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Abstract

This paper describes the use of Inductive Logic Programming as a sci-
entific assistant. In particular, it details the application of the ILP system
Progol to discovering structural features that can result in mutagenicity in
small molecules. To discover these concepts, Progol only had access to the
atomic and bond structure of the molecules. With such a primitive descrip-
tion and no further assistance from chemists, Progol corroborated some
existing knowledge and proposed a new structural alert for mutagenicity in
compounds. In the process, the experiments act as a case study in which,
even with extremely limited background knowledge, an Inductive Logic
Programming tool firstly, complements a complex statistical model devel-
oped by skilled chemists, and secondly, continues to provide understand-
able theories when the statistical model fails. The experiments also consti-
tute the first demonstrations of a prototype of the Progol system. Progol
allows the construction of hypotheses with bounded non-determinacy by
performing a best-first search within the subsumption lattice. The results
here provide evidence that such searches are both viable and desirable.

1 Introduction

There is more to the business of scientific theory formation than just data-
fitting. To be acceptable, a theory must also be understandable and open to
critical analysis. This in turn, places certain requirements on programs that
aim to actively assist in the theory construction process, namely, that their
outputs be in terms of explicit concepts that can be easily evaluated. For some
time, the field of Inductive Logic Programming (ILP) has been making steady
progress towards providing automated assistance in the process of scientific
discovery. In contrast to other ‘discovery’ systems like BACON [4] and AM
[6], ILP systems have discovered new knowledge that has been refereed and
published in journals of the relevant subject area. This paper mainly seeks to



investigate whether ILP algorithms still discover useful concepts when expert
background knowledge is sparse or even unknown. In particular, using the ILP
algorithm Progol, the experiments reported here are aimed at providing support
to the following conjectures:

Conjecture 1. Even with poor background knowledge, Progol can discover
concepts that are understandable and can usefully assist statistical models
devised by experts in a field.

Conjecture 2. In cases where statistical models fail, Progol alone can still
work effectively as a theory constructor.

All experiments deal with the problem of discovering rules for mutagenicity
in nitroaromatic compounds. These compounds occur in automobile exhaust
fumes and are also common intermediates in the synthesis of many thousands
of industrial compounds [1]. Highly mutagenic nitroaromatics have been found
to be carcinogenic, and often cause damage to DNA. For the experiments in
this paper, the main interest lies in discovering the relationship between mu-
tagenicity and molecular structure. In particular, we explore the possibility of
determining such relationships using a much richer representation of molecules
than other studies [3]. Each molecule is described in terms of atoms and bonds,
with the addition of atomic and bonding properties output by a standard molec-
ular graphics package. Since this is a highly non-determinate representation,
propositional feature-based algorithms cannot be directly applied. The prob-
lem is also not accessible by ILP systems which incorporate the ij-determinate
restriction, such as Golem [8] and LINUS [5]. A further difference from studies
such as [3] is that background knowledge is here largely dispensed with.

This paper is organised as follows. Section 2 describes the mutagenicity
problem, and the representation of the compounds studied. The experiments
with Progol are in Sections 3 and 4. Complete details of the ILP system Pro-
gol are available in [7]. However, as the experiments here constitute the first
demonstrations of this system, we include relevant details in an Appendix.

2 The Mutagenesis Problem and its representation

The problem at hand concerns identifying mutagenic compounds using only the
atomic and bond structure of the compounds. Mutagenic compounds are often
known to be carcinogenic and also cause damage to DNA. Clearly, it is of con-
siderable interest to the pharmaceutical industry to determine which molecular
features result in compounds having mutagenic activity. Besides directing the
development of less hazardous new compounds, it also has applicability in areas
such as antimicrobial agents where it is not possible to determine mutagenicity
using standard tests (this is because of the toxicity of the agents to test organ-
isms). As stated in Section 1, our intentions here are however, more general.
Firstly, a capacity to cope with such a low-level, highly non-determinate rep-
resentation will open up a range of arbitrary chemical structures for analysis.
Second, we aim to explore the effectiveness of ILP programs when there is very
little assistance from external sources.



To this end, we have chosen to study the mutagenicity of 230 compounds
listed in [1]. The authors of [1] propose a linear regression model to predict
mutagenicity. They use the following independent variables:

logP: log of the compound’s octanol/water partition coefficient (hydrophobic-
ity);

ervmo: energy of the compounds lowest unoccupied molecular orbital. This is
obtained from a quantum mechanical molecular model;

I;: an ‘indicator variable’ that is set to 1 for all compounds containing 3 or
more fused rings; and

I,: an ‘indicator variable’ that takes the value 1 for “...five examples of acen-

thrylenes and shows that these are much less active than expected for
some unknown reason” ([1], pp 788).

