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Abstract. It is best to learn a large theory in small pieces. An approach
called “layered learning” starts by learning an approximately correct
theory. The errors of this approximation are then used to construct a
second-order “correcting” theory, which will again be only approximately
correct. The process is iterated until some desired level of overall theory
accuracy is met. The main advantage of this approach is that the sizes of
successive training sets (errors of the hypothesis from the last iteration)
are kept low. General lower-bound PAC-learning results are used in this
paper to show that optimal layered learning results in the total training
set size (t) increasing linearly in the number of layers. Meanwhile the
total training and test set size (m) increases exponentially and the error
(e) decreases exponentially. As a consequence, a model of layered learn-
ing which requires that ¢, rather than m, be a polynomial function of
the logarithm of the concept space would make learnable many concept
classes which are not learnable in Valiant’s PAC model.

1 Introduction

Since the introduction [6] of the Probably-Approximately-Correct (PAC) model
of learning many theoretical results indicate that it is not possible to learn a
great deal at once. Indeed it is clear that weakly constrained languages either
require too many examples to describe the target concept sufficiently accurately,
or require an untractably large amount of time for concept formation and testing.
In this paper an incremental approach called “layered learning” is investigated
and analysed using general lower-bound results for PAC learning. Layered learn-
ing proceeds by first taking a small sample from a stream of data and using
it to construct an approximately correct theory. A second approximately cor-
rect theory is then constructed based on the errors of the first theory in a new
sample which is a supserset of the first. Further layers of correcting theories are
then added using successively larger samples until a pre-specified level of overall
theory accuracy is achieved. This approach is similar to what Quinlan [5] calls
“windowing”.

Clearly the minimal example requirements for layered learning will be limited
by existing general lower-bound PAC results. However, it is also clear that most
of these examples will simply be used for testing the present stage of the theory.
Only a small number of examples, related to the present error-rate, will be used



for any layer of the training set. In this paper it is shown using lower-bound
PAC learning results that an optimal use of examples leads to the following.

— the total training set increases linearly with the number of layers,
— the total test set increases exponentially with the number of layers and
— the error decreases exponentially with the number of layers.

2 Lower bound PAC result

Valiant [6] introduced what has now become a widely studied stochastic model of
machine learning. In this model positive and negative examples of some unknown
concept, chosen from a concept class C, are presented to a learning algorithm.
These examples are drawn according to a fixed but arbitrary probability dis-
tribution. From the examples drawn, the learning algorithm must, with high
probability, produce a hypothesised concept that is a good approximation to the
target.

Suppose the concept class C' is of size 2. Then if a uniform prior distribution
over the concept class is assumed each concept ¢ € C' can be expressed in n
bits. According to [3] the following is an expression of the minimum number of
examples, m, required to allow construction of an hypothesis H for which the
probability of error(H) < € is at least 1 — 4.

_ n+ln(%)
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Existing algorithms for learning monomials, kDNF formulae, kCNF formulae
and symmetric functions all use the optimal number of examples (within a con-
stant factor).

The result can be re-expressed as follows to give the accuracy (1—e) expected
in terms of m, n and 4.

1
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Since n is measured in bits, for a fixed value of , x is proportional to the number
of examples required per bit of the concept learned. For fixed values of § and
n, z is simply proportional to m. Figure 1 shows the increase of accuracy with
increasing x. Note the following properties of this curve.

1. d(1—¢€)/dr - 0asz — 0.
2. d(1—-¢€)/dz = 0 as z — 0.
3. (1 — €) increases monotonically with x.

These observations correspond to a law of diminishing returns in machine learn-
ing. When only a small number of examples have been observed accuracy in-
creases slowly with each example. The same occurs when a large number of
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Fig. 1. Increase of (1 — ¢) with z

examples have been observed. The maximum rate of accuracy increase occurs

somewhere between these two extremes. By setting the double differential to
. - _1 :

zero we find that the maximum increase of e~ = occurs when x = %, ie.

(1—€)=e?2=0.135

Note that this maximum rate of accuracy increase is independent of m, n and 4.
Since the lower-bound PAC results on which this are based are also independent
of both the example distribution and the concept language it can be considered
that an accuracy of (1 — €) = e~2 has a fundamental significance throughout
inductive learning.

