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Abstract. Bioinformatics is characterised by a growing diversity of large-
scale databases containing information on genetics, proteins, metabolism
and disease. It is widely agreed that there is an increasingly urgent need
for technologies which can integrate these disparate knowledge sources.
In this paper we propose that not only is machine learning a good candi-
date technology for such data integration, but Inductive Logic Program-
ming, in particular, has strengths for handling the relational aspects of
this task. Relations can be used to capture, in a single representation,
not only biochemical reaction information but also protein and ligand
structure as well as metabolic network information. Resources such as
the Gene Ontology (GO) and the Enzyme Commission (EC) system both
provide isa-hierarchies of enzyme functions. On the face of it GO and EC
should be invaluable resources for supporting automation within Func-
tional Genomics, which aims at predicting the function of unassigned
enzymes from the genome projects. However, neither GO nor EC can
be directly used for this purpose since the classes have only a natu-
ral language description. In this paper we make an initial attempt at
machine learning EC classes for the purpose of enzyme function predic-
tion in terms of biochemical reaction descriptions found in the LIGAND
database. To our knowledge this is the first attempt to do so. In our
experiments we learn descriptions for a small set of EC classes including
Oxireductase and Phosphotransferase. Predictive accuracy are provided
for all learned classes. In further work we hope to complete the learning
of enzyme classes and integrate the learned models with metabolic net-
work descriptions to support “gap-filling” in the present understanding
of metabolism.

1 Introduction

Within Biocinformatics there is a growing diversity of large-scale databases con-
taining information on gene sequences (eg. EMBL!), proteins (eg. Swiss-Prot?2,

! http://www.ebi.ac.uk/embl/
2 http://www.ebi.ac.uk/swissprot/



SCOP3), metabolism (eg KEGG*, WIT® and BRENDAS®) and disease (eg. JG-
SNP database?). It is widely agreed that there is an increasingly urgent need for
technologies which integrate these disparate knowledge sources. In this paper we
propose that not only is machine learning a good candidate technology for such
data integration, but Inductive Logic Programming, in particular, has strengths
for handling the relational aspects of this task. In the context of protein struc-
ture prediction this approach has already shown success [6]. Potentially relations
can be used to capture, in a single representation, not only biochemical reaction
information but also protein and ligand structure as well as metabolic network
information.

Bioinformatic resources such as the Gene Ontology (GO) [3] and the Enzyme
Classification (EC) [5] system both provide isa-hierarchies of enzyme functions.
On the face of it GO and EC should be invaluable for supporting automation
within Functional Genomics [8], which aims at predicting the function of unas-
signed enzymes from the genome projects. However, neither GO nor EC can
be directly used for this purpose since the classes have only a natural language
description. In this paper we make an initial attempt at machine learning logic
programs describing EC classes for the purpose of enzyme function prediction.
The function of any particular enzyme is normally described in terms of the
biochemical reaction which it catalyses. The LIGAND database® provides an
extensive set of biochemical reactions underlying KEGG (the Kyoto Encyclope-
dia of Genes and Genomes). In LIGAND reactions are described in equational
form as follows.

C21H3gN7O17P3 4+ C7HgOs = C21 HagN7O17P3 + C7H19O5

To our knowledge the experiments described in this paper are the first attempt
to learn enzyme functions in terms of these underlying reaction equations. In
our experiments we learn descriptions for a small set of EC classes including
Oxireductase and Phosphotransferase. Predictive accuracies are provided for all
learned classes. In further work we hope to complete the learning of GO classes
and integrate the learned models with metabolic network descriptions to sup-
port “gap-filling” in the present understanding of metabolism. This will extend
previous research described in [2] by allowing for the case in which substrates
and products of a reaction are known, but there is no known enzyme for such a
reaction. In this case, rather than hypothesis an arbitrary unknown enzyme we
could potentially use abduction together with learned biochemical knowledge of
the kind we develop in this paper to narrow down the functional class of the
missing enzyme.

