Inverting Implication

Stephen Muggleton
Oxford University Computing Laboratory,
11 Keble Road,
Oxford OX1 3QD,
UK.

Abstract

All generalisations within logic involve inverting implication. Yet, ever
since Plotkin’s work in the early 1970’s methods of generalising first-order
clauses have involved inverting the clausal subsumption relationship. How-
ever, even Plotkin realised that this approach was incomplete. Since in-
version of subsumption is central to many Inductive Logic Programming
approaches, this form of incompleteness has been propagated to techniques
such as Inverse Resolution and Relative Least General Generalisation. A
more complete approach to inverting implication has been attempted with
some success recently by Lapointe and Matwin. In the present paper the
author derives general solutions to this problem from first principles. It
is shown that clausal subsumption is only incomplete for self-recursive
clauses. Avoiding this incompleteness involves algorithms which find “nth
roots” of clauses. Completeness and correctness results are proved for a
non-deterministic algorithms which constructs nth roots of clauses. It is
shown how this algorithm can be used to invert implication in the presence
of background knowledge. In conclusion the relationship between these re-
sults and Hoare’s logical definition of programming from specifications is
discussed.

1 Introduction

Plotkin [19] was the first to show that #-subsumption and implication between
clauses are not equivalent. The difference between the two is important since al-
most all inductive algorithms which generalise first-order clauses invert #-subsumption
rather than implication. This inevitably leads to a form of incompleteness in
these algorithms. In this paper methods of constructing the inverse implicants of
clauses are explored. In section 7 it is shown how methods developed in earlier
sections can be extended to the problem of inverting implication in the presence



of background knowledge. First the difference between Plotkin’s #-subsumption
and implication between clauses will be reviewed. The reader is referred to Ap-
pendix A for the usual definitions in Logic Programming and Inductive Logic
Programming (ILP).

Clause C f-subsumes clause D whenever there exists a substitution # such
that C6 C D. Clause C implies clause D, or C — D, whenever every model
of C' is a model of D. Whenever clause C' #-subsumes clause D it also implies
D. However the converse does not hold. For instance Plotkin shows that with
clauses

C = p(f(X)) < p(X)
D = p(f(f(X))) < p(X)

C implies D, since D is simply C self-resolved. However C' does not #-subsume
D. In discussing this problem Niblett [18] proves various general results. For
instance he shows that implication between Horn clauses is decidable and also
that there is not always a unique least generalisation under implication of an
arbitrary pair of clauses. For instance, the clause D above and the clause £ =
p(f(f(f(X)))) « p(X) have both C and the clause p(f(X)) < p(Y) as least
generalisations.

Gottlob [8] also proves a number of properties concerning implication between
clauses. Notably let C*, C~ be the positive and negative literals of C and D, D~
be the same for D. Now if C — D then C" f-subsumes Dt and C~ f-subsumes
D~.

2 Sub-unification

The problem of inverting implication is discussed in a recent paper by Lapointe
and Matwin [11]. They note that inverse resolution [15, 14, 22, 24] is incapable
of reversing SLD derivations in which the hypothesised clause is used more than
once. In fact Plotkin [19] showed that the same problem appears in the use of
relative least general generalisation of clauses. Lapointe and Matwin go on to de-
scribe sub-unification, a process of matching sub-terms. They demonstrate that
sub-unification is able to construct recursive clauses from fewer examples than
would be required by ILP systems such as Golem [16] and FOIL [20]. For in-
stance, given the atoms append([], X, X) and append(|a,b,Y],[1,2],[a,b,Y,1,2])
sub-unification can be used to construct the recursive clause

append([U|V], W, [X|Y]) < append(V,W,Y)

Unlike the approach taken originally with inverse resolution [15], Lapointe and
Matwin do not derive sub-unification from resolution. Instead sub-unification
is based on a definition of most general sub-unifiers. Although the operations

2



described by Lapointe and Matwin are shown to work on a number of examples
it is not clear how general the mechanism is.

In this paper a general approach to inverting implication is developed. The
approach taken involves a new form of inverting resolution which is derived from
first principles.

3 Implication and resolution

In this section the relationship between resolution and implication between clauses
is investigated. Below a definition equivalent to Robinson’s [21] resolution closure
is given. The function £ below contains only the linear derivations of Robinson’s
function R (see Appendix A.3). However, the closure is equivalent up to renam-
ing of variables given that linear derivation (as opposed to input derivation) is
known to be complete.

Definition 1 (Resolution closure) Let T be a set of clauses. The function L
is recursively defined as

LNT) = T
LNT) = {C:Cy e L (T),Cy €T,C is the resolvent of Cy and Co}
the resolution closure L*(T) is LY(T)U LA(T) U ...

Lee [12] first proved the subsumption theorem, a reproof of which can be
found in Bain and Muggleton [1]. The theorem can be stated as follows.

Theorem 2 (Subsumption theorem) Let T' be a set of clauses and C be a
non-tautological clause. T = C if and only if there exists D in L*(T) and substi-
tution 6 such that DO C C.

In order to apply this to the case of implication between clauses Theorem 2 can
be applied to the special case in which 7' is a single clause.

Corollary 3 (Implication between clauses using resolution) Let C be an
arbitrary clause and D be a non-tautological clause. C' = D, or C — D, if and
only if there exists a clause E in L*({C}) and substitution 6 such that E§ C D.
Proof. Follows directly as a special case of theorem 2.

