
Chapter 14

LOGIC-BASED MACHINE LEARNING

Stephen Muggleton and Flaviu Marginean

Department of Computer Science

University of York

Heslington, York, YO1 5DD

United Kingdom

Abstract The last three decades has seen the development of Computational

Logic techniques within Arti�cial Intelligence. This has led to the

development of the subject of Logic Programming (LP), which can

be viewed as a key part of Logic-Based Arti�cial Intelligence. The

subtopic of LP concerned with Machine Learning is known as \Inductive

Logic Programming" (ILP), which again can be broadened to Logic-

Based Machine Learning by dropping Horn clause restrictions. ILP

has its roots in the ground-breaking research of Gordon Plotkin and

Ehud Shapiro. This paper provides a brief survey of the state of ILP

applications, theory and techniques.

Keywords: Inductive logic programming, machine learning, scienti�c discovery,

protein prediction, learning of natural language

1 INTRODUCTION

As envisaged by John McCarthy in 1959 (McCarthy, 1959), Logic has turned

out to be one of the key knowledge representations for Arti�cial Intelligence

research. Logic, in the form of the First-Order Predicate Calculus provides

a representation for knowledge which has a clear semantics, together with

well-studied sound rules of inference. Interestingly, Turing (Turing, 1950) and

McCarthy (McCarthy, 1959) viewed a combination of Logic and Learning as

being central to the development of Arti�cial Intelligence research. This article

is concerned with the topic of Logic-Based Machine Learning (LBML). The

modern study of LBML has largely been involved with the study of the learning

of logic programs, or Inductive Logic Programming (ILP) (Muggleton, 1991).

Many of the foundational results of both Gordon Plotkin (Plotkin, 1971) and

Ehud Shapiro (Shapiro, 1983) are still central to the study and conceptual

framework of ILP. This is true despite the fact that Plotkin did not employ

Horn clause restrictions.

ILP is a general form of Machine Learning which involves the construction

of logic programs from examples and background knowledge. The subject

321

322 LOGIC-BASED ARTIFICIAL INTELLIGENCE

has inherited its logical tradition from Logic Programming and its empirical

orientation from Machine Learning. Robert Kowalski (Kowalski, 1980)

famously described Logic Programming (LP) with the following equation.

LP = Logic + Control

The equation emphasizes the role of the programmer in providing sequencing

control when writing Prolog programs. In a similar spirit we might describe

ILP as follows.

ILP = Logic + Statistics + Computational Control

The logical part of ILP is related to the formation of hypotheses while the

statistical part is related to evaluating their degree of belief. As in LP the

Computational Control part is related to the sequencing of search carried out

when exploring the space of hypotheses.

The structure of the paper is as follows. Section 2 introduces the key

elements of ILP, provides a formal framework (Section 2.1) for the later

discussion and discusses how Bayesian inference (Section 2.3) is used as a

preference mechanism. Section 3 describes applications of ILP to problems

related to discovery of biological function. ILP has a strong potential for being

applied to Natural Language Processing (NLP). The resultant research area of

Learning Language in Logic (LLL) is described in Section 4 together with some

encouraging preliminary results. Conclusions concerning ongoing ILP research

are given in Section 5.

2 ILP

ILP algorithms take examples E of a concept (such as a protein family)

together with background knowledge B (such as a de�nition of molecular

dynamics) and construct a hypothesis h which explains E in terms of B.

For example, in the protein fold domains (Section 3.2.2), E might consist of

descriptions of molecules separated into positive and negative examples of a

particular fold (overall protein shape). This is exempli�ed in Figure 14.1 for

the fold \4-helical-up-and-down-bundle". A possible hypothesis h describing

this class of proteins is shown in Figure 14.2. The hypothesis is a de�nite

clause consisting of a head (fold(..,..)) and a body (the conjunction length(..),

.. helix(..)). In this case \fold" is the predicate involved in the examples and

hypothesis, while \length", \position", etc. are de�ned by the background

knowledge. A logic program is simply a set of such de�nite clauses. Each of E,

B and h are logic programs.

