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Abstract

Obtaining accurate structural alerts for the causes of chemical cancers is a
problem of great scientific and humanitarian value. This paper follows up
on earlier research that demonstrated the use of Inductive Logic Program-
ming (ILP) for predictions for the related problem of mutagenic activity
amongst nitroaromatic molecules. Here we are concerned with predicting
carcinogenic activity in rodent bioassays using data from the U.S. Na-
tional Toxicology Program conducted by the National Institute of Envi-
ronmental Health Sciences. The 330 chemicals used here are significantly
more diverse than the previous study, and form the basis for obtaining
Structure-Activity Relationships (SARs) relating molecular structure to
cancerous activity in rodents. We describe the use of the ILP system Pro-
gol to obtain SARs from this data. The rules obtained from Progol are
comparable in accuracy to those from expert chemists, and more accurate
than most state-of-the-art toxicity prediction methods. The rules can also
be interpreded to give clues about the biological and chemical mechanisms
of cancergenesis, and make use of those learnt by Progol for mutagenesis.
Finally, we present details of, and predictions for, an ongoing international
blind trial aimed specifically at comparing prediction methods. This trial
provides ILP algorithms an opportunity to participate at the leading-edge
of scientific discovery.

1 Introduction

The task of obtaining the molecular mechanisms for biological toxicity has been
a prominent area of application for Inductive Logic Programming (ILP) sys-
tems. Recently, this has seen the use of an ILP program to the task of predict-
ing the mutagenic activity of a restricted class of molecules [12, 21]. The results
reported, while interesting, were preliminary for the following reasons. Firstly,
the data pertain to a relatively homogeneous class of compounds —although, in
themselves, they were more diverse than those analysed previously by ILP (see
[13]). Secondly, while some comparative studies were performed ([22]), they



were not against state-of-the-art methods designed specifically for toxicity pre-
diction. Finally, a single success is clearly not sufficient grounds for claiming
general applicability of a technique. In this paper we remedy each of these
shortcomings. In the course of doing so, we present an important new problem
where any scientific discoveries made by ILP programs will be measured against
international competition in true blind trials.

This paper is organised as follows. Section 2 describes the problem of car-
cinogenesis prediction of rodent bioassays. These assays are conducted as part
of the National Toxicology Program (NTP) by the U.S. National Institute for
Environmental Health Sciences (NIEHS). A prominent feature associated with
the NTP is the NIEHS Predictive Toxicology Evaluation — or PTE — project
([6]). The PTE project identifies a “test” set of chemicals from those currently
undergoing tests for carcinogenicity within the NTP. Predictions on this test set
were invited and then compared against the true activity observed in rodents,
once such data are available. The description of these blind trials, including
details of a trial scheduled for completion in 1998, is described in Section 3.
Section 4 describes the use of the ILP program Progol ([17]) to extract molec-
ular descriptions for cancerous activity. These are used to compare against
state-of-the-art predictions on an earlier trial in the PTE project (Section 4.4).
Predictions of the activity of chemicals in the ongoing PTE trial are also in
Section 4.4. Section 5 concludes this paper.

2 The Carcinogenesis problem and the NTP data
base

Prevention of environmentally-induced cancers is a health issue of unquestion-
able importance. Almost every sphere of human activity in an industrialised
society faces potential chemical hazards of some form. In [9], it is estimated
that nearly 100,000 chemicals are in use in large amounts every day. A further
500-1000 are added every year. Only a small fraction of these chemicals have
been evaluated for toxic effects like carcinogenicity. The U.S. National Toxicol-
ogy Program (NTP) contributes to this enterprise by conducting standardised
chemical bioassays — exposure of rodents to a range of chemicals — to help
identify substances that may have carcinogenic effects on humans. However,
obtaining empirical evidence from such bioassays is expensive and usually too
slow to cope with the number of chemicals that can result in adverse effects
on human exposure. This has resulted in an urgent need for models that pro-
pose molecular mechanisms for carcinogenesis. It is envisaged that such models
would (a) generate reliable toxicity predictions for all kinds of chemicals; (b)
enable low cost identification of hazardous chemicals; and (c) refine and reduce
the reliance on the use of large number of laboratory animals [6]. Pattern-
recognition methods can “...help identify, characterise, and understand the
various mechanisms or modes of action that determine the type and level of
response observed when biological systems are exposed to chemicals” [6].
Tests conducted by the NTP have so far resulted in a data base of more
than 300 compounds that have been shown to be carcinigenic or otherwise in



rodents. Amongst other criteria, the chemicals have been selected on the basis
of their carcinogenic potential — for example, positive mutagenicity tests — and
on evidence of substantial human exposure ([9]). Using rat and mouse strains
(of both genders) as predictive surrogates for humans, levels of evidence of
carcinogenicity are obtained from the incidence of tumors on long-term (two
years) exposure to the chemicals. The NTP assigns the following levels of
evidence: CE, clear evidence; SE, some evidence; E, equivocal evidence; and
NE, no evidence. Precise definitions for determining these levels can be found
in [9], and a complete listing of all chemicals tested is available at the NTP
Home Page: hitp://nitpserver.niehs.nih.gov/ .