Restating corollary 3, C — D whenever one of the following conditions holds

1. D is a tautology.
2. C f-subsumes D.

3. E f#-subsumes D where FE is constructed by repeatedly self-resolving C.

The first two conditions are somewhat trivial. The third condition demonstrates
the significance of self-recursive clauses in this problem. It is clearly no coinci-
dence that Plotkin’s example (Section 1) and the clauses investigated by Lapointe
and Matwin (Section 2) are self-recursive.

3



4 Nth powers and nth roots of clauses

The set of clauses constructed by self-recursing C, L£*({C}), is partitioned into
levels by the function £. By viewing resolution as a product operation Muggleton
and Buntine [15] (see ‘-’ operator in A.3) stated the problem of finding the inverse
resolvent of a pair of clauses as that of finding the set of quotients of two clauses.
Following the same analogy the set C? = £*({C'}) might be called the squares of
the clause C and C? = £3({C'}) the cubes of C. The following definition captures
this idea.

Definition 4 (nth powers of a clause) Let C and D be clauses. Forn > 1,
D is an nth power of C if and only if D is an alphabetic variant of a clause in

Lr({C}).

Taking the analogy a bit further one might also talk about the nth roots of a
clause.

Definition 5 (nth roots of a clause) Let C' and D be clauses. D is an nth
root of C if and only if C is an nth power of D.

Corollary 3 can now be restated in terms of nth roots of a clause.

Corollary 6 (Implication between clauses in terms of nth roots) Let C
be an arbitrary clause and D be a non-tautological clause. C' — D if and only if
for some positive integer n, C is an nth root of a clause E which 0-subsumes D.

It is fairly straightforward to enumerate the set of clauses which f#-subsume a
given clause. Therefore the problem of finding the set of clauses which imply
a given clause C' reduces to that of enumerating the set of nth roots of clauses
which #-subsume C'. The special case of clauses which immediately #-subsume C'
occurs with n = 1.

5 Constructing the square roots of a clause

Before attempting the harder problem of constructing arbitrary nth roots of
clauses let us consider the simpler problem of constructing the square roots of
a clause. Figure 1 shows the self resolution of the clause C to give D, where
D € C?. Assume that this resolution involves the complementary pair (16;,1'0,)
where [ is a positive literal in C' and I is a negative literal in C and 6,6, is the
most general unifier (mgu) of [ and {". From the definition of a complementary
pair (Appendix A.1)
191 = 1102

where the domains of #; and 6, are subsets of vars(l) and vars(l') respectively.
Clause C' can be written as
I« I'AB (1)



Figure 1: Squaring a clause

where B is a conjunction of literals. If C is a definite clause and [ is an atom
then B will be a conjunction of atoms. D, any self-resolvent of C, has the general

form
l92 — l'91 N B01 A Beg (2)

The problem now is how to construct C' (clause 1) from D (clause 2). To do so
[, I' and B need to be reconstructed. A simple non-deterministic and incomplete
first-cut approach to this problem would seem to be as follows.

Algorithm 1 (a simple, flawed square root algorithm)
1. Choose from D a pair of literals (16,,10,) with the same predicate symbol.

2. Partition the clause D — {165, m} into two equal cardinality conjuncts BO,
and BOy which are both instances of a conjunct B.

3. Construct 01 and 0y by matching B to BO; and B0s.
4. Invert the substitution 61 on '0; and 0y on 10y to get I' and | respectively.

5. Returnl < I'AB

The following example, which uses Prolog-like notation, demonstrates Algorithm
1 at work.

Example 7 (Trace of Algorithm 1)
Let clause C be
It(F,G) + succ(F, H), It(H,Q)

and D be
It(I,J) < suce(1, K), succ(K, L), lt(L,J)

The steps in Algorithm 1 are followed below to reconstruct C from D.
1. Let 10y = Ut(I,J) and I'6; = It(L,J).



2. Let By = succ(l, K) and Bb, = succ(K, L), which are both instances of
B = succ(M,N).

3. 6 ={M/K,N/L} and 0, = {M/I, N/K}.

4. 1=1t(M,J) and ' = lt(N, J).

5. Return lt(M, J) < lt(N, J), succ(M, N)
which is an alphabetic variant of C.

Algorithm 1 has a number of shortcomings. Firstly, it is non-deterministic. This
could be overcome by constructing all possible solutions and returning those
which self-resolve to give alphabetic variants of C'. Secondly, Example 7 demon-
strates that the substitutions #; and 6, constructed in step 3 of Algorithm 1
can be incomplete. In Example 7 neither #; nor #y contain a substitution for
the variable J. Plotkin’s clauses in Section 1 provide an extreme example of the
incomplete construction of #; and 6,. In Plotkin’s example B is empty and there-
fore step 3 will fail to extract #; and 65. Thirdly, the inversion of the substitutions
in step 4 is not straightforward. If the use of inverse substitutions described in
[15] (defined also in Appendix A.2) is followed then there can be a multiplicity
of possible inverse substitutions of a particular substitution # applied to a given
literal /. Many of these problems can be avoided by first flattening the clause D,
constructing its square roots and then unflattening the results.

5.1 Flattening clauses

Rouveirol and Puget [23, 22] describe operations called flattening and unflatten-
ing to simplify inverse resolution. This form of operation is well-known within
the literature of integrating logic programming and functional programming (see
for instance [7, 4]). Rouveirol and Puget’s flattening operation transforms clauses
with function symbols into clauses in a function-free form. Unflattening a clause
transforms it back to its original form. The approach taken in this paper to flat-
tening clauses differs from Rouveirol and Puget in that only equality literals are
introduced rather than introducing new predicates. For the purposes of finding
the square roots of a clause, flattened clauses will be used with a particular goal
in mind. The goal is to ensure that the mgu involved in self-resolving a clause is
a special kind of substitution known as a renaming. Since renamings are easy to
invert they help solving some of the problems with Algorithm 1.