This paper is arranged as follows. Section 2 introduces the EC classification
system. The LIGAND database of biochemical reactions is then described in

3 http://scop.mrc-1mb.cam.ac.uk/scop/

* http://wuw.genome.ad. jp/kegg/

® http://wit.mcs.anl.gov/WIT2/

5 http://www.brenda.uni-koeln.de/

" http://www.tmgh.metro.tokyo. jp/jg-snp/
8 http://www.genome.ad. jp/ligand/



Section 3. In the experiments described in Section 4 we investigate the possibility
of learning EC classification rules in terms of the biochemical reactions found
in LIGAND. In Section 5 we discuss the representation issues with the learned
rules. In Section 6 we conclude and describe directions for further research.

2 Enzyme Classification

Enzymes are proteins which catalyse biochemical reactions within organisms.
The description of enzyme function provides a characterisation of biological sys-
tems which forms a bridge between the micro-level and the macro-level (from
atoms, through chemical reaction networks, to diseases). The genome projects
are generating ever-larger volumes of genes with unassigned function. This has
led in turn to an increasingly important role for enzyme classification systems.
Let us consider homology-based functional genomics as an approach to find-
ing the functions of unknown enzymes using an enzyme classification system.
Assume that we have an amino-acid sequence of an unknown enzyme A and
a known enzyme B, and that B belongs to the enzyme class X. First, we use
software to compute the amino-acid sequence similarity of A and B in order to
determine their degree of homology. If A and B are found to be homologues then
we next proceed with experiments based on the hypothesise that A has a similar
function to B.

Classification of enzyme functions is difficult since many enzyme mecha-
nisms are not fully understood and many enzymes catalyse multiple reactions.
To tackle this issue, classification systems have been proposed which focus on
different features of enzymes [5,7, 1]. For example, the EC List [5] is based on a
chemical-formula oriented classification. Thus it is sometimes difficult to classify
the enzymes that catalyse several steps of reactions by creating intermediates.
By contrast, mechanism-oriented approaches [1] classify enzymes based on reac-
tion mechanisms such as (a) rules of the substructure changes in the chemical
structures and (b) chemical structural reasons for the changes.

These classifications do not tend to take account of reaction-related issues
such as inhibitors, pH, temperature, protein structure, amino-acid sequence, and
the context of the metabolic network in which the reaction is taking place. A
relational representation has the potential to capture many of these aspects
simultaneously. We believe that such representations are mandatory if we hope
to model biological systems from the micro to the macro-level in a seamless
fashion.

In our experiments, the oxidoreductase and phosphotransferase classes are
learned as logic programs. Oxidoreductases are enzymes which catalyse oxidis-
ation and reduction. These reactions cause energy flow within organisms by ex-
change of electrons. Phosphotransferases are enzymes transferring a phosphate
group from one compound (donor) to another (acceptor). The acceptors have
electrophilic substructures such as NR, SR, and OR where N, S, O, and R are
nitrogen, oxygen, sulphur, and alkyl group respectively.



Below we show where oxidoreductases and phosphotransferases fit within
the EC classification system. The latest version of the EC List [5] contains 3196
enzymes, and is divided into 6 first-layers as follows:

1. Oxidoreductases (1st layer)
1.1 Acting on the CH-OH group of donors (2nd layer)
1.1.1 With NAD+ or NADP+ as acceptor (3rd layer)
1.1.1.1 Alcohol dehydrogenase; Aldehyde reductase (4th layer)

2. Transferases
2.7 Transferring Phosphorus-Containing Groups

3. Hydrolases
4. Lyases

5. Isomerases
6. Ligases.

For example, the classification of EC enzyme Number 1.1.1.1 can be read as
follows: EC Number 1.1.1.1 is an oxidoreductase which acts on the CH-OH group
of donors, with NAD+ or NADP+ as acceptor, and the name of the enzyme is
Alcohol dehydrogenase or Aldehyde reductase. Oxidoreductases are classified in
EC Number 1.x. % .x and phosphotransferases are EC Number 2.7.x. x ..

3 LIGAND Database

LIGAND is a database of chemical compounds and reactions in biological path-
ways [4]. The database consists of three sections: COMPOUND, REACTION,
and ENZYME, and data is available in text files from the web site® and the
anonymous ftp site!®. The COMPOUND section is a collection of metabolic and
other compounds such as substrates, products, inhibitors of metabolic pathways
as well as drugs and xenobiotic chemicals. The REACTION section is a collection
of chemical reactions involved in the pathway diagrams of the KEGG/PATHWAY
database as well as in the ENZYME section. The ENZYME section is a collection
of all known enzymatic reactions classified according to the EC List.