In the context of knowledge discovery a distinct advantage of ILP over black

box techniques, such as neural networks, is that a hypotheses such as that

shown in Figure 14.2 can, in a straightforward manner, be made readable by

translating it into the following piece of English text.

The protein P has fold class \Four-helical up-and-down bundle" if it

contains a long helix H1 at a secondary structure position between 1 and

3, and H1 is followed by a second helix H2.

Such explicit hypotheses are required for experts to be able to use them within

the familiar human scienti�c discovery cycle of debate, criticism and refutation.

Logic-Based Machine Learning 323

Positive Negative

2mhr - Four-helical up-and-down bundle

H:1[19-37]

H:2[41-64]

H:3[71-84]

H:4[93-108]

H:5[111-113]

H:1[8-17]
H:2[26-33]

H:3[40-50]

H:4[61-64]

H:5[66-70]

H:6[79-88]

H:7[99-106]

E:1[57-59]

E:2[96-98]

1omd - EF-Hand

Figure 14.1 A positive and a negative example of the protein fold \4-helical-up-and-

down-bundle". 3-D arrangement of secondary structure units is shown for �-helices

(cylinders) and �-sheets (arrows). Each secondary structure unit is labelled according

to the index of its �rst and last amino acid residue.

fold('Four-helical up-and-down bundle',P) :-

helix(P,H1),

length(H1,hi),

position(P,H1,Pos),

interval(1� Pos � 3),

adjacent(P,H1,H2),

helix(P,H2).

Figure 14.2 An hypothesised de�nite clause for 4-helical-up-and-down-bundles

324 LOGIC-BASED ARTIFICIAL INTELLIGENCE

2.1 FORMAL FRAMEWORK FOR ILP

The normal framework for ILP (Muggleton and De Raedt, 1994; Nienhuys-

Cheng and de Wolf, 1997) is as follows. As exempli�ed by the protein folds

problem, described in the last sub-section, the learning system is provided with

background knowledge B, positive examples E

+

and negative examples E

�

and constructs an hypothesis h. B, E

+

E

�

and h are each logic programs. A

logic program (Lloyd, 1987) is a set of de�nite clauses each having the form

h b

1

; ::; b

n

where h is an atom and b

1

; ::; b

n

are atoms. Usually E

+

and E

�

consist of

ground clauses, those for E

+

being de�nite clauses with empty bodies and

those for E

�

being clauses with head 'false' and a single ground atom in the

body.

In the text below the logical symbols used are: ^ (logical and), _ (logical

or), j= (logical entailment), 2 (Falsity). The conditions for construction of h

are as follows.

Necessity: B 6j= E

+

Su�ciency: B ^ h j= E

+

Weak consistency: B ^ h 6j= 2

Strong consistency: B ^ h ^E

�

6j= 2

Note that neither su�ciency nor strong consistency are required for systems

that deal with noise. The four conditions above capture all the logical

requirements of an ILP system. However, for any B and E there will generally

be many h's which satisfy these conditions. Statistical preference is often used

to distinguish between these hypotheses (see Section 2.3). Both Necessity and

Consistency can be checked using a theorem prover. Given that all formulae

involved are de�nite, the theorem prover used need be nothing more than a

Prolog interpreter, with some minor alterations, such as iterative deepening, to

ensure logical completeness.

2.2 DERIVING ALGORITHMS FROM THE

SPECIFICATION OF ILP

The su�ciency condition captures the notion of generalizing examples

relative to background knowledge. A theorem prover cannot be directly applied

to derive h from B and E

+

. However, by simple application of the Deduction

Theorem the su�ciency condition can be rewritten as follows.

Su�ciency*: B ^E

+

j= h

This simple alteration has a profound e�ect. The negation of the hypothesis can

now be deductively derived from the negation of the examples together with the

background knowledge. This is true no matter what form the examples take

and what form the hypothesis takes. This approach of turning an inductive

problem into one of deduction is called inverse entailment (Muggleton, 1995).