5.2 Renaming

Lloyd [13] defines a renaming substitution, or a renaming for short, as follows
(see Appendix A.1 for the definition of vars(F)).



Definition 8 (Renamings) Let F' be a well-formed formula and 0 = {uy /v, ..,
Un/vn} be a substitution. 0 is a renaming of F if and only if uy,..,u, are all
distinct variables, vy, .., v, are all distinct variables and (vars(F) —{uy, ..,up}) N

{’Ul, ey ’Un} = @

Renamings are easy to invert because they are one-to-one mappings. The inverse
of a renaming is defined as follows.

Definition 9 (Inverse renaming) Let 0 = {u1/v1, .., u,/v,} be a renaming of
the formula F. 0", the inverse of 0 for F, is the substitution {vi/u1, .., Vn/Un}

The following theorems about renamings can now be shown.

Lemma 10 (Renaming composed with its inverse is identity function)
Let 0 be a renaming of the well-formed formula F. F00" = F.

Proof. Each variable u in the domain of 0 s mapped to a distinct variable v by
0. v is then mapped back to u using 0.

Lemma 11 (Composition of renamings is a renaming) Let 6 be a renaming
of the formula F' and 7 be a renaming of F0. The substitution o7 is a renaming
of F.

Proof. Let u be mapped to v in 0. If v is in the domain of T and v is mapped to
w in T then u is mapped uniquely to w in or. Otherwise u is mapped uniquely to
vV InoT.

5.3 Flattening using equalities

As stated earlier the goal is to use flattening to ensure that the mgu involved
in self-resolving a clause C' is a renaming of C'. This can be done by flattening
the clause so that the only terms in the two recursing literals are sets of distinct
variables.

Example 12 (Flattening, squaring and unflattening a clause)
Let clause C be
member (G, [H|I|) <+ member(G,I)

C 1is flattened to to
member (G, J) < member(G,I), J = [H|I|

in which the only terms in the two recursing literals are sets of distinct variables.
Self-resolve C' involves resolving it with Co where o s a renaming of all the
variables in C. Thus Co might be

member(G', J') < member(G', I'), J' = [H'|I']



The head of C' can be resolved away with the member atom in the body of Co.
The mgu involved is the renaming 0 = {G'/G,I'/J} of C and the resolvent is

member (G, J') + member(G,I), J' = [H'|J], J = [H|I]
Unflattening this clause gives
member (G, [H', H|I|) + member (G, I)
which is the square of the clause C.

Flattening and unflattening of clauses need now to be formally defined. First the
function unflat is defined as follows.

Definition 13 (Unflattening) Let C be the clause D V E where D contains
no equality literals and E is the conjunction s; = t1 A Sy = to A .. A s, = t,.
unflat(C) = De€y..€, where €; is the mgu of s; and t; for 1 <i < n.

Unflattening is equivalent to resolving away all equality literals in the body of a
clause using the single axiom equality theory

X=X
The set of flattened clauses is defined as follows.

Definition 14 (Flattening) Let C' and D be clauses. D € flat(C) if and only
if C is an alphabetic variant of unflat(D).

5.4 Canonical flattening

Next a canonical flattening will be defined to capture the method of flattening
applied in Example 12.

Definition 15 (Canonical flattening) Let C and D = F V E be clauses in
which F' contains no equality literals and F is a conjunction of atoms. D is a
canonical flattening of C, or D € cf(C), if and only if D € flat(C) and every
literal in F has the form p(vy,..,v,) or p(vi, .., v,) in which vy, .., v, are distinct
variables and every atom in E has the form x =y or x = f(y1,--, Ym)-

Since it is intended to use canonical flattening to improve Algorithm 1 it is nec-
essary to show the following.

Theorem 16 (Mgu of squaring a canonical flattening is a renaming) Let
C be a clause and D be a canonical flattening of C. If D is self-resolved to give
E then the mgu involved in the resolution is a renaming of D.

Proof. Let D =1+ I' AB, let Do be D standardised apart using the renaming o
of D and let {I,1'c) be the pair of literals involved in the resolution of D and Do.

8



Letting | = p(uq, .., u,) and l'c = p(v1,..,v,) the mgu involved in the resolution
is 0 = {v1/u1,..,vn/un}. The variables uq,..,u, and vy,..,v, are all distinct
since both D and Do are canonical flattenings of C' (see Definition 15). The sets
{u1, .., un} and {vy,..,v,} are disjoint and none of the variables {v1, ..,v,} appear
in D since D and Do have been standardised apart. Therefore, by Definition 8,
0 s a renaming of D.

Next it is necessary to be assured that flattening a pair of clauses, resolving them
and then unflattening the resolvent gives the same result as resolving the original
clauses.