With these 4 attributes, the authors of [1] identify 188 compounds as being
amenable to a regression analysis. The remaining 42 outlier compounds were
not used in constructing the regression model. The resulting equation for the
‘regression friendly’ subset is shown below:

logM = 0.65(+£0.16)logP — 2.90(+0.59)l0g (3109 4 1) — 1.38(+0.25)er.vm0

+ 1.88(+0.39)I; — 2.89(40.81)1, — 4.15(+0.58) (1)

where logM = log mutagenicity and log8 = —5.48. We confine this study to
the simple problem of discriminating compounds with positive log mutagenicity
from those which have zero or negative log mutagenicity.

2.1 Bond-level representation of molecules

A prominent study involving the analysis of drug structures with ILP was first
reported by [3]. While it highlighted the advantages of logic-based learning, all
drugs studied were variants of a basic template, and all that was required was
substitutions into 3 positions on that template (see Figure 1). This is reflected
by the fact that the rules obtained in that study were largely propositional.

In contrast, the compounds in this study are considerably more diverse (see
Figure 2). A wider applicability to more arbitrary chemical structures requires
the capacity to reason at a much lower level. The most primitive structural rep-
resentation of molecules that is practical is in terms of the atomic and bonding
properties of the molecule. At this level, feature-based algorithms are inap-
plicable, as it is usually impossible to know all relevant sub-structures for all
molecules. It appears that the task of identifying such structural relationships
will provide a true challenge to ILP algorithms. In fact, it is clear that the
problem will not even be accessible by ILP algorithms that incorporate any
determinacy restriction: a single molecule usually has several atoms, each of
which can be associated in more than one bond.
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Figure 1: Typical data format for compounds used in [3]. A) Template of 2,4-
diamino-5(substituted-benzyl)pyrimidines R3, R4, and R5 are the three possible
substitution positions. B) Example compound: 3 — Cl, 4 — NHy, 5 — CHj

2.2 Data and hypothesis language for Progol

Bond-level data. The atom and bond structures of the 230 drugs were ob-
tained from the standard molecular modelling package QUANTA. For each
compound QUANTA automatically obtains the atoms, bonds, bond types (for
example, aromatic, single, double etc.), atom types (for example, aromatic
carbon, aryl carbon etc.), and the partial charges on atoms. QUANTA auto-
matically classifies bonds into one of 8 types, and atoms into one of 233 types
(most of which relate to different types of carbon atoms). The output was a
set of Prolog facts of the form:

bond(compound,atom1,atom2,bondtype), stating that compound has a bond of
bondtype between the atoms atom! and atom?2. For example, an aromatic
bond between atoms d2_1 and d2_2 in drug d2 is represented by QUANTA
as bond(d2,d2_1,d2_2,7).

atm(compound,atom,element,atomtype,charge), stating that in compound atom
has element element of atomtype and partial charge charge. For example,
QUANTA encodes the fact that atom d2_1 in drug d2 is an aromatic car-
bon atom with partial charge 0.067 by the fact atm(d2,d2-1,c,22,0.067).

The resulting 12203 facts on atomic structure and bonding generated by QUANTA
form the only knowledge available for learning.

Positive and negative examples. Of the 230 compounds, 138 have posi-
tive levels of log mutagenicity (as reported in [1]). These are labelled ‘active’
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Figure 2: Examples of the diverse set of aromatic and heteroaromatic ni-
tro compounds used in the mutagenesis study. A) 3,4,4-trinitrobiphenyl
B) 2-nitro-1,3,7,8-tetrachlorodibenzo-1,4-dioxin C) 1,6,-dinitro-9,10,11,12-
tetrahydrobenzo[e]pyrene D) nitrofurantoin

and constitute the source of positive examples. The remaining 92 are labelled
‘inactive’ and constitute the source of negative examples. Figure 3 shows the
distribution of compounds into these classes for the subsets studied here.

Compounds ‘Active’ ‘Inactive’ Total
‘Regression friendly’ 125 63 188
‘Regression unfriendly’ 13 29 42

Figure 3: Class distribution of compounds

The hypothesis language £. The hypothesis language L for Progol is defined
in Figure 4 (see Section A.2 for more details).