Methods for ensuring completeness of inverse entailment have been a subject

of debate recently (Yamamoto, 1997; Muggleton, 1998).

Logic-Based Machine Learning 325

0

1

p(H)

H

Figure 14.3 Prior over hypotheses. Hypotheses are enumerated in order of

descending prior probability along the X-axis. The Y-axis is the probability of

individual hypotheses. Vertical bars represent hypotheses consistent with E.

2.3 BAYESIAN FRAMEWORK

It is not su�cient to specify the ILP framework in terms of the logical

relationships which must hold between E, B and h. For any given E and B

there will be many (possibly in�nitely many) choices for h. Thus a technique is

needed for de�ning a preference over the various choices for h. One approach

to doing so involves de�ning a Bayesian prior probability distribution over the

learner's hypothesis space (Muggleton, 1994a). This is illustrated in Figure

14.3

1

. According to Bayes' theorem the hypothesis (h

MAP

) with maximum

posterior probability in hypothesis space H is as follows.

h

MAP

= argmax

h2H

P (hjE)

= argmax

h2H

P (Ejh)P (h)

p(E)

= argmax

h2H

P (Ejh)P (h)

Within ILP Bayesian approaches (Muggleton, 1994b) have been used to

investigate the problem of learning from positive examples only (Muggleton,

2000) and issues related to predicate invention (Khan et al., 1998) (a relational

form of feature construction). Learning from positive examples and predicate

invention are important in both natural language domains (see Section 4) and

in problems involving scienti�c discovery (see Section 3).

3 DISCOVERY OF BIOLOGICAL

FUNCTION

Understanding of a variety of metabolic processes is at the center of

drug development within the pharmaceutical industry. Each new drug costs

hundreds of millions of pounds to develop. The majority of this cost comes

1

Note that in the case of the potentially in�nite hypothesis space employed in ILP, it is

not possible to have a uniform distribution which assigns non-zero prior probabilities to all

hypotheses

326 LOGIC-BASED ARTIFICIAL INTELLIGENCE

from clinical tests on e�cacy and side-e�ects. The increasing supply of data

both from the human genome project and existing drug databases is producing

increasing interest in computational techniques which could reduce drug

development costs by supporting automated discovery of biological functions.

Biological functions are regulated by the docking of small molecules (ligands)

with sites on large molecules (proteins). Drugs, such as beta-blockers, mimic

natural small molecules, such as adrenaline. E�ectiveness of drugs depends

on the correct shape and charge distribution of ligands. Thus beta-blockers

inhibit the binding of adrenaline, and so stop over-stimulation of heart muscle

in patients prone to heart attacks.

Results on scienti�c discovery applications of ILP are separated below

between those related to small molecules (such as ligands) and those related to

proteins.

3.1 SMALL MOLECULES

3.1.1 Structure-activity prediction. The majority of pharma-

ceutical R&D is based on �nding slightly improved variants of patented active

drugs. This involves laboratories of chemists synthesising and testing hundreds

of compounds almost at random. The average cost of developing a single new

drug is around $300 million. In (King et al., 1992) it was shown that the

ILP system Golem (Muggleton and Feng, 1992) was capable of constructing

rules which accurately predict the activity of untried drugs. Rules were con-

structed from examples of drugs with known medicinal activity. The accuracy

of the rules was found to be slightly higher than traditional statistical methods.

More importantly the easily understandable rules provided insights which were

directly comparable to the relevant literature concerning the binding site of

dihydrofolate reductase.

3.1.2 Mutagenesis. In (King et al., 1996; Srinivasan et al., 1996) the

ILP system Progol (Muggleton, 1995) was used to predict the mutagenicity of

chemical compounds taken from a previous study in which linear regression

had been applied. Progol's predictive accuracy was equivalent to regression on

the main set of 188 compounds and signi�cantly higher (85.7% as opposed to

66.7%) on 44 compounds which had been discarded by the previous authors

as unpredictable using regression. Progol's single clause solution for the 44

compounds was judged by the domain experts to be a new structural alert for

mutagenesis.