Lemma 17 (Unflattening distributes over resolution) Let C; and Cy be
clauses and Dy and Dy be flattenings of Cy and Cy respectively. The clause F' is
the resolvent of Dy and Dy only if unflat(F) is the resolvent of Cy and Cs.
Proof. Let Dy =1+« By ANE, and Dy =15 < I' N By A Ey where E, and E5 are
the set of all equality atoms in Dy and Ds. Let Cy = unflat(D;) = (I < Bi)e
and Cy = unflat(Dy) = (I < I' A By)ey where €, and €, are the substitutions
produced by resolving away E, and E, respectively. Let € = €1€5. Let D1 and Do
resolve on the pair of literals (1,1} to give F. Then unflat(F) is equivalent to

unflat(l2 — Bl AN BQ N E1 A E2 N (l = l,)) (3)

since unflat will unify and remove I and I". In the same way resolving C, and Cy
using the pair of literals (le,l'e) is equivalent to

unflat((ly < Bi ABa A (I =1"))e) (4)

Formula 4 can be derived from formula 3 by resolving away E1 N Es. This com-
pletes the proof.

As a corollary flattening, squaring and unflattening a clause must be equivalent
to squaring the original clause.

Corollary 18 (Flattening, squaring and unflattening) Let C' be a clause
and D be a flattening of C. The clause F is a square of D only if unflat(F) is
a square of C.

Proof. Let the renamings o and 7 be used to standardise apart C' and D respec-

tively. The corollary is now simply a restatement of Lemma 17 with C; = C,
Cy=Co, D =D and Dy = Dr.

This corollary applies to squaring a clause whereas the intention is to canoni-
cally flatten a clause, extract its square root and unflatten the result. Figure 2
iilustrates the following theorem.

Theorem 19 (Canonical flattening and squaring) Let C be a clause and
D be a canonical flattening of C. The clause F' 1s a square of D only if F' is a

9



flatten flatten

flatten

Figure 2: Flattening and squaring is equivalent to squaring and flattening

canonical flattening of a square of C.

Proof. Given Corollary 18 it is only necessary to show that squaring a canonical
flattening produces a canonical flattening. Let D = | < I' N B AN E where E is
conjunction of all equality atoms. Let o standardises Do apart from D. Let D
and Do resolve with complementary pair (101,1'c0y) to give F =

l0'92 — l’gl A (B A E)01 A (B N E)O-GQ

According to Lemma 11, since o is a renaming of D and 0 is a renaming of
Do their composition oy is a renaming of D. FEvery subcomponent of F' is a
renaming of a canonical flattening. Therefore F' is a canonical flattening.

5.5 An improved square root algorithm

Theorem 19 suggests the following nondeterministic algorithm for extracting the
square roots of a clause.

Algorithm 2 (Square root algorithm)
1. Canonically flatten the input clause G to give clause F.
2. Choose from F a pair of literals (105, 1'0,) with the same predicate symbol.

3. Partition the clause F — {10,,1'0,} into two equal cardinality conjuncts B,
and Bfy from which B s constructed by taking the least generalisation of
corresponding pairs of literals which are alphabetic variants.

4. Construct the renamings 01 and 0y of D by matching B to B6, and B6,.

5. Apply 67 to I'0, and 605 to 10y to get I and | respectively (see Lemma 10).

10



6. Return C =unflat(l < I' A B) if G is the square of C.
This can now be applied to Plotkin’s example from Section 1.

Example 20 (Trace of Algorithm 2)
Let clause G be p(f(f(X))) < p(X).
The steps in Algorithm 2 are followed below.

1. Fisp(Y)+ p(X),Y = f(2), Z = f(X).
Let 10y = p(Y) and I'0; = p(X).
Let By be (Y = f(Z)), Bb, be (Z = f(X)) and B be (U = f(V)).

6, is the renaming {U/Z,V/X} of D and 0, is the renaming {U/Y,V/Z}
of D.

5. 07 is {ZJU XV}, 605 is {Y/U, Z/V}Y, | = 10:05 = p(U) and I' = 1'6,6] =
p(V).

6. Return C = unflat(p(U) < p(V), U = f(V)) which is p(f(V)) < p(V).
G 1is the square of C.

The following theorem shows that Algorithm 2 is complete and correct in a non-
deterministic sense.

Theorem 21 (Completeness and correctness of Algorithm 2) Let C be a
clause and G be a square of C. When Algorithm 2 is presented with G there is a
set of choices made in steps 1, 2 and 3 which will construct an alphabetic variant
of C.

Proof. Algorithm 2 is correct since step 6 guarantees that any solution returned
will be a square root of C'. Therefore it is necessary to show it is complete in the
sense that an alphabetic variant of every square root of G can be constructed given
appropriate choices for the non-deterministic steps 1, 2 and 3. This is guaranteed
by Theorem 19 since there is a canonical flattening F' of G which has the form

l002 — l'01 A (B A E)01 A (B A\ E)O—OQ

f D=1+ UANBAE and C = (I < I' A B)e (see proof of Theorem 19).

5.6 Problems with Algorithm 2

Despite Theorem 21, applying Algorithm 2 is not without problems. The prob-
lems are to do with generating flattened clauses in step 1. Consider again the
canonically flattened clause D =

< UANBAE

11



Original variables || uy | v1 | .. | Up | Up
0, T1 | wy | .| Tp | Wy
01 wr | Y1 - | Wy | Yn

Figure 3: Initialisation of substitution table

and its square F' =
l02 — l’91 N 301 A BOQ A E01 N E92

Certain terms and literals will not appear in unflat(F') under the following con-
ditions.

e Literals m and m' appear in BA E for which mf; = m/f,. Only one instance
will therefore appear in F.

e The equality v = t appears in F6; A Ef; and v does not appear in any other
literal in D. The term t will therefore not appear in unflat(F).

e The equalities v = s and v = t appear in Ef; A Ef, and s # t. Only the
term formed by unifying s and ¢ appears in unflat(F).