Mode declarations mode(*,bond(+compound,—atomid,—atomid,#integer))
mode(*,bond(+compound,—atomid,+atomid,#integer))
mode(*,bond(+compound,+atomid,—atomid,#integer))
mode(x,bond(+compound,+atomid,+atomid,#integer))
mode(x*,atm(*,+compound,+atomid,#element, #integer,-charge))
mode(x*,atm(*,+compound,—atomid,#element, #integer,-charge))
mode(1,(+charge)=(#charge))

Depth of variables 2

Maximum negatives 5

Maximum literals 4

Figure 4: Language specification for Progol

3 Experiment 1: Progol on ‘regression friendly’ data

Aim. To evaluate the performance of Progol on the 188 compounds designated
by medicinal chemists as being well-suited to a regression analysis.

Materials. The bond-level representation of the 188 compounds generated by
QUANTA, the log mutagenic activity of the compounds, a Prolog imple-
mentation of Progol, Regression Equation 1 derived in [1], and a Sparc-
Station 10.

Method.

1. Compounds recorded as having positive log mutagenicity are labelled ‘ac-
tive’ and form the positive examples for Progol. The remaining com-
pounds are taken to be the negative examples.

2. The bond-level Prolog facts, positive and negative examples are provided
to Progol, which returns a set of clauses explaining the examples.

3. The predictions from Equation 1 on the 188 compounds are calculated.
The class predicted by the equation is taken to be ‘active’ if the log
mutagenicity predicted is greater than 0.

4. The performances of the two approaches are evaluated for significant dif-
ferences. The need for the special ‘indicator variables’ used in the regres-
sion analysis is contrasted against the ILP approach.

Experimental results.

Figure 5 shows the theory returned by the Progol algorithm. Performances of
Progol and Equation 1 on the data are shown in Figure 6. Expected values
under the hypothesis of no association between predicted and actual outcome
values are shown in parentheses.

Discussion.

The first question to be addressed is whether either Progol or the regression
model has acquired any predictive power above the level of random guessing.
This is adequately answered by examining the expected values in Figure 6.



Rulel: active(A) :-

atm(A,B,c,195,C).
Accuracy = 100%, Coverage = 10%. In QUANTA’s representation a carbon atom of Type
195 occurs in a third adjacent pair of fused six-membered rings. Thus, all
compounds with 3 fused rings will be labelled active by this rule.

Rule2: active(A) :-

atm(A,B,c,10,C), atm(A,D,c,22,E), bond(A,D,B,1).
Accuracy = 84j,, Coverage = 30%. In QUANTA’s representation a carbon atom of Type
10 is aliphatic, and of Type 22 occurs in a six-membered aromatic ring. Thus, this
rule identifies compounds with a aliphatic carbon atom attached by a single
bond to a ring carbon.

Rule3: active(A) :-

atm(A,B,c,27,C), bond(A,D,E,1), bond(A,B,E,7).
Accuracy = 90%, Coverage = 58J,. In QUANTA’s representation a carbon atom of Type
27 merges two six-membered aromatic rings. A bond of Type 7 is an aromatic bond. Thus,
this rule identifies compounds of two fused six-membered aromatic rings, one of which
has a further single bond with an atom of any type (that is, not necessarily a
carbon atom).

Rule4: active(A) :-

atm(A,B,0,40,C), atm(A,D,n,32,C).
Accuracy = 717, Coverage = 8}. In QUANTA’s representation a nitrogen atom of Type
32 occurs in an amide group, and an oxygen atom of Type 40 occurs in a nitro group.
This rule labels as active all compounds that have a pair of such atoms with the same
partial charge.

Rule5: active(A) :-

atm(A,B,0,40,-0.383).
Accuracy = 82, Coverage = 7. A compound is active if it has an oxygen in a nitro
group with partial charge -0.383.

Rule6: active(A) :-

atm(A,B,0,40,-0.384).
Accuracy = 89}, Coverage = 13},. A compound is active if it has an oxygen in a nitro
group with partial charge -0.384.

Rule7: active(A) :-

atm(A,B,0,40,-0.378).
Accuracy = 100%, Coverage = 5. A compound is active if it has an oxygen in a nitro
group with partial charge -0.378.

Rule8: active(A) :-

atm(A,B,h,3,0.149).
Accuracy = 88, Coverage = 6%. In QUANTA’s representation a hydrogen atom of Type 3
is aromatic. Thus, a compound with an aromatic hydrogen with partial charge of 0.149
is labelled active.