3.1.3 Pharmacophores. In a series of \blind tests" in collaboration

with the pharmaceutical company P�zer UK, Progol was shown (Finn et al.,

1998) capable of re-discovering a 3D description of the binding sites (or

pharmacophores) of ACE inhibitors (a hypertension drug) and an HIV-protease

inhibitor (an anti-AIDS drug).

3.1.4 Carcinogenicity. Progol was entered into a world-wide car-

cinogenicity prediction competition run by the National Toxicology Program

(NTP) in the USA. Progol was trained on around 300 available compounds, and

made use of its earlier rules relating to mutagenicity. In the �rst round of the

Logic-Based Machine Learning 327

Method Type Accuracy P

Ashbyy Chemist 0.77 0.29

Progol ILP 0.72 1.00

RASHy Biological potency analysis 0.72 0.39

TIPTy Propositional ML 0.67 0.11

Bakale Chemical reactivity analysis 0.63 0.09

Benigni Expert-guided regression 0.62 0.02

DEREK Expert system 0.57 0.02

TOPKAT Statistical discrimination 0.54 0.03

CASE Statistical correlation analysis 0.54 < 0:01

COMPACT Molecular modeling 0.54 0:01

Default Majority class 0.51 0.01

Figure 14.4 Comparative accuracies on the �rst round of the Predictive Toxicology

Evaluation (PTE-1). Here P represents the binomial probability that Progol and the

corresponding toxicity prediction method classify the same proportion of examples

correctly. The \Default" method predicts all compounds to be carcinogenic. Methods

marked with a y have access to short-term in vivo rodent tests that were unavailable

to other methods. Ashby and RASH also involve some subjective evaluation to decide

on structural alerts.

competition Progol produced the highest predictive accuracy of any automatic

system entered (Srinivasan et al., 1997) (see Figure 14.4).

3.2 PROTEINS

3.2.1 Protein secondary structure prediction.. In (Muggleton

et al., 1992) Golemwas applied to one of the hardest open problems in molecular

biology. The problem is as follows: given a sequence of amino acid residues,

predict the placement of the main three dimensional sub-structures of the

protein. The problem is of great interest to pharmaceutical companies involved

with drug design. For this reason, over the last 20 years many attempts have

been made to apply methods ranging from statistical regression to decision

tree and neural net learning to this problem. Published accuracy results for

the general prediction problem have ranged between 50 and 60%, very close

to majority-class prediction rates. In our investigation it was found that the

ability to make use of background knowledge from molecular biology, together

with the ability to describe structural relations boosted the predictivity for a

restricted sub-problem to around 80% on an independently chosen test set.

3.2.2 Discovery of fold descriptions. Protein shape is usually

described at various levels of abstraction. At the lower levels each family

of proteins contains members with high sequence similarity. At the most

328 LOGIC-BASED ARTIFICIAL INTELLIGENCE

abstract level folds describe proteins which have similar overall shape but

are very di�erent at the sequence level. The lack of understanding of shape

determination has made protein fold prediction particularly hard. However,

although there are around 300 known folds, around half of all known proteins

are members of the 20 most populated folds. In (Turcotte et al., 1998) Progol

was applied to discover rules governing the 20 most populated protein folds.

The assignment to folds was taken from the SCOP (Structural Classi�cation

of Proteins) database (Brenner et al., 1996). Progol was used to learn rules

for the �ve most populated folds of the four classes (alpha/alpha, beta/beta,

alpha/beta and alpha+beta). The rules had an average cross-validated

accuracy of 75�9%. The rules identi�ed known features of folds. For instance,

according to one rule the NAD binding fold where a short loop between the �rst

beta-strand and alpha-helix is required to bind to biological cofactor molecule

NAD. A questionnaire, designed by Mike Sternberg, requested named folds to

be paired with fold descriptions generated by Progol. The questionnaire was

sent to a selection of the world's top protein scientists. Progol successfully

identi�ed structural signatures of protein folds that were only know by the

world's top expert (Dr Murzin, Cambridge).