Knowledge integration could be performed for COMPOUND, REACTION,
and ENZYME sections by cross-referring the EC numbers, the compound num-
bers, and the reaction numbers (Fig. 1). COMPOUND, REACTION, and EN-
ZYME sections contain several atoms such as carbon (C), hydrogen (H), nitrogen
(N), oxygen (O), phosphorous (P), sulphur (S), magnesium (Mg), manganese
(Mn), iron (Fe) and iodine (I). Note that R is an alkyl group.

® http://www.genome.ad.jp/ligand/
10 ftp.genome.ad.jp/pub/kegg/ligand/



REACTION

ENTRY R00104
NAME ATP:NAD+ 2’-phosphotransfera

DEFINITION ATP + DAD+ <=> ADP + NADP+
EQUATION [C00002 + 2 C00003 <=> C00008 + C00006 |
PATHWAY PATH: MAP00760 Nicotinate and nicotinamide metabolism

ENZYME

1

ENTRY R00105
COMPOUNDS

ENTRY C00002

NAME ATP

Adenosine 5’-triphosphate
FORMULA |C10H16N5013P3

REACTION R00002 R00076 R00085 R00086 R00087 R0O0088 R00089|R00104

1

ENTRY

NAME NAD
FORMULA |C21 H28N7014P2

1

ENTRY

NAME NADP
FORMULA [C21H29N7017P3 |

1

ENTRY

NAME ADP
FORMULA [C10H15N5010P2 |

Fig. 1. Excerpt from REACTION and COMPOUND sections in LIGAND




4 Experiments

The experiments in this section are aimed at evaluating the following null hy-
pothesis:

Null hypothesis: A relational representation cannot capture enzyme classifica-
tion rules based only on descriptions of the underlying biochemical reactions.

4.1 Materials

The ILP system used in the experiments is Progol 4.4 . In order to allow
reproducibility of the results, the data sets and Progol’s settings used in the
experiments have also been made available 2.

Our study is restricted to learning classification rules for two classes of en-
zymes: the main class EC1 (Oxidoreductase) and a more specific class EC2.7
(Phosphotransferase). One justification for these choices is that EC1 and EC2
are the most populated classes of enzymes and they contain a relatively large
number of examples, which means that learning is more robust and the results
more meaningful. Other classes contain a smaller number of enzymes, for exam-
ple EC5 and EC6 each contain around 200 known enzymes compared to EC1
and EC2 with over 1000 enzyme in each.

4.2 Methods

For the experiments reported in this section, we use a relational representation to
represent the biochemical reactions catalysed by each enzyme. In this represen-
tation, each reaction is defined as a set of compounds in the left hand side (LHS)
and the right hand side (RHS) of the reaction. For example, the enzyme with
EC number 1.1.1.37 which belongs to the class of Oxidoreductase and catalyses
the reaction C'00149 + C00003 = C00036 + C'00004 + C'00080 is represented by
the following Prolog facts:

oxidoreductase(’1.1.1.377).
1lhs(’1.1.1.377,°C001497).

lhs(’1.1.1.37,°C000037).
rhs(’1.1.1.37°,°C00036°) .
rhs(’1.1.1.37°,°C00004°) .
rhs(’1.1.1.377,°C00080°) .

For each chemical compound, we only represent the number of atoms of
each element appearing in the compound. For example, compound C00003 with
chemical formula Cyy Hog N70O14 P> can be represented as follows.

' Available from: http://www.doc.ic.ac.uk/~ shm/Software/progol4.4/
12 Available from: http://www.doc.ic.ac.uk/bioinformatics/datasets/enzymes/



compound (*C00003”) .

atoms (’C000037,°c?,21).
atoms (’C00003’,°h?,28).
atoms (’C00003’,’n’,7).
atoms (’C00003’,%07,14).
atoms (°C00003’,°p’,2).

In order to capture the exchange of elements in compounds during the re-
actions, we define the relation ‘diff_atoms/5’ which represents the difference be-
tween the number of particular atoms in compounds C1 and C'2 which appeared
in LHS and RHS respectively.

diff_atoms(Enz,C1,C2,E,Dif):-
1lhs(Enz,C1),
rhs (Enz,C2) ,
atoms(C1,E,N1),
atoms(C2,E,N2),
Dif is N1 - N2, Dif > 0 .