The diversity of these compounds present a general problem to many conven-
tional SAR techniques. Most of these, such as the regression-based techniques
under the broad category called Hansch Analysis ([15]), can only be applied to
model compounds that have similar mechanisms of action. This “congeneric”
assumption does not hold for the chemicals in the NTP data base, thus lim-
iting the applicability of such methods. The Predictive Toxicology Evaluation
project undertaken by the NIEHS aims to obtain an unbiased comparison of
prediction methods by specifying compounds for blind trials. One such trial,
PTE-1, is now complete. Complete results of NTP tests for compounds in the
second trial, PTE-2, will be available by mid 1998.

3 The blind trials PTE-1 and PTE-2

The PTE project ([6]) is concerned with predictions of overall cancerous activ-
ity of a pre-specified set of compounds. This overall activity is either “POS” if
the level of activity is CE or SE, or “NEG”. The PTE project identifies a set
of compounds either scheduled for, or currently undergoing, NTP tests. Infor-
mation concerning the bioassays is disseminated with the view of encouraging
the use of state-of-the-art toxicity prediction schemes. Once the true results
of biological activity are available, the project collects a set of leading predic-
tors and publishes their results. The first of these trials, termed PTE-1 is now
complete, and results for 39 chemicals are available in [3]. !

A second round of toxicology evaluation — PTE-2 — consisting of 30 com-
pounds (of which 5 are inorganic) is currently in progress. True biological
activity for 13 of these have been determined at the time of writing of this
paper. A complete description of chemicals in PTE-2, along with a schedule of
dates is available in [6]. The remaining activity levels should be determined by
1998. In this paper, we intend to use Progol to obtain structural alerts from
chemicals in the NTP data base. In the first instance, predictions from these
alerts will be compared against other predictions available for PTE-1. This will
be followed by predictions for compounds in PTE-2.

'A preliminary effort by the ILP system Progol in presented in [14]. The results in this
paper subsume these early results as a number of toxicology indicators were unavailable to us
at that time. Further details are in Section 4.



4 Carcinogenesis predictions using Progol

4.1 Aims

The experiment described here has the following aims.

1. Use the ILP system Progol to obtain rules for carcinogenicity from data
that does not include compounds in PTE-1 and PTE-2.

2. Predict carcinogenic activity of compounds in PTE-1, and compare against
other state-of-the-art toxicity prediction methods.

3. Predict carcinogenic activity of compounds in PTE-2.

4.2 Materials
Data

Figure 1 shows the distribution of compounds in the NTP data base having an
overall activity of POS(+) or NEG(—). Appendix A gives a complete listing
of the compounds, along with identifiers into the NTP data base and the actual
class labels.

‘ Compounds ‘ + ‘ - ‘ Total ‘
PTE-1 20 19 39
PTE-2 >7 | >6 30
Rest 162 | 136 | 298

Figure 1: Class distribution of compounds. Complete details of PTE-2 will be
available by 1998.

Background knowledge

The following background knowledge is available for each category of com-
pounds listed in Figure 1. Complete Prolog descriptions of each of the fol-
lowing are available via anonymous ftp to ftp.comlab.oz.ac.uk, in the directory
pub/Packages/ILP/Datasets.

Atom-bond description. These are ground facts representing the atom and
bond structures of the compounds. The representation first introduced in
[21] is retained. These are Prolog translations of the output of the molecu-
lar modelling package QUANTA. Bond information consist of facts of the
form bond(compound,atom1,atom?2,bondtype) stating that compound has a
bond of bondtype between the atoms atom1 and atom2. Atomic structure
consists of facts of the form atm(compound,atom,element,atomtype,charge),
stating that in compound, atom has element element of atomtype and par-
tial charge charge.



Generic structural groups. This represents generic structural groups (methyl

groups, benzene rings etc.) that can be defined directly using the atom
and bond description of the compounds. Here we use definitions for 29
different structural groups, which expands on the 12 definitions used in
[22]. We pre-compute these structural groups for efficiency. An example
fact that results is in the form methyl(compound,atom_list), which states
that the list of atoms atom_list in compound form a methyl group. Con-
nectivity amongst groups is defined using these lists of atoms.

Genotoxicity. These are results of short-term assays used to detect and char-
acterize chemicals that may pose genetic risks. These assays include the
Salmonella assay, in-vivo tests for the induction of micro-nuclei in rat and
mouse bone marrow etc. A full report available at the NTP Home Page
lists the results from such tests in one of 12 types. Results are usually +
or — indicating positive or negative response. These results are encoded
into Prolog facts of the form has_property(compound,type,result), which
states that the compound in genetic toxicology type returned result. Here
result is one of p (positive or n (negative). In cases where more than 1
set of results are available for a given type, we have adopted the position
of returning the majority result. When positive and negative results are
returned in equal numbers, then no result is recorded for that test.

Mutagenicity. Progol rules from the earlier experiments on obtaining struc-
tural rules for mutagenesis are included ([12, 20]). Mutagenic chemicals

have often been found to be carcinogenic ([7]), and we use all the rules
found with Progol (see [20] for a complete listing).