3 Maximising performance increase per example

In the last section it was demonstrated that when using lower-bound PAC learn-
ing results maximum performance increase occurs when (1 — €) = e~2. However
the point of maximum increase in accuracy at

_n—}—ln(%)
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does not provide the optimal number of examples required for the first stage of
layered learning. In order to make best use of the training set it is necessary to
maximise the accuracy achieved per training example in the first stage. This can
be done by solving

d (1-¢ _ 0
dm m
This gives
1
m=mn-+ ln(g)
for which

(1—€)=e1=0.368

The increase of (1 — €)/z with z is shown in Figure 2.
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Fig. 2. Increase of (1 —¢)/z with z

4 Two stage layered learning

In the last section we found that the optimal number of training examples for the

first stage of layered learning is that which produces an accuracy of (1—e;) = e~ L.

Suppose that an accuracy of e~! is produced from a training set of size m; in



at least (1 — d) proportion of retrials. It is now possible to predict that the size,
in bits, of the target concept to be learned is

1

n=m; — ln(g)

Now suppose that the total sample for training and testing in two staged layered
learning is my. Since only the errors in the second sample are used for training,

the total training set to (stage 1 + stage 2) is

ty = my + €1(ma —my)

Solving dt,
s =
gives
Wh=2mr=%n+m%D

The error after stage two will thus be
(1—€)=e"2 =0.607

5 Multi-stage layered learning

The analysis of the previous section can be extended to multi-stage layered
learning by repeatedly partially differentiating with respect to m;. First consider
the infinite series defining the size of the training set ¢ in terms of the partial
training and test sets m; and the corresponding error-rates ;.

t=my+e(me —my) + ...+ €(mipr —m;) + €41(Mig2 —mip1) +... (1)

Setting to zero the partial differential with respect to m;1 gives

Oe;
— (mip1 6;;+1 +€i41) =0 (2)
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To simplify the above b and z; are defined as follows

b:m+m%»

m;
Ty = —

b

€; can now be approximated using series expansion as follows.
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Simplifying equation (2) and rearranging gives

mi+12 b
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It can be shown that z; is an exponential series as follows. Let 1 = a and
z9 = ad. Then it follows from the above that

x5 ~ ad?
24 ~ ad®

x5 ~ ad*

and in general
Titl L4
ZT; -

The general term in equation (1) can now be expressed as

tiv: = €;(mip1 —m;)

= €b(zit1 — )

b
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Thus for fixed n and §, and large z; the size of each successive training set remains
constant at b(d — 1) for each value of i. The total training and test set increases
exponentially in i since z; ~ ad'~'. Similarly the error decreases exponentially
since €; ~ wi Without approximations, equation (2) can be rearranged to show
that

1 1 1

Tiya = (1+ — €Tt g2
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This recurrence formula is used in Figure 3 to give a tabulation of t; /b (relative
training set size), x; (relative test set size) and €; (error) for ¢ ranging between
1 and 10. Note that although ¢;/b is not a constant (it asymptotes to one), this
tabulation shows that the three general trends arrived at in the analysis above
hold for large x;.
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Fig. 3. Relative size of training set, test set and error for various values of ¢

6 Discussion

Layered learning offers a general approach to incremental machine induction in
which successive layers of constructed knowledge decrease the error exponen-
tially. Since successive training sets remain constant in size a learner can reach
arbitrarily low values of € without increasing memory requirements.

For instance, layered learning of a 10,000 bit theory requires around 6,100
training examples in each layer to produce arbitrarily low error (see Figure 3).
However, the cumulative training and test set size at layer 10 would be 1,166,200
examples.

Suppose that the memory limit of the inductive learner is I < 6,100. The
same general effect can be achieved as that in Figure 3 by letting [ = b(d — 1),
ie.d= % + 1. In this case errors would still reduce in O(d~?).

Layered learning provides a basis in computational complexity for what has
been termed “predicate invention” within the field of Inductive Logic Program-
ming [4]. Predicate invention involves the decomposition of predicates being
learned into useful sub-concepts. Such sub-concepts can be viewed as modifiers
to predicate definitions which would otherwise be both incomplete and incorrect.
This approach is similar to that taken in [2, 1] and [7].

A model of layered learning which requires ¢, rather than m, to be a polyno-
mial function of the number of bits in the target concept would make learnable
many concept classes which are not learnable in Valiant’s PAC model. The com-
putational complexity of learning such concept classes is not explored in detail
in this paper. However, it is believed that this will be a fruitful topic for future
research.
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