Rule9: active(A) :-

atm(A,B,h,3,0.144).
Accuracy = 89, Coverage = 6%. A compound with an aromatic hydrogen with partial charge
of 0.144 is labelled active.

Figure 5: Progol’s theory for ‘regression friendly’ mutagenic compounds. Ac-
curacy is 100(Positive examples covered by clause)/(Total examples covered
by the clause). Coverage is 100(Positive examples covered by clause)/(Total
number of positive examples)



Predicted Predicted

active inactive active inactive
active 100 25 125 active 114 11 125
Actual (75.1) (49.9) Actual 81.1) (43.9)
inactive 13 50 63 inactive 8 55 63
(37.9) (25.1) (40.9) (22.1)
113 75 188 122 66 188
Accuracy = 0.80 (error = 0.03) Accuracy = 0.89 (error = 0.02)
Progol Equation 1

Figure 6: Performance tables for Progol and regression on ‘regression friendly’
compounds

The null hypothesis is that there is no association between the predicted and
actual outcome values. With this hypothesis, the large difference in observed
and expected values show that it is safe to reject the null hypothesis.

A quantitative comparison of the two approaches can exploit the fact that
both algorithms were tested on the same sample. The appropriate statistical
test for this is the McNemar’s test for changes [2]. The null hypothesis is
that the proportions of examples correctly classified by both algorithms is the
same. ! Figure 7 cross-tabulates the performances of Progol and Equation 1. If
there is no significant difference in the performance of the two algorithms, half
of the 45 cases whose classifications disagree should be classified correctly by
Progol and the other half should be classified correctly by Equation 1. Figure 7
shows the observed number of cases that fell into these categories to be 13 and
32 respectively. To compare these observed and expected frequencies, we use
the x? test statistic to compare the observed frequencies against the expected
frequency of 45/2 = 22.5. Including the Yates correction for continuity, the 2
value of 7.2 shows that there is a significant difference in the proportions of
correct predictions of the two algorithms at P < 0.01.

The comparison in Figure 7 can be misleading on two counts. Firstly, the
estimates of accuracy are resubstitution estimates which are usually optimistic.
Second, Equation 1 has access to specialist knowledge knowledge that is beyond
the basic structural information produced by QUANTA. This knowledge is used
by the authors of [1] to identify specific structural and chemical attributes that
could be helpful to identify mutagenic compounds. In this experiment, Progol
has been denied access to such knowledge.

To get a better idea of the predictive accuracy of Progol and a linear re-
gression model on these compounds, the experiment was repeated by leaving
out a randomly chosen subset of 56 compounds (constituting approximately
30% of the data). A theory for the remainder was acquired using Progol and
a standard linear regression technique. To approximate the procedure adopted

1By ‘correctly classified’ we mean that compounds with positive log mutagenicity in the
test set are classified as active, and those with zero or negative values are classified as inactive.



Regression

correct incorrect
correct 137 13 150
Progol
incorrect 32 6 38
169 19 188

Figure 7: Compounds correctly and incorrectly classified by Progol and regres-
sion

by the authors of [1] the regression package had access to the same 4 attributes
described in Section 2. Figure 8 tabulates the performance of the two methods
on the 56 compounds set aside. Applying McNemar’s test on Figure 9 and
including the Yates correction for continuity, the x? value is now 4.9 which is
significant at P < 0.05. Although the significance levels were over-estimated on
the training set (P < 0.01, see Figure 7 and associated calculations), it is clear
that the regression model still performs better.

Predicted Predicted
active inactive active inactive
active 35 6 41 active 39 2 41
Actual (32.9) 8.1) Actual (32.9) (8.1)
inactive 10 5 15 inactive 6 9 15
(12.1) 2.9) (12.1) 2.9)
45 11 56 45 11 56
Accuracy = 0.71 (error = 0.06) Accuracy = 0.86 (error = 0.05)
Progol Equation 1

Figure 8: Performance tables for Progol and regression on a randomly chosen
test set

The strengths of the Progol theory lie in identifying structural regularities
in the data. This is highlighted by examining the the use of special (hand-
crafted) structural variables for the regression analysis. Figure 10 shows the
structural properties described by the first three rules in the Progol theory. An
interesting feature is that the regression analysis utilised a special structural
variable to flag the existence of three or more fused rings (the variable I; in
Equation 1). As seen in Figure 10, Progol finds this constraint, albeit in a
circuitous fashion, by exploiting QUANTA’s representation of carbon atoms
in 3 adjacent fused rings (see Rule 1 in Figure 5). The regression analysis
utilised a further structural variable to flag 5 special compounds (the variable
I,,) which the authors describe as “... The very low activity of the acenthrylenes