Structural indicators. We have been able to encode some of the structural
alerts used in [1]. At the time of writing this paper, the NTP proposes to
make available nearly 80 additional structural attributes for the chemicals.
Unfortunately, this is not yet in place for reuse in experiments here.

Prediction methods

The ILP system used here is P-Progol (Version 2.3). This a Prolog imple-
mentation of the Progol algorithm ([17]), and we will refer to this simply as
Progol in the rest of this paper. P-Progol is available via anonymous ftp to
ftp.comlab.oz.ac.uk, in the directory pub/Packages/ILP. The other toxicity pre-
diction methods compared against Progol’s PTE-1 predictions are: Ashby [23],
RASH [10], TIPT [2], Benigni [5], DEREK [19], Bakale [4], TOPKAT [8], CASE
[18], and COMPACT [16]. We take the PTE-1 predictions of each these algo-
rithms as reported in [3].

4.3 Method

The task is to obtain a theory for carcinogenesis using the 298 chemicals under
the “Rest” category in Figure 1. This theory is then to be used to predict the
classes of compounds in PTE-1 and PTE-2. Progol constructs theories within



the language and statistical constraints provided by the user. In domains such
as the one considered here, it is difficult to know beforehand any reasonable set
of constraints to provide. Further, it is not evident that the theory returned
by default settings within the program is the best possible. Consequently, we
adopt the following three-stage procedure.

Stage 1: Parameter identification. Identify 1 or more critical parameters
for Progol. Changing these should result in significant changes in the
theory returned by Progol.

Stage 2: Model selection. This proceeds as follows.

1. Randomly select a small subset of the 298 chemicals to act as a
“validation” set. The remaining chemicals form the “training” set
for Progol.

2. Systematically vary the the critical parameters. For each setting
obtain a theory from the training set, and record its accuracy on the
validation set.

3. Return the theory with the highest accuracy on the validation set.

Stage 3: Model evaluation. The predictions for PTE-1 and PTE-2 by the
theory returned from Stage 2 are recorded. For other toxicity prediction
methods, the probability that Progol classifies PTE-1 compounds in the
same proportion as that method is obtained using McNemar’s Test (see

below).

For a given set of background predicate definitions, theories returned by
Progol are usually affected by the following parameters: (1) ¢, bounding the
number of literals in any hypothesised clause; (2) noise, bounding the minimum
acceptable training set accuracy for a clause; and (3) nodes, bounding the
number of clauses searched. Initial experimentation (Stage 1) suggested that the
most sensitive parameter for Progol was noise. The experiments here consider
theories arising from 4 settings corresponding noise values 0.35, 0.30, 0.25, and
0.20. For the data here, the size of the validation set is taken to be 30% of
the 298 chemicals — that is, 89 compounds. Of these 49 are labelled + and the
remaining 40 are labelled —. This leaves 209 compounds for training. Of these
113 are + and the remaining 96 are —.

We also note one other detail concerning the procedure for obtaining a final
theory. The Prolog implementation used here can obtain clauses using two
different search strategies. The first is as in [17], and results in redundant
examples being removed after an acceptable clause is found. A second strategy
retains these examples, which gives correct estimates for the accuracy of the
clause found. Clauses obtained in this fashion can have significant overlap in the
examples they make redundant. The preferred final theory is then the subset of

these clauses that has maximal compression (within acceptable resource limits).
2

2This subset is currently obtained by a companion program to P-Progol called T-Reduce
(Version 1.0). Compression of a set of clauses is defined analogous to the measure in [17],
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Figure 2: Cross-comparison of the predictions of a pair of algorithms A; 5 n; is
the number of compounds whose class is correctly predicted by both algorithms.
Similarly for the entries 1y 3 4.

McNemar’s Test

McNemar’s test for changes is used to compare algorithms For a pair of al-
gorithms, this is done by a cross-comparison of the compounds correctly and
incorrectly classified as shown in Figure 2.

The null hypothesis is that the proportion of examples correctly classified
by both algorithms is the same. If there is no significant difference in the
performance of the two algorithms, half of the ny+mn3 cases whose classifications
disagree should be classified correctly by A; and A, respectively. Because of
small numbers, we directly estimate the probability of a chance classification
using the binomial distribution, with probability of success at 0.5. In effect,
this is likened to probability of obtaining at least ny (or ns, if greater) heads in
a sequence of ny 4+ n3 tosses of a fair coin.

It is evident that repeated cross-comparisons will yield occasions when Pro-
gol’s performance will apparently seem better than its adversary. For repeated
comparisons of a given pair of algorithms on different random samples of data,
it is possible to apply a correction (known as the Bonferroni adjustment) for
this problem. The situation of repeated comparisons of different pairs of al-
gorithms on a given set of data (as is here) does not, on the surface, appear
to be amenable to the same correction. However, adopting the spirit of the
correction, we advocate caution in quantitative interpretations of the binomial
probabilities obtained.