We report on two series of experiments for each of Oxidoreductase and Phos-
photransferase enzyme classes. In ‘Mode 1°, the hypotheses language was limited
so that only ‘diff_atoms/5’ and numerical constraint predicates (i.e. =, > and
<) can appear in the body of each hypothesis. In ‘Mode 2’, the hypothesis lan-
guage also included ‘atoms/3’, ‘lhs/2’ and ‘rhs/2’ (Mode 2). Part of the mode
declaration and background knowledge used by Progol are shown in Table 1.

In the experiments, we compared the performance of Progol in learning classi-
fication rules for each of Oxidoreductase and Phosphotransferase enzyme classes
from varying-sized training sets. Figure 2 shows the experimental method used
for this purpose. The average predictive accuracy was measured in 20 different
runs. In each run, the number of positive and negative training examples was var-
ied while the number of ‘hold-out’ test examples was kept fixed (i.e. 200). Test-set
positive examples were randomly sampled from the target enzyme class. Nega-
tive examples for the target class EC1 (Oxidoreductase) were randomly sampled
from other major classes (i.e. EC2 to EC6). For EC2.7 (phosphotransferase),
negative examples were randomly sampled from other sub-classes of EC2. Pro-
gol was then run on the training examples using ‘Mode 1’ and ‘Mode 2’. For
each iteration of the loop the predictive accuracy of the learned classification
rule was measured on the test examples. The average and standard error of
these parameters were then plotted against the number of training examples.

4.3 Results

The results of the experiments are shown in Figure 3. In these graphs, the vertical
axis shows predictive accuracy and the horizontal axis shows the number of train-
ing examples. For each experiment, predictive accuracies were averaged over 20
different runs (error bars represent standard errors). According to these graphs,



Table 1. Part of mode declarations and background knowledge used by Progol in the
experiments.

:— set(h,10000)7?
:— set(r,100000)7
:— set(noise,5)?

:— modeh(1,oxidoreductase (+enzyme))?

:— modeb(*,diff_atoms (+enzyme,-compound,-compound,#element,-int))?
:— modeb(1l,eq(+int,#int))?

:— modeb(1l,lteq(+int,#int))?

:— modeb(1l,gteq(+int,#int))7

% The following mode declarations were added in ‘Mode 2’ experiments
%:- modeb (*,1hs (+enzyme,-compound))?

%:- modeb (*,rhs (+enzyme,-compound)) ?

%:- modeb (*,atoms (+compound,#element,-nat))?

element(c). element(h). element(n). element(o). element(p).
element(s). element(mg). element(mn). element(fe). element(i).

diff_atoms(Enz,C1,C2,E,Dif) :-
1lhs(Enz,C1),
rhs (Enz,C2),
atoms (C1,E,N1),
atoms (C2,E,N2),
Dif is N1 - N2, Dif > 0 .

eq(X,X):-
not (var (X)),
int(X),!.

gteq(X,Y):-
not (var(X)), not(var(Y)),
int(X), int(Y),
X>Y, !
gteq(X,X):-
not (var (X)),
int (X).

lteq(X,Y):-
not(var(X)), not(var(Y)),
int(X), int(Y),
X =<Y, !
lteq(X,X):-
not (var (X)),
int (X) .




for i=1 to 20 do
for j in (10,20,40,80,160) do
Randomly sample j positive and j negative ‘training’ examples
Randomly sample 200 positive and 200 negative ‘test’ examples
Run Progol on the ‘training’ set using ‘Mode 1’
A;; =predictive accuracy of the learned classification rule on the ‘test’ set
Run Progol on the ‘training’ set using ‘Mode 2’
A'ij =predictive accuracy of the learned classification rule on the ‘test’ set
end
end
for j in (10,20,40,80,160) do
Plot average and standard error of A;; and Aj; versus j (¢ € [1..20])

Fig. 2. Experimental method.

the overall predictive accuracies of the learned rules for the Phosphotransferase
dataset are higher than the overall predictive accuracies for the Oxidoreduc-
tase dataset. These results suggest that using only ‘diff_atoms/5’ information is
sufficient to get a relatively high accuracy for the phosphotransferase dataset
while this is not the case for Oxidoreductase dataset and probably we require
additional information (e.g. knowledge about the structure) which cannot be
captured by ‘diff atoms/5’. For the Phosphotransferase dataset the accuracy
difference between using mode declarations ‘Mode 1’ and ‘Mode 2’ is not sig-
nificant, however, for the Oxidoreductase dataset ‘Mode 2’ clearly outperforms
‘Mode 1’ in all experiments. In both graphs the null hypothesis is refuted as the
predictive accuracies are significantly higher than default accuracy (i.e. 50% ).