Restrictions could be devised for the clausal language to which Algorithm 2 can
be straightforwardly applied. However this approach will not be followed up in
this paper.

5.7 Tabulated substitutions

Steps 3 and 4 of Algorithm 2 cannot be wholly separated. From a programming
point of view it makes sense to build up the substitutions #; and 6, at the same
time as matching literals in step 3. Only literals which lead to #; and 6, being
renamings should be matched. A simple way to do this is to build up a three row
table of variables. The first row represents variables in the flattened version of
C. The second and third rows represent the unique mappings of these variables
in 6, and ;. When initialising this table it is possible to take advantage of a
constraint related to the unification of the recursing literals [ and I'. Suppose
that | = p(uq,..,u,) and I' = p(v1,..,v,). These must unify to give a literal
p(wy, .., w,) where 10y = p(x1,..,2,) and I'0; = p(y1, .., yn). This constraint can
be represented in the initialised substitution table shown in Figure 3.

The following example demonstrates the use of such a substitution table in
Algorithm 2 for the predicate split which breaks a list into two approximately
equal lengthed sublists.

12



Example 22 (Use of substitution table)
Let G be split([H,I|J],[H|K],[I|L]) < split(J, K,L). The steps in Algorithm 2
are followed below.

1. Fis split(M, N,0) « split(J, K, L),M = [H|P],P = [I|J],N = [H|K],0 =
[7]L].

2. Let 105 = split(M, N,O) and l'6; = split(J, K, L).

3. The substitution table is initialised to

Original variables | @ | R | S |T | U |V
02 M w1 N W2 (0] W3
91 w1 J Wo K W3 L

Let BO, be (M = [H|P], N = [H|K]), B, be (P = [I|J],0 = [I|L]) and B
be (Q = [W|R],S = [W|V]). The final substitution table is

Original variables | @ | R | S | T | V| W
0o M|P|N|O|K|H
01 P|J|O|K|L|I

(Note that that the constraint described in Figure 3 led to the merging of
columns of original variables T and U).

4. 0y is the renaming {P/Q,J/R,0/S,K/T,L/V,1/W} and
Byis the renaming {M/Q, P/R,N/S,O/T,K/V,H/W}.

5. 07 is the renaming {Q/P,R/J,S/O,T/K,V/L,W/I},
0%is the renaming {Q/M,R/P,S/N,T/O,V/K,W/H},
[ = 10,05 = split(Q, S, T) and
I'=1010,07 = split(R, T, V).

6. Return C = unflat(split(Q,S,T) « split(R,T,V), Q@ = [W|R], S =
(W|V]) which is split((W|R],[W|V],T) < split(R,T,V). G is the square
of C.

6 Constructing the nth roots of a clause

In this section the construction of nth roots of clauses is investigated. Assume
that D is a canonical flattening of the clause C' . Figure 4 shows D resolved
n times against itself to give the clause F', where F' € D™. Suppose that this
self-resolution always involves instances of the literals [ and I’ from D. This is

13



Figure 4: Self-resolving a clause n times

a simplifying assumption since D need not always self-resolve using instances of
the same pair of literals. If clause D is

l<~UAB

then clause F is

l92n — l10103..02n_1/\ 39103--0271—1/\
B0,0505..09,_1 A
AN
By, _202n, 1A
BoZn

Note that F' contains n instances of B. One of these instances has the same
substitution as the instance of | (f2,). Another instance of B has the same
substitution as the instance of I' (61603..02, 1). In the above it was assumed that
self-resolution always involved instances of the literals [ and I’ from D. Somewhat

surprisingly, the phenomenon of corresponding substitutions occurs for all clauses
in D™

Theorem 23 Let D be a clause, n be an integer greater than 1 and F' be a clause
in D™. F has the form Iy, VvV By V By, V ..V By, where | and l' are atoms
in D with the same predicate symbol and B = D — {l,1I'}.

Proof. The proof is by mathematical induction on k. The base case, n = 2, is
true since if D self-recurses with complementary pair (10,1'6;) then F is 10y <
I'60,v B0,V Bfy. Assume the theorem is true for all integers from 2 to k and prove
it follows for k+1. Let F in D* be Iy, VI,V By, VBy,V..V By, and D be IVI'VB.
Assume F and D resolve with complementary pair (Iyic, I'3) and mgu o3 where
the domains of o and [ are subsets of vars(ly:) and vars(l') respectively. The

14



resolvent of F and D in D¥*! is I3V I'ypaV ByiaV By,aV ..V By,aV BB. This
clause fulfills the condition and completes the proof.

By extending the arguments of the previous section it can be shown that F' must
be a canonical flattening of a clause G which is an nth power of C.

Theorem 24 (Canonical flattening and nth powers) Let C be a clause and
D be a canonical flattening of C. The clause F' is an nth power of D only if F
is a canonical flattening of an nth power of C.

Proof. The proof is by mathematical induction on k. The base case, n =1, is
true since D is a canonical flattening of C. Assume it is true for all n up to k
and prove for k+1. F in D*¥*1 is constructed by resolving D with F' in D*. From
the inductive hypothesis and Lemma 17, F is a flattening of a clause in D**1,
Since the mgu 6 involved in constructing F' is simply a composition of renamings
it follows from Lemma 11 that 0 is a renaming. The set difference between F' and
F' is a renaming of a subset of D and thus F is a canonical flattening of a clause
in DFTL. This completes the proof.