4.4 Results and discussion

Figure 3 tabulates the accuracies on the validation set for each of the parameter
settings explored. These results lead to the choice of 0.30 as the preferred setting
for minimum noise for acceptable clauses.

Figure 4 shows an English translation of the theory with highest validation
accuracy in Figure 3. Each disjunct in Figure 4 represents a rule followed by

namely, P — N — L. where P is the positive examples covered by the theory, N is the negative
examples covered by the theory, and L is the number of clauses in the theory. T-Reduce is
available on request from the first author.



‘ Noise ‘ Validation accuracy

0.35 0.63
0.30 0.70
0.25 0.63
0.20 0.65

Figure 3: Validation set accuracies at the model selection stage. “Noise” values
provide a lower bound on the training set accuracy for a clause hypothesised by
Progol. “Validation accuracy” is the corresponding accuracy on the validation
set of the theory obtained from Progol at that noise level.

Progol. Rules 1-3 are based on biological tests. Additional comments on the
rules follow.

Rule 1. The result of the Ames biological test for mutagenicity. The effectiv-
ness of the Ames test is widely recognised, but it is gratifying that Progol
identifies it as the most important.

Rule 2. This rule is a test based on using whole (not cell culture) Drosopha.
Like the Ames test it tests for mutagenicity.

Rule 3. This rule is puzzling as it would be expected that a positive test for
chromosome aberration would be a test for carcinogenesis, not a negative
test. More specialised variants of this rule were obtained in other theories
obtained in Stage 1 of the experimental methodology, suggesting absence
of chromosal aberrations does have some role to play, reasons for which
requires investigation.

Rule 4. Aromatic compounds are often carcinogens and the low partial charge
indicates relative reactivity. The use of a precise number for partial charge
is an artifact of using the information from QUANTA, resulting from a
particular molecular substructure around the aromatic carbon.

Rule 5. Amine groups are recognised by Ashby ([23]) as indicators of cancer-
genesis. This rule is a more accurate specification of this rule.

Rule 6. Aromatic hydrogen with a very high partial charge (often chlorinated
aromatics). Such aromatics are relatively unreactive (perhaps giving time

to diffuse to DNA).

Rule 7. The high partial charge on the hydroxyl oxygen suggests that the
group is relatively unreactive. The significance of the aromatic (or reso-
nant) hydrogen is unclear.

Rule 8. Compounds with bromine have been widely recognised as carcinogens

([23])-



Compound A is carcinogenic if:

(1) it tests positive in the Salmonella assay; or

(2) it tests positive for sex-linked recessive lethal mutation in Drosphila;

(3) it tests negative for chromosome aberration (an in-vivo cytogenetic assay); or

(4) it has a carbon in a six-membered aromatic ring with a partial charge of -0.13; or

(5) it has a primary amine group and no secondary or tertiary amines; or

(6) it has an aromatic (or resonant) hydrogen with partial charge > 0.168; or

(7) it has an hydroxy oxygen with a partial charge > -0.616 and an
aromatic (or resonant) hydrogen; or

(8) it has a bromine; or

(9) it has a tetrahedral carbon with a partial charge < -0.144 and tests positive
on Progol’s mutagenicity rules.

Figure 4: Progol’s theory for carcinogenesis.

Rule 9. A tetrahedral carbon with low partial charge. The Progol rules for
mutateginicity are shown to have utilty outside of their original applica-
tion domain. This is interesting as it displays perhaps the first reuse of
ILP-constructed knowledge between different scientific problems.

Predicting PTE-1

Figure 5 tabulates the accuracies of the different toxicity prediction methods
on the compounds in PTE-1. This shows Progol to be comparable to the top 3
state-of-the-art toxicity predictors.

This result should be seen in the following perspective. The only method
apparently more accurate than Progol is that of Ashby, which involves the
participation of human experts and a large degree of subjective evaluation. All
the methods with accuracy close to Progol (Ashby, RASH, and TIPT) have
access to biological data that was not available to Progol (information form
short-term - 13 week - rodent tests). It should also be noted that all the methods
compared with Progol were specifically devloped for chemical structure activity
and toxicity prediction. Some recent information available to us suggest that
results are also results are comparable to those obtained by a mixture of ILP
and regression with additional biological information. 3

Predicting PTE-2

Figure 6 tabulates the predictions made by the theory in Figure 4 for compounds
in PTE-2. The results to date show that Progol has currently predicted 8/13 =
62% of the compounds correctly. Progol is currently ranked equal first for
accuracy. The accuracy of Progol is again comparable to Ashby (7/13) and
RASH (8/13) (no predictions are available as for TIPT). The lower accuracy of
Progol (and the other participating methods) in PTE-2 compared with PTE-1
probably reflects the different distribution of compounds in PTE-2 compared

®Personal communication from S. Kramer to the second author.