In the next section we discuss some of the descriptions which have been
learned for each of the target enzyme classes.

5 Discussion

In this paper we have made an initial attempt at machine learning EC classes
for enzyme function prediction based on biochemical reaction descriptions found
in the LIGAND database. Figure 4 shows a diagrammatic representation of the
class of chemical reaction catalysed by Oxireductase and Phosphotransferase en-
zymes. We succeeded in learning descriptions of the Oxidoreductase and Phos-
photransferase class from LIGAND database in the form of a logic program
containing the following rules (among others).

Oxidoreductases Rule
oxidoreductase(A) :- diff_atoms(A,B,C,h,D), atoms(B,0,E),
atoms(C,0,E), eq(D,2), lteq(E,4).

Phosphotransferases Rule
phosphotrans(A) :- diff_atoms(A,B,C,h,D), diff_atoms(A,B,C,0,E),



100
95 - B
90 ~ -
85 B
80 -
75 1
70 1
05
601 -
55 | %7
50 I | | | | |
0 50 100 150 200 250 300 350

No. of training examples

Predictive accuracy %

(a) Oxidoreductase

100
95 -
0, % |
85 4~ * -
80 -
75 - -
70 - -
65 - -
60 Mode2 —
55 - Mode 1 -------- _
50 I | | | | |

0 50 100 150 200 250 300 350

No. of training examples

Predictive accuracy %

(b) Phosphotransferase

Fig. 3. Performance of Progol in learning enzyme classification rules for a) Oxidore-
ductase and b) Phosphotransferase. In both graphs default accuracy is 50%.



diff_atoms(A,B,C.,p,F), eq(F,1), lteq(E,7).

OH OPOs
1 |
—C—0 =» —Cc=0 + H—C— = —C—
a) Oxireduction b) Phosphotransference

Fig. 4. Chemical reactions catalysed by Oxireductase and Phosphotransferase enzymes

In the above the Oxidoreductase Rule captures the elimination of Hs which is
typical of oxidation-reduction reactions (see Figure 4a). The Phosphotransferase
Rule represents the exchange of the phosphate group PO3 (Figure 4b). Logical
speaking, the boundary constraint 1teq(E,7) is consistent with a transfer of
three Oxagen atoms. However, it is not clear why 1teq(E,7) is learned instead of
eq(E, 3). Further analysis by domain experts is required to identify the chemical
meaning of this constraint.

6 Conclusion

As mentioned previously, resources such as the Gene Ontology (GO) [3] and the
Enzyme Classification (EC) [5] system both provide isa-hierarchies of enzyme
functions. On the face of it GO and EC should be invaluable for supporting
automation within Functional Genomics, which aims at predicting the function
of unassigned enzymes from the genome projects. However, neither GO nor EC
can be directly used for this purpose since the classes presently have only a
natural language description. The study described in this paper has taken a first
step toward automatic formulation of rules which describe some of the major
functional classes of enzymes. By extending this study we believe it should be
possible to learn descriptions for all major GO and EC classes. However, in
order to do so we will need to involve domain experts to check the quality and
comprehensibility of the learned rules.

In order to speed-up the learning process in this study, we simply compared
the number of atoms between two compounds with diff_atoms/5 predicate. The
limitation of this representation is that we ignore the structure of compounds.
For example, enzymes which catalyse the elimination of H, are called dehydro-
genase, and the reaction results in a double bond between C-O, C-C, or C-N.
By considering the types of bonds between atoms such as single bond and dou-
ble bond, we could track the introductions of double bonds between atoms and
determine the locations where H» is eliminated. Logic programs could represent
the structural information by expressing connections and the type of connections
between atoms.



The learned knowledge could be viewed as not only rules for classification but
also programs for a logic-based biological simulation. As a future study, we be-
lieve it would be worth adding more background knowledge including inhibitors,
cofactors and amino-acid sequential information which is available from various
public-domain biological databases.
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