This allows a slight variant of Algorithm 2 to be used for constructing the nth
roots of a given clause. In the following we assume that n is given and that F’
contains the literals I3 and ['a.

Algorithm 3 (nth root algorithm)
1. Canonically flatten the input clause G to give clause F'.
2. Choose from F a pair of literals (13,1'a) with the same predicate symbol.

3. Choose two equal cardinality conjuncts of literals Ba and BB from clause
H = (F—{I3,I'a}) each of which have an nth of the cardinality of H from
which B is constructed by taking the least generalisation of corresponding
pairs of literals which are alphabetic variants.

4. Construct renamings o and 3 by matching B to Ba and BS.
5. Apply o to la and " to I'3 to get | and I' respectively.
6. Return C = unflat(l < I' A B) if G is the square of C.

The following example demonstrates Algorithm 3 on Plotkin’s example from Sec-
tion 1 with n = 4.

Example 25 (Trace of Algorithm 3)

Let clause G be p(f(f(f(f(X))))) < p(X).
The steps in Algorithm & are followed below.

1. F isp(H) (—p(X), H:f(I)7 I:f(J), J:f(K)7 K:f(X)

15



Let la = p(H) and I'3 = p(X).
Let Ba be (H = f(I)), Bf be (K = f(X)) and B be (L = f(M)).

« is the renaming {L/H, M /I} and (3 is the renaming {L/K, M/X}.

o is the renaming {H/L,I/M}, 3" is the renaming {K/L,X/M}, | =
lad™ =p(L) and ' =1'B5" = p(M).

6. Return C = unflat(p(L) < p(M), L = f(M)) which is p(f(M)) < p(M).
G is the fourth power of C.

The following theorem shows the completeness and correctness of Algorithm 3.

Theorem 26 (Completeness and correctness of Algorithm 3) Let C be a
clause and G be an nth power of C. When Algorithm 3 is presented with G there
15 a set of choices made in steps 1, 2 and 3 which will construct an alphabetic
vartant of C'.

Proof. Algorithm 2 is correct since step 6 guarantees that any solution returned
will be a square root of C. Therefore it is necessary to show its completeness.
This is quaranteed by Theorems 23 and 24.

6.1 Problems with Algorithm 3

The primary problem with applying Algorithm 3 is deciding the value of n for
any given clause. One clue here comes from the form of the canonically flattened
clause shown in Section 6. Since clause H = (F — {la, I'3}) contains n instances
of B, the number of occurrences of every predicate and function symbol in H
must be a multiple of n. From this fact there should be a small finite number
of candidate values for n for any given clause. However, it should be noted that
literals and terms can be lost in the three ways listed in Section 5.6.

Note also that Corollary 3 says that in order to construct clause C' which
implies clause D, it is necessary to first construct a clause F which subsumes
D. But how should F be chosen? One way is to drop literals from a canonical
flattening of D until appropriate numbers of occurrences of predicate and function
symbols remain in . Then take the nth root to give C.

7 Implication and background knowledge

In the normal setting of Inductive Logic Programming [14] generalisation is car-
ried out in the presence of background knowledge. In this section the solution to
inverting implication between clauses is extended to the case in which background
knowledge is present.

16



Assume a background clausal theory 7" and a clause (or example) C' which is
not entailed by 7". Assume that there is a single clause D such that

TAND = C

This problem can be transformed to one involving implication between single
clauses as follows.

TAD = C
D = (I'-0C)
= D—(T—-C)

= D— (TAQC)

In the last line (T'A C) is replaced with a conjunction of all ground literals which
can be derived from (T A C). This can be viewed as replacing the formula with a
model of the formula. Since (I; Aly A...) is a conjunction of literals, the last line
above represents implication between two clauses. The clause (I; VI V ...) can
be constructed to be of finite length if 7" is generative (see [16]) and elements of
the model are only constructed to a finite depth of resolution. This clause can
then be used to construct D using the methods described in previous sections.

8 Conclusion

In this paper the general problem of inverting implication is discussed. This prob-
lem is at the heart of research into Inductive Logic Programming and Machine
Learning in general since all forms of generalisation involve inverting implica-
tion. The methods and algorithms described in this paper are derived from a
first principles approach to the problem and extend previous approaches such as
those using inverse resolution [15, 14, 22, 24] and relative least general generali-
sation [19, 2, 16].

Although a first attempt has been made at this problem in a previous paper by
Lapointe and Matwin [11] the author believes the approach taken in this paper to
be more general and comprehensive. Various remaining problems with the square
root and nth root algorithms are described in Sections 5.6 and Section 6.1. The
problems of time complexity of these algorithms is not discussed here. Also no
implementation of the approach described in this paper has been made.

As Lapointe and Matwin noted, the advantages of extending the generalisa-
tion techniques beyond those of inverse resolution [14] lie in the fact that fewer
examples are required to learn recursive clauses. Recursive clauses have not been
vital for the success of several real world applications of Inductive Logic Pro-
gramming [17, 10, 6, 5]. However, they are of central interest within problems

17



involving construction of arbitrary programs. Traditionally this area has involved
deductive techniques within the area known as formal methods. According to a
recent paper by Hoare [9]

Given specification S, the task is to find a program P which satis-
fies it, in the sense that every possible observation of every possible
behaviour of the program P will be among the behaviours described
(and therefore permitted by) the specification of S. In logic, this
can be assured with mathematical certainty by a proof of the simple
implication

FP—S.