‘ Method ‘ Type ‘ Accuracy P
Ashby Chemist 0.77 0.29
Progol ILP 0.72 1.00
RASH7Y Biological potency analysis 0.72 0.39
TIPTY Propositional ML 0.67 0.11
Bakale Chemical reactivity analysis 0.63 0.09
Benigni Expert-guided regression 0.62 0.02
DEREK Expert system 0.57 0.02
TOPKAT Statistical discrimination 0.54 0.03
CASE Statistical correlation analysis 0.54 < 0.01
COMPACT | Molecular modelling 0.54 0.01
Default Majority class 0.51 0.01

Figure 5: Comparative accuracies on PTE-1. Here P represents the binomial
probability that Progol and the corresponding toxicity prediction method clas-
sify the same proportion of examples correctly. The “Default” method predicts
all compounds to be carcinogenic. Methods marked with a 7 have access to
short-term in-vivo rodent tests that were unavailable to other methods. Ashby
and RASH also involve some subjective evaluation to decide on structural alerts.

to PTE-1 and training data. For example: the percentage of compounds with
positive a Ames test in PTE-2 is only 16% compared to an average 42% for
PTE-1 and the training data. The changing distribution has been previously
noted in [23] and probably reflects a different testing strategy by the NIEHS.

5 Conclusions

The carcinogenesis prediction trials conducted by the NIEHS offer ILP systems
a unique opportunity to participate in true scientific discovery. The prediction
of chemical cancerogensis is both an important medical problem and a fascinat-
ing research area. This paper provides initial performance benchmarks that we
hope will act as an incentive for participation by other ILP systems in the field.
Progol has achieved accuracy as good or bettter that current state-of-the-art
methods of toxicity prediction. Results from other studies ([20]) suggest that
addition of further relevant background knowledge should improve the Progol’s
prediction accuracy even further. In addition, Progol has produced nine rules
that can be biologically and chemically interpreted and may help to provide a
better understanding of the mechanisms of cancerogenesis.

The results for the predicion of carcinogenesis, taken together with the pre-
vious applications of predicting mutagenicity in nitro-atomatic compounds, and
the inhibition of angiogenesis by suramin analogues [11], show that ILP can play
an important role in understanding cancer related compounds.



Compound Id. | Name | Actual | Progol |

6533-68-2 Scopolamine hydrobroamide - -
76-57-3 Codeine - -
147-47-7 1,2-Dihydro-2,2,4-trimethyquinoline + -
75-52-8 Nitromethane - -
109-99-9 Tetrahydrofuran + +
1948-33-0 t-Butylhydroquinone - +
100-41-4 Ethylbenzene + -
126-99-8 Chloroprene + +
8003-22-3 D&C Yellow No. 11 + -
78-84-2 Isobutyraldehyde - -
127-00-4 1-Chloro-2-Propanol T.B.A.

11-42-2 Diethanolamine T.B.A. -
77-09-8 Phenolphthalein + -
110-86-1 Pyridine T.B.A. +
1300-72-7 Xylenesulfonic acid, Na - -
98-00-0 Furfuryl alcohol T.B.A. +
125-33-7 Primaclone + +
111-76-2 Ethylene glycol monobutyl ether T.B.A. -
115-11-7 Isobutene T.B.A. -
93-15-2 Methyleugenol T.B.A. -
434-07-1 Oxymetholone T.B.A. -
84-65-1 Anthraquinone T.B.A. +
518-82-1 Emodin T.B.A. +
5392-40-5 Citral T.B.A. -
104-55-2 Cinnamaldehyde T.B.A. -
10026-24-1 Cobalt sulfate heptahydrate T.B.A. +
1313-27-5 1 Molybdenum trioxide T.B.A. -
1303-00-0 § Gallium arsenide T.B.A. -
7632-00-0 1 Sodium nitrite T.B.A. +
1314-62-1 Vanadium pentozide T.B.A. -

Figure 6: Progol predictions for PTE-2. The first column are the compound
identifiers in the NTP database. The column headed “Actual” are tentative
classifications from the NTP. Here the entry T.B.A. means ”to be announced”
— confirmed classifications will be available by July, 1998. The 5 compounds
marked with a § are inorganic compounds.
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A NTP compounds used in this study

The following tabulation lists all the compounds used in this study.

