_wings(penguin), bird(penguin) e-- 

Applying equation (6) to D and C~, with 12 = ~bird(X) and 02 = {X/penguin} we get 

U Y 1 (P, D) = has_beak(penguin), bird(penguin) *-- 

Ck O-subsumes lgg(U ])l(p, C), U Vl( P, D)) -- bird(penguin) ~-- 
Letting E~ = C2 and F~ = C~ we get C = (El" Ck ) and D = ( FI " Ck ) as expected. 

From the example it should be noted that UVk(P, C) and lgg(UVk(P, C), Ul;k(P, D)) 
are not necessarily Horn clauses. 

4 . 5  R e l a t i v e  l e a s t  g e n e r a l  g e n e r a l i s a t i o n  

In this subsection we describe the relationship between Plotkin's RLGG and the lgg 
of inverse linear derivations of the previous subsections. Let P be a logic program 
and C and D be two Horn clauses. The relative least general generalisation of C 
and D, rlggp(C,D) is the least general clause within the 0-subsumption lattice 
for which P A rlggp(C, D) F- C A D where rlggp(C, D) is used only once in the 
derivation of C and D. 

This definition corresponds almost entirely to lgg(U Vk(P, C), U Vk( P, D)). The 
only differences are that [3 Vk(P, C) and U rk(p ,  D) only take account of linear 
derivations of C and D with respect to P and the depth of derivation is limited 
to k. However it is well known that linear derivation is sound and complete. In 
the case of the depth parameter k, Muggleton and Feng [29] describe a method for 
constructing RLGG's that uses a parameter h in the same way as k is used here. 

T h e o r e m  10 Equiva lence  of  R L G G  and  lgg of inverse l inear  der iva t ions .  
Let P be a logic program and let C and D be Horn clauses, r lggp(C,D) = 
lgg(U ])*( P, C), U V*( P, D) ). 
Proof .  The theorem follows from the definitions of rlggp( C, D) and Igg(U V* ( P, C), 
U v'(P, D)). D 

Obviously, the clause lgg(U V*(P, C),UY*(P, D)) can be infinite. Plotkin [31] 
showed that r lggp(C,D)  can be infinite even when logically reduced. Note how- 
ever that whereas Plotkin intended the reduced RLGG to be the hypothesis, within 
Muggleton and Buntine's [28] IR framework the most compact consistent clause 
which subsumes lgg(O Vk(P, C), U Vk(P, D)) will be chosen. A similar approach is 
found to be essential within Muggleton and Feng [29], since RLGG clauses can be 
very large, even when reduced using Definition 5. 
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C I A C 2 

B~ B 2 

Figure 7: Two resolution steps with common clause A 

5 P r e d i c a t e  i n v e n t i o n  

In the last section we described a unified framework covering both RLGG and IR. 
However, in Muggleton and Buntine's [28] description of IR a salient feature was 
the invention of new predicates. Predicate invention within the IR framework is 
carried out using the ' W '  operators. In this section we review 'W'  operators and 
discuss a method of incorporating a generalised 'W'  operator into the combined 
IR-RLGG framework. 

5.1 The ~W' operators 

By combining together two resolution 'V's back-to-back we get a 'W '  of the form 
shown in Figure 7. Assume that C1 and 6'2 resolve on a common literal l within A 
to produce B1 and B2 respectively. The 'W'  operators construct the clauses A, 6'1 
and C2 given B1 and B2. In the in t ra-cons t ruc t ion  operator l is assumed negative 
while in the i n t e r -cons t ruc t ion  operator l is assumed positive, Note that  since the 
common literal l in A is resolved away, the clauses A, C1 and C2 can contain a 
literal with a predicate symbol not found in B1 and B2. It is in this sense that  a 
new predicate is i nven t ed  by the 'W'  operators. From equation (2) we get 

Bi  = ( A  - {l})OA,i U (Ci - {li})Oc, i 

where i E {1,2} and OA,iOc,i is the mgu of ~l and Ii. Thus (A - {/}) 0-subsumes 
each clause Bi. Clearly one possible solution is that  (A - {l}) -- lgg(B1,  B2).  With 
this choice OA,~ can be constructed by matching (A - {l}) with the corresponding 
literals of Bi.  Muggleton and Buntine make the assumption that  each Ci is a unit 
clause, i.e. 