Note that this problem is encompassed by the discussion in this paper. However,
the requirements for Inductive Logic Programming are slightly weaker than those
described by Hoare, since if the specification S is an incomplete set of examples
then not all behaviours of P are defined. However, there is nothing in the present
discussion to stop one making use of arbitrary (non-ground) formulae instead of
examples. Such formulae could comprise a specification in the sense that “every
possible observation of every possible behaviour of the program P will be among
the behaviours described”. The background knowledge referred to in Inductive
Logic Programming maps to the the set of abstract data types and data opera-
tions used in formal methods approaches. Note also that using the approach in
this paper P — S should be ensured by construction and is similar in that way to
the approach of transformational programming introduced first by Burstall and
Darlington [3].

Acknowledgements.

The author would like especially to thank Ashwin Srinivasan for useful input
during this research. Thanks are also due to Wray Buntine, Stuart Russell and
members of the Turing Institute Inductive Logic Programming group for helpful
and interesting discussions on the topics in this paper. This work was supported
by the Esprit Ecoles ILP project 6020.

Appendix

A Definitions from logic

A.1 Formulae in first order predicate calculus

A variable is represented by an upper case letter followed by a string of lower
case letters and digits. A function symbol is a lower case letter followed by a
string of lower case letters and digits. A predicate symbol is a lower case letter
followed by a string of lower case letter and digits. The negation of F is F. A

18



variable is a term, and a function symbol immediately followed by a bracketed
n-tuple of terms is a term. Thus f(g(X),h) is a term when f, g and h are
function symbols and X is a variable. A predicate symbol immediately followed
by a bracketted n-tuple of terms is called an atomic formula, or atom. Both
! and [ are literals whenever [ is an atomic formula. In this case [ is called a
positive literal and [ is called a negative literal. The literals / and [ are said to
be each others complements and form, in either order, a complementary pair.
A finite set (possibly empty) of literals is called a clause. The empty clause is
represented by 0. A clause represents the disjunction of its literals. Thus the
clause {l1,ls,..l;, l;11, ...} can be equivalently represented as (I; VIoV..; VI 1 V...)
or ly,lo,.. < lj,lit1,.... A Horn clause is a clause which contains at most one
positive literal. A definite clause is a clause which contains exactly one positive
literal. The positive literal in a definite clause is called the head of the clause
while the negative literals are collectively called the body of the clause. A set of
clauses is called a clausal theory. The empty clausal theory is represented by B. A
clausal theory represents the conjunction of its clauses. Thus the clausal theory
{C1,Cy, ...} can be equivalently represented as (Cy A Cy A ...). A set of Horn
clauses is called a logic program. Apart from representing the empty clause and
the empty theory, the symbols O and B represent the logical constants False and
True respectively. Any clause, such as [ < [, which is equivalent to B is said to
be a tautology. Literals, clauses and clausal theories are all well-formed-formulae
(wif’s). Let E be a wif or term. vars(FE) denotes the set of variables in E. F is
said to be ground if and only if vars(E) = (.

A.2 Models and substitutions

A set of ground literals which does not contain a complementary pair is called
an interpretation. Let M be an interpretation, C be a clause and C be the set of
all ground clauses obtained by replacing the variables in C' by ground terms. M
is a model of C' if and only if each clause in C contains at least one literal found
in M. M is a model for clausal theory T if and only if M is a model for each
clause in T. Let F; and F; be two wff’s. F} semantically entails Iy, or Fy = I
if and only if every model of Fj is a model of F5. F} is said to syntactically entail
F; using I, or Fi;F,, if and only if F5 can be derived from F} using the set of
deductive inference rules /. The set of inference rules I is said to be deductively
sound and complete if and only if FiF;F> whenever F; = F5. In this case the
subscript can be dropped and one can merely write F; - F5. Let F} and F5, be
two wif’s. I is said to be more general than F5 if and only if F} - F,. A wif F'is
satisfiable if there is a model for F' and unsatisfiable otherwise. F'is unsatisfiable
if and only if F' = O. The deduction theorem states that Fy A Fy = F3 if and
OIl]y if F1 ): F2 — F3.

Let 8 = {v/t1,..,v,/t,}. 6 is said to be a substitution when each v; is a
variable and each ¢; is a term, and for no distinct ¢ and j is v; the same as v;.

19



The set {v1,..,v,} is called the domain of 6, or dom(#), and {t1,..,¢,} the range
of 0, or rng(f). Lower case Greek letters are used to denote substitutions. Let E
be a well-formed formula or a term and 6 = {v,/t1,..,v,/t,} be a substitution.
The instantiation of E by 6, written E#, is formed by replacing every occurrence
of v; in E by t;. Let F be a well-formed formula and 6 = {u;/v, .., u,/v,} be a
substitution. € is a renaming of F'if and only if u4, .., u,, are all distinct variables,
v1, .., Up are all distinct variables and (vars(F) — {uq, ..,un}) N {v1, .., v,} = 0.
Every sub-term within a given term or literal [ can be uniquely referenced by
its place within [. Places within terms or literals are denoted by n-tuples of
natural numbers and defined recursively as follows. The term at place (i) within
f(toy .., tm) is t;. The term at place (i, .., ,) within f(to,..,t;) is the term at
place (i1,..,%,) in ;. Let ¢ be a term found at place p in literal I, where [ is a
literal within clause C. The place of ¢ in C is denoted by the pair ([, p). Let E be
a clause or a term and 6 = {v;/t1, .., v, /t,} be a substitution. The corresponding
inverse substitution 01 is {{t1, {P1,1, --» P1imy }) /015 - {tny {Pn,15 - P1mn })/Vn}- An
inverse substitution is applied by replacing all ¢; at places p; 1, .., Dim; Within E
by v;. Clearly E0~' = E. Note that an inverse substitution is not strictly a
substitution but rather a rewrite. Let C' and D be clauses. It is said that C
f-subsumes D if and only if there exists a substitution # such that C§ C D.