| Compound Id. | Name | Class |
117-79-3 2-Aminoanthraquinone +
6109-97-3 3-Amino-9-ethylcarbazole HCI +
82-28-0 1-Amino-2-methylanthraquinone +
134-29-2 o-Anisidine HCI +
5131-60-2 4-Chloro-m-phenylenediamine +
95-83-0 4-Chloro-o-phenylenediamine +
569-61-9 Cl Basic Red 9 HCI +
2832-40-8 Cl Disperse Yellow 3 +
120-71-8 p-Cresidine +
135-20-6 Cupferron +
39156-41-7 2,4-Diaminoanisole Sulfate +
95-80-7 2,4-Diaminotoluene +
2784-94-3 HC Blue 1 +
22-66-71 Hydrazobenzine +
13552-44-8 4,4’-Methylenedianiline 2HCI +
129-15-7 2-Methyl-1-nitroanthraquinone +
2243-62-1 1,5-Naphthalenediamine +
139-94-6 Nithiazide +
602-87-9 5-Nitroacenaphthene +
99-59-2 5-Nitro-o-anisidine +
1836-75-5 Nitrofen +
156-10-5 p-Nitrosodiphenenylamine +
101-80-4 4-4’ Oxydianiline +
136-40-3 Phenazopyridine HCI +
139-61-1 4,4’ Thiodianiline +
636-21-5 o-Toluidine HCI +
137-17-7 2,4,5, -Trimethylaniline +
67-20-9 Nitrofurantoin +
59-87-0 Nitrofurazone +
26471-62-5 2,4-/2,6-Toluene Diisocyanate +
20265-96-7 p-Chloroaniline HCI +
20325-40-0 3,3’-Dimethoxybenzidine 2HCI +
612-82-8 3,3’-Dimethylbenzidine 2HCI +
142-04-1 Aniline HCI1 +
103-33-3 Azobenzene +
95-79-4 5-Chloro-o-toluidine +
5160-02-1 D and C Red 9 +
91-93-0 3,3’-Dimethoxybenzidine-4-4’-diisocyanate +
121-14-2 2,4-Dinotrotoluene +
99-55-8 5-Nitro-o-toluidine +
80-08-0 4,4’-Sulfonyldianiline +
1582-09-8 Trifuralin +
3165-93-3 4-Chloro-o-toluidine HCI +
2475-45-8 Cl Disperse Blue 1 +
102-50-1 m-Cresidne +
609-20-1 2,6-Dichloro-p-phenylenediamine +
94-52-0 5(6)-Nitrobenzimadazole +
842-07-9 C.I. Solvent yellow 14 +
17026-81-2 3-Amino-4-ethoxyacetanilide +
119-34-6 4- Amino-2-nitrophenol +
121-66-4 2-Amino-5-nitrothiazole +
105-11-3 p-Benzoquinone Dioxime +
2185-92-4 2-Biphenylamine HCI +




Compound Id. | Name | Class |
133-90-4 Chloramben +
1777-84-0 3-Nitro-p-acetophenetide +
5307-14-2 2-Nitro-p-phenylenediamine +
99-57-0 2- Amino-4-nitrophenol +
121-88-0 2- Amino-5-nitrophenol +
6373-74-6 C.I. Acid Orange 3 +
20265-97-8 p-Anisidine HCI -
106-47-8 p-Chloroaniline -
56-38-2 Parathion -
952-23-8 Proflavin HCI -
2871-01-4 H.C. Red 3 -
135-88-6 N-Phenyl-2-Napthylamine -
121-19-7 Roxarsone -
989-38-8 Rhodamine 6G HCI -
140-49-8 4-(Chloroacetyl)acetanilide -
61702-44-1 2-Chloro-p-phenylenediamine Sulfate -
95-74-9 3-Chloro-p-toluidine -
54150-69-5 2-4-Dimethoxyaniline HCI -
298-00-0 Methyl Parathion -
619-17-0 4-Nitroanthanilic Acid -
99-56-9 4-Nitro-o-phenylenediamine -
101-54-2 N-Phenyl-p-pheneyllenediamine -
15481-70-6 2,6-Toluenediamine 2HCI -
1936-15-8 C. I. Acid Orange 10 -
6358-85-6 Diarylanilide Yellow -
33229-34-4 HC Blue 2 -
1465-25-4 N-(1-Napthyl)ethylenediamine 2HCL -
86-57-7 1-Nitroaphthalene -
624-18-0 p-Phenylenediamine 2HCI -
127-69-5 Sulfisoxazole -
6369-59-1 2,5-Toluenediamine Sulfate -
63449-39-8 Chloronated paraffins C12: 60% Cl) +
57653-85-7 Hexachlorodibenzodioxin 1 +
57635-85-7 Hexachlorodibenzodioxin 2 +
67774-32-7 Polybrominated Biphenyl +
1746-01-6 2,3,7,8-Tetrachlorodibenzo-p-dioxin +
86-06-2 2,4,6-Trichlorophenol +
115-28-6 Chlorendic Acid +
106-46-7 1,4-Dichlorobenzene +
127-18-4 Tetrachloroethylene +
67-72-1 Hexachloroethane +
87-86-5 Pentachlorophenol +
79-00-5 1,1,2-Trichloroethane +
150-68-5 Monuron +
12789-03-6 Chlordane +
510-15-6 Chlorobenzilate +
1897-45-6 Chlorothalonil +
1163-19-5 Decabromodiphenyl Oxide +
72-55-9 Dichlorodiphenyldichloroethylene +
76-44-8 Heptachlor +
76-01-7 Pentachloroethane +
630-20-6 1,1,1,2-Tetrachloroethane +
79-34-5 1,1,2,2-Tetrachloroethane +
79-01-6 Trichloroethylene +
309-00-2 Aldrin +




Compound Id. | Name | Class |
63449-39-8 Chlorinated paraffins (C23:43% Cl) +
115-32-2 Dicofol +
54-31-9 Furosemide +
108-90-7 Chlorobenzene -
33857-26-0 2,7-Dichlorodibenzo-p-dioxin -
60-57-1 Dieldrin