4 LEARNING LANGUAGE IN LOGIC

The telecommunications and other industries are investing substantial e�ort

in the development of natural language grammars and parsing systems.

Applications include information extraction; database query (especially over

the telephone); tools for the production of documentation; and translation of

both speech and text. Many of these applications involve not just parsing, but

the production of a semantic representation for a sentence.

4.1 WHY IS ILP GOOD FOR NLP?

Hand development of such grammars is very di�cult, requiring expensive

human expertise. It is natural to turn to machine learning for help in

automatic support for grammar development. The currently dominant

paradigm in grammar learning is statistically-based ((Magerman, 1995; Collins,

1996; Briscoe and Carroll, 1993; Krotov et al., 1994; Krotov et al., 1997)). This

work is all, with a few recent small-scale exceptions, focussed on syntactic or

lexical properties. No treatment of semantics or contextual interpretation is

possible because there are no annotated corpora available of su�cient size. The

aim of statistical language modeling is, by and large, to achieve wide coverage

and robustness. The necessary trade-o� is that depth of analysis cannot also be

achieved. Statistical parsing methods do not deliver semantic representations

capable of supporting full interpretation. Traditional rule-based systems, on

the other hand, achieve the necessary depth of analysis, but at the sacri�ce of

robustness: hand-crafted systems do not easily extend to new types of text or

application.

In this paradigm disambiguation is addressed by associating statistical

preferences, derived from an annotated training corpus, with particular

syntactic or semantic con�gurations and using those numbers to rank parses.

While this can be e�ective, it demands large annotated corpora for each new

application, which are costly to produce. There is presumably an upper limit

Logic-Based Machine Learning 329

What is the highest point of the state with the largest area?

answer(P, (high-point(S,P), largest(A, (state(S), area(S,A))))).

What are the major cities in Kansas?

answer(C, (major(C), city(C), loc(C,S),

equal(S,stateid(kansas)))).

Figure 14.5 Form of examples

on the accuracy of these techniques, since the variety of language means that

it is always possible to express sentences in a way that will not have been

encountered in training material.

The alternative method for disambiguation and contextual resolution is to

use an explicit domain theory which encodes in a set of logical axioms the

relevant properties of the domain. While this has been done for small scale

domains (e.g. (Hobbs et al., 1993)), the currently fashionable view is that it is

impractical for complex domains because of the unmanageably large amount

of hand-coded knowledge that would be required. However, if a large part of

this domain knowledge could be acquired (semi-)automatically, this kind of

practical objection could be met. From the NLP point of view the promise of

ILP is that it will be able to steer a mid-course between these two alternatives of

large scale, but shallow levels of analysis, and small scale, but deep and precise

analyses. ILP should produce a better ratio between breadth of coverage and

depth of analysis.

4.2 HOW CAN ILP BE USED FOR NLP?

In grammar learning the logical theory to be synthesised consists of grammar

rules together with semantic representations. Examples are sentences from the

language being learned and the background knowledge represents an existing

partial grammar, perhaps supplemented with constraints on the possible forms

of rules. In grammatical disambiguation and contextual interpretation the

theory to be synthesised consists of a set of axioms or logical statements

prescribing properties of the domain relevant to these tasks. These properties

may include an ontology or type hierarchy and (perhaps default) statements

about typical properties of and relations holding between the entities in

the domain. The examples consist of both correct and incorrect analyses

or contextual interpretations for sentences, or sentence-context pairs, where

contexts can be represented as disambiguated sentences. The background

knowledge may consist of a partial domain theory, or an encoding of whatever

existing constraints on disambiguation or interpretation are known. The

resulting theory is used as a �lter on hypothesised alternative interpretations.