Regression

correct incorrect
correct 39 1 40
Progol
incorrect 9 7 16
48 8 56

Figure 9: Compounds correctly and incorrectly classified by Progol and regres-
sion on the test set

is surprising in that most of the other large polycyclic aromatic compounds are
reasonably well fit. This deviant group cries out for further investigation.” ([1],
pp 793). Figure 11 tabulates Progol’s classification of this group of compounds.
Although the particular rules are rather shallow (especially Rules 5,7 and 9),
it is still satisfying to see that an ILP algorithm can adequately classify the
compounds without any special consideration.
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Figure 10: Properties discovered by Progol in ‘regression friendly’ data set



Compound log Mutagenicity Progol classification
(rules used in parentheses)

2-nitrobenz[j]acenthrylene 0.86 active (1,9)
4-nitrobenz[k]acenthrylene 0.67 active (9)
2-nitrobenz[l]acenthrylene 0.26 active (9)
6-nitrobenz[e]acenthrylene 0.04 active (5)
5-nitrobenz[k]acenthrylene 0.92 active (7)

Figure 11: Progol’s classification of deviant group of acenthrylene compounds.

4 Experiment 2: Progol on ‘regression unfriendly’
data

Aim. To evaluate the performance of Progol on the 42 compounds designated
by medicinal chemists as being not amenable to a regression analysis.

Materials. The bond-level representation of the 42 compounds generated by
QUANTA, the log mutagenic activity of the compounds, a Prolog imple-
mentation of Progol, and a SparcStation 10.

Method.

1. The classification of 42 compounds into positive and negative examples are
as in Experiment 1. Along with the bond-level facts, these are provided
in turn to Progol as before.

2. Given the relatively small size of the data-set, the predictive accuracy of
the Progol theory is assessed by adopting a leave-one-out procedure.

Experimental results.
Figure 12 shows the theory returned by the Progol algorithm.

active(A) :-

bond(A,B,C,2), bond(A,D,B,1), atm(A,D,c,21,E).
Accuracy = 100%, Coverage = 62%. In QUANTA’s representation
a carbon atom of Type 21 is a member of a five-membered aromatic
ring. The rule identifies compounds with a double bond
conjugated to a five-membered aromatic ring.

Figure 12: Progol’s theory for ‘regression unfriendly’ mutagenic compounds.
Accuracy is 100(Positive examples covered by clause)/(Total examples covered
by the clause). Coverage is 100(Positive examples covered by clause)/(Total
number of positive examples)

The result of a leave-one-out analysis is shown in Figure 13. As before,
expected values are in parentheses.



Predicted

active inactive
active 8 5 13
Actual (2.5) (10.5)
inactive 0 29 59
(5.5) (23.5)
8 34 42

Accuracy = 0.88 (error = 0.05)

Figure 13: Table from leave-one-out analysis of ‘regression unfriendly’ com-
pounds using Progol

Discussion.

Clearly, the distribution of class values is highly skewed (there are more than
twice as many ‘inactive’ compounds as ‘active’). To check whether Progol has
acquired any predictive power above the level of random guessing, the null
hypothesis is that there is no association between the predicted and actual
outcome values. Including the Yates correction for continuity, the x? value of
18, shows that it is safe to reject the null hypothesis. Figure 14 shows some
example compounds in this subset, and the structural property expressed by the
Progol rule. No structural alerts have previously been proposed for mutagenesis
in the 42 compounds. The predictive power of the simple relational property as
indicated by the accuracy estimated from the leave-one-out procedure provides
a good indication of the potential of an ILP algorithm to construct theories in
situations where there is little knowledge of useful attributes that can be used in
a standard statistical analysis. We have verfied that the the attributes used for
the regression friendly subset are of little value here. With these attributes, the
predictive power of both linear regression and linear discrimination is no better
than a default rule that classifies all compounds in the set of 42 as ‘inactive’. As
for Progol, the predictive accuracy for these two techniques is estimated from
a leave-one-out procedure.

As seen in Figure 12, the rule only explains about 60% of the data (8 out
of the 13 compounds pre-classified as ‘active’). Progol did find other rules
for the remaining compounds. These were, however, discarded as being non-
compressive. More data is required to confirm these patterns.