72-56-0 Di(p-ethylphenyl)dichloroethane -
1918-02-1 Picloram -
72-54-8 Tetrachlorodiphenylethane -
58-93-5 Hydrochlorothiazide -
101-05-3 Anilazine -
999-81-5 2-Chloroethyltrimethylammonium Chloride -
95-50-1 1,2-Dichlorobenzene -
72-20-8 Endrin -
72-43-5 Methyoxychlor -
77-65-6 Carbromal -
94-20-2 Chlorpropamide -
50-29-3 DDT -
58-89-9 Lindane -
82-68-8 Pentachloronitrobenzene -
13366-73-9 Photodieldrin -
75-35-4 Vinylidene Chloride -
2698-41-1 o-Chlorobenzalmelanotrile -
2438-88-2 2,3,5,6-Tetrachloro-4-nitroanisole -
113-92-8 Chloropheniramine Maleate -
120-83-2 2,4-Dichlorophenol -
71-43-2 Benzene +
117-81-7 Di(2-ethylhexyl)phthalate +
139-13-9 Nitrilotriacetic Acid +
50-55-5 Reserpine +
123-31-9 Hydroquinone +
2432-99-7 11-Aminoundeconic Acid +
17924-92-4 Zearalenone +
140-11-4 Benzyl Acetate +
149-30-4 2-Mercaptobenzothiazole +
389-08-2 Nalidixic Acid +
103-23-1 Di(2-ethylhexyl)adipate +
85-68-7 Butyl Benzyl Phthalate +
120-62-7 Piperonyl Sulfoxide +
78-42-2 Tris(2-ethylhexyl)phosphate +
98-85-1 a-Methylbenzyl Alchohol +
80-05-7 Bisphenol A -
120-61-6 Dimethyl Terephthalate -
121-79-9 Propyl Gallate -
7177-48-2 Ampicillin Trihydrate -
136-77-6 4-Hexylresorcinol -
41372-08-1 Methyldopa Sesquihydrate -




| Compound Id. Name | Class |

2058-46-0 Oxytetracycline Hydrochloride -
83-79-4 Rotenone -
147-24-0 Diphenhydramine HCI -
968-81-0 Acetohexamide -
50-81-7 L-Ascorbic Acid -
128-37-0 Butylated Hydroxytoluene -
262-12-4 Dibenzo-p-dioxin -
150-38-9 EDTA (tri-Na salt) -
9002-18-0 Agar -
119-53-9 Benzoin -
105-60-2 Caprolactam -
134-72-5 Ephedrine Sulfate -
15356-70-4 di-Menthol -
108-95-2 Phenol -
85-44-9 Phthalic Anhydride -
1156-19-0 Tolazamide -
76-87-9 Triphenyltin Hydroxide -
434-13-9 Lithocholic Acid -
69-65-8 D-Mannitol -
114-86-3 Phenformin -
88-96-0 Phthalamide -
51-03-6 Piperonyl Butoxide -
64-77-7 Tolbutamide -
73-22-3 L-Tryptophan -
100-51-6 Benzyl Alchohol -
132-98-9 Penicilin VK -
64-75-5 Tetracycline Hydrochloride -
108-30-5 Succinic Anhydride -
643-22-1 Erithromycin Stearate -
61-76-7 Phenylephrine Hydrochloride

1330-20-7 Xylenes Commercial Mixture -
55-31-2 L-Epinephrine Hydrochloride -
108-88-3 Toluene -
2835-39-4 Allyl Isovalerate +
87-29-6 Cinnamyl Anthranilate +
123-91-1 1,4-Dioxane +
271-89-6 Benzofuran +
98-01-1 Furfural +
50-33-9 Phenylbutazone +
105-55-5 N,N’-Diethylthiourea +
86-30-6 N-Nitrosodiphenylamine +
100-52-7 Benzaldehyde +
128-66-5 Cl Vat Yellow 4 +
78-59-1 Isophorone +
108-78-1 Melamine +
2489-77-2 Trimethylthiourea +
137-30-4 Ziram +
5989-27-5 a-Limonene +
131-17-9 Diallyl Phthalate -
142-46-1 2,5-Dithiobiurea -
20941-65-5 Ethyl Tellurac -
97-53-0 Fugenol -
2164-17-1 Fluometuron -
116-06-3 Aldicarb -
3567-69-9 Cl Acid Red 14 -
118-92-3 o-Anthranilic Acid -




Compound Id.