A.3 Resolution

Let F; and F, be two wff’s and # be a renaming of F;. F6 and F, are said to
be standardised apart whenever there is no variable which occurs in both F;0
and Fy. If 6 is used to standardise apart formula F' and F@ then F and F6
are said to be alphabetic variants. The substitution # is said to be the unifier
of the atoms [ and " whenever 16 = ['§. p is the most general unifier (mgu) of
[ and [" if and only if for all unifiers v of [ and I’ there exists a substitution §
such that (Iu)d = ly. ((C = {1}) U (D — {I'}))8 is said to be the resolvent of the
clauses C' and D whenever C' and D are standardised apart, | € C, I' € D, 0 is
the mgu of [ and I'. That is to say that (I§,1'0) is a complementary pair. The
resolvent of clauses C' and D is denoted (C - D) when the complementary pair
of literals is unspecified. The ‘-’ operator is commutative, non-associative and
non-distributive.

Let T be a clausal theory. Robinson [21] defined the function R™(7") recur-
sively as follows. R%(T) = T. R™(T) is the union of R™ ! and the set of all
resolvents constructed from pairs of clauses in R™ !(T'). Robinson showed that
T is unsatisfiable if and only if there is some n for which R"(T) contains the
empty clause (O).

20



References

1]

2]

3]

[4]

[5]

[6]

7]

8]

[9]

[10]

[11]

[12]

M. Bain and S. Muggleton. Non-monotonic learning. In D. Michie, editor,
Machine Intelligence 12. Oxford University Press, 1991.

W. Buntine. Generalised subsumption and its applications to induction and
redundancy. Artificial Intelligence, 36(2):149-176, 1988.

R.M. Burstall and J. Darlington. A transformation system for developing

recursive programs. Journal of the Association for Computing Machinery,
24:44-67, 1977.

B. Carlson, F. Kant, and Wiinsche. A scheme for functions in logic pro-
gramming. UPMAIL 57, Uppsala Programming Methodology and Artificial
Intelligence Laboratory, Uppsala, Sweden, 1989.

B. Dolsak and S. Muggleton. The application of Inductive Logic Program-
ming to finite element mesh design. In S.H. Muggleton, editor, Inductive
Logic Programming. Academic Press, London, 1992.

C. Feng. Inducing temporal fault dignostic rules from a qualitative model.

In S.H. Muggleton, editor, Inductive Logic Programming. Academic Press,
London, 1992.

E. Giovannetti and C. Moiso. Some aspects of the integration between logic
programming and functional programming. In P Jorrand and V. Sgurev,
editors, Artificial Intelligence II. Methodology, Systems, Applications, pages
69-79. North-Holland, 1987.

G. Gottlob. Subsumption and implication. Information Processing Letters,
24(2):109-111, 1987.

C.A.R. Hoare. Programs are predicates. In Proceedings of the Final Fifth
Generation Conference, Tokyo, 1992. Ohmsha.

R. King, S. Muggleton, and M.J.E. Sternberg. Drug design by machine
learning. Proceedings of the National Academy of Sciences, 1992. To appear.

S. Lapointe and S. Matwin. Sub-unification: a tool for efficient induction
of recursive programs. In Proceedings of the Ninth International Machine
Learning Conference, Los Altos, 1992. Morgan Kaufmann.

C. Lee. A completeness theorem and a computer program for finding theorems
derivable from given axioms. PhD thesis, University of California, Berkeley,
1967.

21



[13] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin,
1984.

[14] S. Muggleton. Inductive logic programming. New Generation Computing,
8(4):295-318, 1991.

[15] S. Muggleton and W. Buntine. Machine invention of first-order predicates
by inverting resolution. In Proceedings of the Fifth International Conference
on Machine Learning, pages 339-352. Kaufmann, 1988.

[16] S. Muggleton and C. Feng. Efficient induction of logic programs. In Proceed-
ings of the First Conference on Algorithmic Learning Theory, Tokyo, 1990.
Ohmsha.

[17] S. Muggleton, R. King, and M. Sternberg. Predicting protein secondary
structure using inductive logic programming, 1991. submitted to Proteins.

[18] T. Niblett. A study of generalisation in logic programs. In EWSL-88, Lon-
don, 1988. Pitman.

[19] G.D. Plotkin. Automatic Methods of Inductive Inference. PhD thesis, Edin-
burgh University, August 1971.

[20] R. Quinlan. Learning logical definitions from relations. Machine Learning,
5:239-266, 1990.

[21] J.A. Robinson. A machine-oriented logic based on the resolution principle.
JACM, 12(1):23-41, January 1965.

[22] C. Rouveirol. Extensions of inversion of resolution applied to theory com-
pletion. In S.H. Muggleton, editor, Inductive Logic Programming. Academic
Press, London, 1992.

[23] C. Rouveirol and J-F Puget. A simple and general solution for inverting
resolution. In EWSL-89, pages 201-210, London, 1989. Pitman.

[24] R. Wirth. Completing logic programs by inverse resolution. In EWSL-89,
pages 239-250, London, 1989. Pitman.

22