4.3 GEOGRAPHIC DATABASE QUERIES

ILP has been used for learning grammar and semantics using the CHILL

system (Zelle and Mooney, 1996b). In this case, background knowledge and

examples were taken from an existing database of US geographical facts. Each

example consisted of a sentence paired with its semantics as shown in Figure

14.5 (�gure taken from (Mooney, 1997)).

330 LOGIC-BASED ARTIFICIAL INTELLIGENCE

0

10

20

30

40

50

60

70

0 50 100 150 200 250

A
cc

ur
ac

y

Training Examples

Chill
Geobase

Figure 14.6 CHILL's accuracy on learning grammar and semantics

The data was gathered by asking subjects to generate appropriate questions.

Each question was then paired with appropriate logical queries to give 250

examples. Figure 14.6 (taken from (Mooney, 1997)) shows CHILL's accuracy

on progressively larger training sets averaged over 10 trials. The line labelled

\Geobase" shows the accuracy of an existing commercially-developed hand-

coded system for the same domain. CHILL outperforms the existing system

when trained on 175 or more examples.

4.4 MORPHOLOGY

Mooney and Cali� (Mooney and Cali�, 1995) have applied ILP to learning

the past tense of English verbs. Learning of English past-tense has become

a benchmark problem in the computational modeling of human language

acquisition (Rumelhart and McClelland, 1986; Ling, 1994). In (Mooney

and Cali�, 1995) it was shown that a particular ILP system, FOIDL, could

learn this transformation more e�ectively than previous neural-network and

decision-tree methods. FOIDL's �rst-order default rule style representation was

demonstrated by the authors as producing a predictive accuracy advantage in

this domain.

However, more recently Muggleton and Bain (Muggleton and Bain, 1999)

have shown that ILP prediction techniques based on Analogical Prediction

(AP) produce even higher accuracies on the same data. AP is a half-way house

between instance-based learning and induction. Thus AP logical hypotheses are

generated on the
y for each instance to be predicted. The form of examples

and hypotheses is shown in Figure 14.7. A comparison of learning curves for

various systems is shown in Figure 14.8. The horizontal line labelled \Default

rules" represents the following simple Prolog program which adds a `d' to verbs

ending in `e' and otherwise adds `ed'.

past(A,B) :- split(A,B,[e]), split(B,A,[d]), !.

Logic-Based Machine Learning 331

Examples Hypotheses

past([w,o,r,r,y],[w,o,r,r,i,e,d]).

past([w,h,i,z],[w,h,i,z,z,e,d]). past(A,B) :- split(A,C,[r,r,y]), split(B,C,[r,r,i,e,d]).

past([g,r,i,n,d],[g,r,o,u,n,d]).

Figure 14.7 Form of examples and hypotheses for past tense domain

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350 400 450 500

Pr
ed

ic
tiv

e
ac

cu
ra

cy
 (

%
)

Training Set Size

English past tense

AP
CProgol4.4 (induction)

FOIDL
FOIL

IFOIL
Default rules

Figure 14.8 Learning curves for alphabetic English past tense. Comparisons were

made between AP, CProgol4.4, FOIDL, FOIL, IFOIL and a hand-coded set of

default rules. Results were averaged over 10 random chosen training sets of sizes

25,50,100,250,500 with accuracies measured over test sets of size 500.

past(A,B) :- split(B,A,[e,d]).

The di�erences between AP and all other systems are signi�cant at the 0.0001

level with 250 and 500 examples.