Ci = { l l}  
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/ \ 

B 1 B2 

Figure 8: Generalised 'W'  operator 

and thus 

B~ = ( A -  {/})0A,, 

They then construct a literal containing the variables in dom(0Aj). Assuming 0v,~ 
is empty gives 

= 

and 

A = Igg(B1, B2) (J {/} (7) 

5 . 2  G e n e r a l i s e d  ' W '  o p e r a t o r s  

A more general form for the 'W'  operators is shown in Figure 8. In this case 'W'  
forms the crown of a pair of inverse derivations of B1 and B2. Note the similarity 
to Figure 6. Equation (7) thus becomes 

A = rlggp(B1, B2) (3 {/} 

As in the intra-construction operator we assume that  l is negative. The most spe- 
cific solutions for 0Aj will be found as a bi-product of the formation of rlggp(B1,B2).  
Thus the only choice is that  of the variables and terms from rlggp(B1,  B2) which 
will appear in I. This is not an easy choice since rlgg's can contain many  literals, 
terms and variables. We leave this as an open problem for further investigation. 
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6 C o n c l u s i o n  

Interest in inductive logic programming has increased substantially in the last few 
years. There now seems to be a new technology emerging which is capable of dealing 
with a wide number of application areas (see Section 2.2). Such a technology 
requires a uniform underlying theory in order to be successful in the same way as 
Logic Programming. The discovery of a common framework for IR and RLGG 
(section 4.5) is one step in this direction. Surprisingly both approaches demand 
that the logic programs involved be generative (see [29] and Section 4.2), but for 
independent reasons. It is rather intriguing that IR and RLGG should converge in 
this way since RLGG was based initially on the idea of inverting unification while 
IR is based on inverting resolution. 

The IR-RLGG framework has a distinct advantage over the use of the 'V' op- 
erator in Muggleton and Buntine [28]. Whereas Muggleton and Buntine's method 
requires heuristic search to choose which 'V' operator to apply, the new approach 
constructs a unique solution for multiple 'V' operations without recourse to search. 
Other systems such as Quinlan's FOIL [33] also use heuristic search. The disad- 
vantages of heuristic search are not only that  it can be inefficient, but also that 
solutions can be missed due to local minima in the search space. These problems 
are avoided within the new IR-RLGG framework. 

Rouveirol and Puget [35] describe an operator called saturation which carries 
out multiple 'V' operations. There is a clear relationship between the saturation 
operator and the function ]2~ (Section 4.3). The definition of t3]; n can be seen as 
a formalisation of the saturation operator. Also Wirth [44] describes a method in 
which he takes the lgg of a number of 'V' operations. Wirth's method is a special 
case of lgg(U121(P, C),U'I31(p, D)). 

Although the generalised 'W' method described in Section 5.2 seems promising, 
it needs much further investigation. For instance it might seem natural to devise 
a }/Y ~ operator along the lines of the ~2~ function. Clearly we are in need of a 
stronger formal framework for predicate invention. This should be tightly coupled 
with the IR-RLGG framework. 

Finally, the author believes that work should be done on applying PAC-learning 
theory to inductive logic programming. A possible starting point might be the 
PICE conjecture of Section 3.5. 

With the promise of solid theoretical foundations to come, Inductive Logic Pro- 
gramming has the potential of a very exciting future. 
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A Def in i t ions  from logic 

A.1  F o r m u l a e  in  f irst  order  p r e d i c a t e  c a l c u l u s  

A variable is represented by an upper case letter followed by a string of lower case 
letters and digits. A function symbol is a lower case letter followed by a string of 
lower case letters and digits. A predicate symbol is a lower case letter followed by 
a string of lower case letter and digits. The negation symbol is: --. A variable is a 
term, and a function symbol immediately followed by a bracketed n-tuple of terms 
is a term. Thus f(g(X), h) is a term when f ,  g and h are function symbols and X 
is a variable. A predicate symbol immediately followed by a bracketted n-tuple of 
terms is called an atomic formula. Both A and --A are literals whenever A is an 
atomic formula. In this case A is called a positive literal and --A is called a negative 
literal. The literals A and -~A are said to be each others complements and form, 
in either order, a complementary pair. A finite set (possibly empty)  of literals 
is called a clause. The  empty clause is represented by o. A clause represents 
the disjunction of its literals. Thus the clause {A1, A2, ..-~Ai,-'Ai+l, ...} can be 
equivalently represented as (A1 VA2V..-,AiV--,Ai+I V...) or A1, A2, .. ~-- Ai, Ai+l, .... 
A Horn clause is a clause which contains exactly one positive literal. The  positive 
literal in a Horn clause is called the head of the clause while the negative literals are 
collectively called the body of the clause. A set of clauses is called a clausal theory. 
The empty clausal theory is represented by �9 A clausal theory represents the 
conjunction of its clauses. Thus the clausal theory {C1, C2, ...} can be equivalently 
represented as (C1 A C2 A ...). A set of Horn clauses is called a logic program. 
Apart  from representing the empty clause and the empty theory, the symbols o 
and �9 represent the logical constants False and True respectively. Literals, clauses 
and clausal theories are all well-formed-formulae. Let E be a wff or term. vars(E) 
denotes the set of variables in E. E is said to be ground if and only if vars(E) = 0. 