Name

1212-29-9
536-33-4
19010-66-3
89-25-8
148-18-5
97-77-8
2783-94-0
315-18-4
105-85-5
77-79-2
105-87-3
6959-48-4
96-12-8
106-93-4
107-06-2
542-75-6
3546-10-9
75-56-9
961-11-5
512-56-1
126-72-7
563-47-3
62-73-7
101-90-6
74-96-4
556-52-5
5634-39-9
106-87-6
108-60-1
868-85-9
106-88-7
22966-79-6
597-25-1
1955-45-9
8001-35-2
78-87-5
115-96-8
57-06-7
756-79-6
106-92-3
75-00-3
86-50-0
55-38-9
13171-21-6
532-27-4
78-11-5
109-69-3
107-07-3
56-72-4
60-51-5
1634-78-2
124-64-1
6959-47-3

N,N’-Dicyclohexylthiourea
Ethionamide

Lead Dimethyldithiocarbamate
1-Phenyl-3-methyl-5-pyrazolone
Sodium Diethyldithiocarbamate
Tetraethylthiuram Disulfate
Vinyl Toluenes (meta/papa 70:30)
FD and C Yellow 6
Mexacarbate
1-Phenyl-2-thiourea

3-Sulfolene

Geranyl Acetate
3-Chloromethylpyridine HCI
1,2-Dibromo-3-chloropropane
1,2-Dibromoethane
1,2-Dichloroethane
1,3-Dichloropropene

Phenestrin

1,2-Propylene Oxide
Tetrachlorovinphos
Trimethylphosphate
Tris(2,3-dibromopropyl)phosphate
3,Chloro-2-Methylpropene
Dichlorovos

Diglycidyl Resorcinol Ether (DRGE)
Bromoethane

Glycidol

Todinated Glycerol
4-Vinyl-1-cyclohexene Diepoxide
Bis(2-chloro-1-methyethyl)ether
Dimethyl Hydrogen Phosphite
1,2-Epoxybutane

Estradiol Mustard

Dimethyl Morpholinophosphoramidate
Pivalolactone

Toxaphene

1,2-Dichloropropane
Tris(2-chloroethyl)phosphate
Allyl Isothiocyanate

Dimethyl Methylphosphonate
Allyl Glcidyl Ether
Chloroethane

Azinphosmethyl

Fenthion

Phosphamidon
2-Chloroacetophenone
Pentaerythritol Tetranitrate
n-Butyl Chloride
2-Chloroethanol

Coumaphos

Dimethoate

Malaoxon

Terakis (Hydroxymethyl) Phosphonium Chloride/Sulfate

2-Chloromethylpyridine HCI




Compound Id. Name | Class |
333-41-5 Diazinon

78-34-2 Dioxathion -
121-75-5 Malathion -
75-09-2 Dichloromethane +
75-27-4 Bromodichloromethane +
75-25-2 Trbromomethane (bromoform) +
124-48-1 Chlorodibromomethane +
75-47-8 Todoform -
101-61-1 4,4’-Methylenebis(N,N’-dimethyl)benzenamine +
90-94-8 Michler’s Ketone +
121-69-7 N,N-Dimethylaniline +
140-56-7 Fenaminosulf -
509-14-8 Tetranitromethane +
504-88-1 3-Nitropropionic Acid -
140-88-5 Ethyl Acrylate +
924-42-5 N-Methylolacrylamide +
80-62-6 Methyl Methacrylate -
24382-04-5 Malonaldehyde Sodium Salt +
828-00-2 Dimethoxane -
95-06-7 Sulfallate +
513-37-1 Dimethylvinyl Chloride (DMVC) +
133-06-2 Captan +
598-55-0 Methyl Carbamate +
1596-84-5 Succinic Acid 2,2-dimethylhydrazide +
95-14-7 1,2,3-Benzotriazole -
148-24-3 8-Hydroxyquinoline -
115-07-1 Propylene

60-13-9 Amphetamine sulfate -
91-20-3 Napthalene +
9005-65-6 Polysorbate 80 (Tween 80) -
58-33-3 Promethazine hydrochloride -
108-46-3 Resorcinol -
96-48-0 g-Butyrolactone

79-11-8 Monochloroacetic acid -
100-02-7 p-Nitrophenol -
1330-78-5 Tricresyl phosphate +
120-32-1 o-Benzyl-p-chlorophenol +
3296-90-0 2,2-Bis (bromomethyl)-1,3,-propanediol +
75-65-0 t-Butyl alchol +
119-84-6 3,4-Dihydrococoumarin +
107-21-1 Ethylene glcol -
298-59-9 Methylphenidate hydrochloride +
96-69-5 4,4’-Thiobis(6-t-butyl-m-cresol) -
396-01-0 Triamterene +
57-41-0 Diphenylhydantoin +
1825-21-4 Pentachloroanisole +
10599-90-3 Chloramine -
81-11-8 4,4’-Diamino-2,2’stilbenedisulfonic acid -
74-83-9 Methyl Bromide -
62-23-7 p-Nitrobenzoic acid +
28407-37-6 Cl Direct blue 218 +
2425-85-6 Cl Pigment red 3 +
6471-49-4 Cl Pigment red 23 -
137-09-7 2,4-Diaminophenol dihydrochloride +
103-90-2 4-Hydroxyacetanilide -




Compound Id. | Name | Class |
1271-19-8 Salicylazosulfapyridine -
6459-94-5 Cl Acid red 114 +
2429-74-5 Cl Direct blue 15 +
91-64-5 Coumarin +
96-13-9 2,3-Dibromo-1-propanol +
119-93-7 3,3’-Dimethylbenzidine +
52551-67-4 HC Yellow 4 -
100-01-6 p-Nitroaniline -
91-23-6 o-Nitroanisole +
96-18-4 1,2,3-Trichloropropane +