4.5 WHY IS NLP GOOD FOR ILP?

From the ILP point of view NLP has recently been recognised as a

challenging application area. Some successes have been achieved in using

ILP to learn grammar and semantics ((Zelle and Mooney, 1996b; Zelle and

Mooney, 1993; Zelle and Mooney, 1996a; Cussens et al., 1997)). The existence

within NLP problems of hierarchically de�ned, structured data with large

amounts of relevant logically de�ned background knowledge provides a perfect

testbed for stretching ILP technology in a way that would be bene�cial in other

332 LOGIC-BASED ARTIFICIAL INTELLIGENCE

application areas (Bratko and Muggleton, 1995; Sternberg et al., 1994; King

et al., 1996; Srinivasan et al., 1996; Finn et al., 1998). The York system Progol

(Muggleton, 1995) is arguably the most general purpose and widely applied

ILP system. Most ILP systems concentrate on the issue of learning a single

(usually non-recursive) concept and assume a set of completely and correctly

de�ned background predicates. By contrast NLP applications need techniques

to deal with simultaneous completion and correction of a set of related (often

recursively de�ned) predicates. It is also expected to be necessary to implement

new techniques for automatic augmentation of the set of background predicates,

(Khan et al., 1998), in order to handle incompleteness of available vocabulary.

5 CONCLUSION

In his presentation of ILP biological discovery results to the Royal Society

(Sternberg et al., 1994) Sternberg emphasised the aspect of joint human-

computer collaboration in scienti�c discoveries. Science is an activity of human

societies. It is the author's belief that computer-based scienti�c discovery

must support strong integration into the existing social environment of human

scienti�c communities. The discovered knowledge must add to and build on

existing science. The ability to incorporate background knowledge and re-use

learned knowledge together with the comprehensibility of the hypotheses, have

marked out ILP as a particularly e�ective approach for scienti�c knowledge

discovery.

In the natural language area ILP has not only been shown to have higher

accuracies than various other ML approaches in learning the past tense of

English (see Section 4.4) but also shown to be capable of learning accurate

grammars which translate sentences into deductive database queries (Zelle and

Mooney, 1996b) (see Section 4.3). In both cases, follow up studies (Thompson

et al., 1997; D�zeroski and Erjavec, 1997) have shown that these ILP approaches

to natural language problems extend with relative ease to various languages

other than English.

The area of Learning Language in Logic (LLL) is producing a number of

challenges to existing ILP theory and implementations. In particular, language

applications of ILP require revision and extension of a hierarchically de�ned set

of predicates in which the examples are typically only provided for predicates

at the top of the hierarchy. New predicates often need to be invented, and

complex recursion is usually involved. Similarly the term structure of semantic

objects is far more complex than in other applications of ILP. Advances in

ILP theory and implementation related to the challenges of LLL are already

producing bene�cial advances in other sequence-oriented applications of ILP.

In addition LLL is starting to develop its own character as a sub-discipline of

AI involving the con
uence of computational linguistics, machine learning and

logic programming.

Acknowledgements

Thanks are due to the funders and researchers who helped develop the

technology and applications of ILP on the Esprit projects ECOLES (1989-

1992), ILP I (1992-1995), ILPnet (1992-1995), ILP II (1996-1999), ILPnet2

(1998-2001), ALADIN (1998-2001) and the EPSRC Rule-based system project

Logic-Based Machine Learning 333

(1990-1993), Experimental Application and Developments of ILP (1993-

1996), Distribution-based Machine Learning (1995-1998), Closed Loop Machine

Learning (1992-2002). The author would also like to acknowledge the personal

support he received in carrying out research into ILP under an SERC Post-

doctoral Fellowship (1990-1992), an EPSRC Advanced Research Fellowship

(1993-1998) and Research Fellowship fromWolfson College (1993-1997). Warm

thanks are o�ered to the author's wife Thirza and daughter Clare for their

continuous cheerful support.

References

Bratko, I. and Muggleton, S. (1995). Applications of inductive logic program-

ming. Communications of the ACM, 38(11):65{70.

Brenner, S., Chothia, C., Hubbard, T., and Murzin, A. (1996). Understanding

protein structure: using scop for fold interpretation.Methods in Enzymology,

266:635{643.

Briscoe, T. and Carroll, J. (1993). Generalized probabilistic lr parsing of

natural language (corpora) with uni�cation-based grammars.Computational

Linguistics, 19(1):25{59.