5 Discussion

It is important that theoretical developments in Inductive Logic Programming
are validated by practical application. The experiments reported here are aimed
at this. We believe that they go some way towards establishing that programs
like Progol can indeed actively aid the theory construction process. By provid-
ing little or no background knowledge, we have under-utilised the actual power
offered by the ILP framework. That the results are favourable even in this sit-
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Figure 14: (A) Some ‘regression unfriendly’ compounds and (B) the structural
property found by Progol

uation is a good sign for ILP algorithms. Turning to the actual experiments, a
next step could be to provide the attributes used in the regression analysis (in
particular, logP and €ryp0) as background knowledge to Progol. Along with
predicates for numerical reasoning, we would expect that the resulting theory
to at least match the regression equation in predictive power. The significant
edge of understandability of an ILP solution would of course, remain.
Although the solutions found by Progol appear particularly simple, the mu-
tagenesis problem is not a trivial one. The representation is obviously relational,
highly non-determinate, and involves a large database of facts. That Progol is
able to perform well is largely due to its strategy of generalisation, namely, using
a ground-plan (provided by the most-specific clause) to direct the search for ac-
ceptable clauses. Other experiments that we have conducted provide evidence
that complete search carried out within this setting runs faster than greedy
heuristic searches and returns more compact theories [9]. To this extent, we
expect this domain will act as an important test-bed for ILP algorithms.
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A Progol

A.1 Specification for Progol

The formal specification for Progol is as follows.



e B=C; ANCzA...is background knowledge consisting of a set of definite
clauses.

e E =FE"tAE is a set of examples where

— ET =e1 Aey A... are definite clauses and
— E= = fi{ A fa A ... are non-definite horn clauses.

e H=Di{ADyA...isan hypothesised explanation of the examples in terms
of the background knowledge.

Progol can be treated as an algorithm A such that H = A(B, E) is a minimal
complexity hypothesis from predefined language £ for which each D; in H has
the property BAD; Eei Ves V..., {e1,es,...} CET and BAHAE 0.
If more than one such minimal H exists then Progol returns the first one in an
arbitrary lexicographic ordering O(L).

A.2 Defining a hypothesis language for Progol

The language L is defined in terms of

e Mode declarations which state the ‘forms’ that atoms in hypothesis can
take in terms of

— the places where variables are allowed an whether they are inputs or
outputs (indicated by + or —);

the places where constants are allowed (indicated by #);

the types of these variables and constants; and

the degree of indeterminacy when making such a call to the back-
ground knowledge. This is either a number or * meaning finite but
unbounded recall of the goal.

e the maximum number of layers of variables introduced by atoms in the
body of the clause from variables in the head of the clause;

e the acceptable level of consistency in terms of the maximum number of
negatives that can be covered by any clause; and

e the maximum cardinality of any clause.

A.3 Algorithmic description of Progol

The top-level algorithm for Progol is Algorithm BestClauseSet. Given an ex-
ample e, the algorithm for finding the best clause is Algorithm BestClause.

p(C) is a set of clauses {D1,.., Dy, } such that for each i, 1 < ¢ < m the
clause C subsumes D; and D; subsumes | (B, e). The closure p* contains every
clause C € L for which C subsumes L (B,e). The extent of the completeness
guarantee for Progol only extends to this property of p, and thus a set of
clauses returned by Progol is guaranteed to be optimal only for single-clause
target concepts.



Algorithm: BestClauseSet(B,(E*,E™))

Let Seeds = E*

Let H = {}

While Seeds # {}
Remove an arbitrary example e from Seeds
Let C = BestClause(B,e,(ET,E™))
Let H=H U{C}

Return H

Algorithm: BestClause(B,e,(E*,E™))

1 (B, e) is the most specific clause in £ such that B, L(B,e) e

Let p(C) = |{e:e € ET and B,C I e}|

Let n(C) =|{e:e€ E~ and B,C I e}

Let ¢(C) = |C|, the number of literals in C

Let h(C) = the minimum number of additional literals
needed complete the input/relations in C

Let f(C) =p(C) — (c(C) +n(C) + h(C))

Let C' = {}, Open = ((f(C),C))

Let Best =C

While not terminated(Best,Open)
BestOpen=removefirst(Open)
Open = p(BestOpen).Open
sort Open in descending order
Best=max(Best,BestOpen)

Return Best

terminated(Best,Open) when
Open = (C1,...,Cy)
and n(C) = 0 and (p(C1) — c(c1)) > (p(C;) —¢(C;)) for 1 <i<mn