A . 2  M o d e l s  a n d  s u b s t i t u t i o n s  

A set of ground literals which does not contain a complementary pair is called a 
model. Let M be a model, C be a clause and C be the set of all ground clauses 
obtained by replacing the variables in C by ground terms. We say that  M is a 
model of C if and only if each clause in C contains at least one literal found in M. 
M is a model for clausal theory T if and only if M is a model for each clause in T. 
Let F1 and F2 be two wff's. We say that F1 semantically entails F2, or F1 ~ F2 if 
and only if every model of F1 is a model of F2. We say that  F1 syntactically entails 
F2 using I ,  or Fit-IF2, if and only if F2 can be derived from F1 using the set of 
deductive inference rules I .  The set of inference rules I is said to be deductively 
sound and complete if and only if F1PIF2 whenever F1 [--= F2. In this case we can 
drop the subscript and merely write F1 I-/12. Let F1 and F2 be two wff's. We say 
that  F1 is more general than F2 if and only if F1 F- F2. A wff F is satisfiable if 
there is a model for F and unsatisfiable otherwise. F is unsatisfiable if and only if 
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Let 0 = {v l / t x , . . , vJ t~} .  0 is said to be a substitution when each v~ is a 
variable and each ti is a term, and for no distinct i and j is vi the same as vj. 
The set {vl, .., v,} is called the domain of 0, or dom(0), and {tl, . . ,  t ,}  the range 
of 0, or rng(0). We use lower case Greek letters to denote substitutions. Let E be 
a well-formed formula or a term and 0 = {vx/tl ,  . . ,v , / t~} be a substitution. The 
instantiation of E by 0, written EO, is formed by replacing every occurrence of vl in 
E by ti. Every sub-term within a given term or literal W can be uniquely referenced 
by its place within W. Places within terms or literals are denoted by n-tuples of 
natural  numbers and defined recursively as follows. The term at place (i) within 
f(to,  .., tin) is tl. The te rm at place (i0, .., in) within f(to, .., tin) is the te rm at place 
(il, ..,i~) in ti0. Let t be a term found at place p in literal L, where L is a literal 
within clause C. The place of t in C is denoted by the pair (L, p). Let E be a clause 
or a term and 0 = { v l / t l , . . , v J t ~ }  be a substitution. The corresponding inverse 
substitution 0 -1 is {(ta, {P1,1, ..,Pl,ml})/Vl, .., (t , ,  {P,,a, . . ,pl ,m,})/v,} .  An inverse 
substitution is applied by replacing all ti at places Pi,1,..,Pi,mi within E by vl. 
Clearly EO0 -1 = E. Note that an inverse substitution is not strictly a substitution 
but rather a rewrite. Let C and D be clauses. We say that C 0-subsumes D if and 
only if there exists a substitution 0 such that  CO C_ D. 

A.3  Reso lu t ion  

Let F1 and F2 be two wff's and 0 be the substitution {u l /v~ , . .u , / v , }  in which 
for every distinct i and j ,  vl is different from vj. FIO and ['20 are said to be 
standardised apart  whenever there is no variable which occurs in both  FIO and 
['20. The substitution 0 is said to be the unifier of the atoms A and A t whenever 
AO = A'O. # is the most general unifier (mgu) of A and A' if and only if for 
all unifiers -y of A and A t there exists a substitution 6 such that  (A#)5 = A'7. 
((C - {A}) U (D - {-~A'}))0 is said to be the resolvent of the clauses C and D 
whenever C and D are standardised apart,  A E C, -~A t E D, 0 is the mgu of A 
and A t. That  is to say that  (AO,-,AtO) is a complementary pair. The  resolvent 
of clauses C and D is denoted (C �9 D) when the complementary pair of literals is 
unspecified. The ' . '  operator is commutative, non-associative and non-distributive. 

Let T be a clausal theory. Robinson [34] defined the function ~ ( T )  recursively 
as follows. ~ ~  = T. TC'(T) is the set of all resolvents constructed from pairs of 
clauses in ~ - I ( T ) .  Robinson showed that T is unsatisfiable if and only if there is 
some n for which T~(T)  contains the empty clause (o) .  
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