Collins, M. (1996). A new statistical parser based on bigram lexical

dependencies. In Proceedings of the 34th Annual Meeting of the Association

for Computational Linguistics, pages 184{191, Santa Cruz, California, USA.

Cussens, J., Page, D., Muggleton, S., and Srinivasan, A. (1997). Using Inductive

Logic Programming for Natural Logic Processing. In Daelemans, W.,

Weijters, T., and van der Bosch, A., editors, ECML'97 { Workshop Notes

on Empirical Learning of Natural Language Tasks, pages 25{34, Prague.

University of Economics. Invited keynote paper.

D�zeroski, S. and Erjavec, T. (1997). Induction of Slovene nominal paradigms.

In Lavra�c, N. and D�zeroski, S., editors, Proceedings of the 7th International

Workshop on Inductive Logic Programming, pages 141{148. LNAI 1297,

Springer Verlag.

Finn, P., Muggleton, S., Page, D., and Srinivasan, A. (1998). Pharmacophore

discovery using the inductive logic programming system Progol. Machine

Learning, 30:241{271.

Hobbs, J. R., Stickel, M. E., Appelt, D. E., and Martin, P. (1993). Interpretation

as abduction. Arti�cial Intelligence, 63:69{142.

Khan, K., Muggleton, S., and Parson, R. (1998). Repeat learning using

predicate invention. In Page, C., editor, Proc. of the 8th International

Workshop on Inductive Logic Programming (ILP-98), LNAI 1446, pages 165{

174, Berlin. Springer-Verlag.

King, R., Muggleton, S., Lewis, R., and Sternberg, M. (1992). Drug design

by machine learning: The use of inductive logic programming to model

the structure-activity relationships of trimethoprim analogues binding to

dihydrofolate reductase. Proceedings of the National Academy of Sciences,

89(23):11322{11326.

335

336 LOGIC-BASED ARTIFICIAL INTELLIGENCE

King, R., Muggleton, S., Srinivasan, A., and Sternberg, M. (1996). Structure-

activity relationships derived by machine learning: the use of atoms and their

bond connectives to predict mutagenicity by inductive logic programming.

Proceedings of the National Academy of Sciences, 93:438{442.

Kowalski, R. (1980). Logic for Problem Solving. North Holland.

Krotov, A., Gaizauskas, R., Hepple, M., and Wilks, Y. (1997). Compacting

the Penn Treebank Grammar. Proceedings of the COLING-ACL'98 Joint

Conference, pages 699{703, Association for Computational Linguistics.

Also: Research Memorandum CS-97-04, Department of Computer Science,

University of She�eld.

Krotov, A., Gaizauskas, R., and Wilks, Y. (1994). Acquiring a stochastic

context-free grammar from the Penn Treebank. In Proc. of the Third

Conference on the Cognitive Science of Natural Language Processing.

Ling, C. (1994). Learning the past tense of english verbs: the symbolic pattern

associators vs. connectionist models. Journal of Arti�cial Intelligence

Research, 1:209{229.

Lloyd, J. (1987). Foundations of Logic Programming. Springer-Verlag, Berlin.

Second edition.

Magerman, D. (1995). Statistical decision-tree models for parsing. In Proceed-

ings of the 33rd Annual Meeting of the Association for Computational Lin-

guistics, pages 276{283, Cambridge, MA.

McCarthy, J. (1959). Programs with commonsense. InMechanisation of thought

processes, volume 1. Her Majesty's Stationery O�ce, pages 75{91, London.

Reprinted (with an added section on `Situations, Actions and Causal Laws')

in Semantic Information Processing, ed. M. Minsky (Cambridge, MA: MIT

Press (1963)).

Mooney, R. (1997). Inductive logic programming for natural language

processing. In Muggleton, S., editor, Proceedings of the Sixth International

Workshop on Inductive Logic Programming, pages 3{21. Springer-Verlag,

Berlin. LNAI 1314.

Mooney, R. and Cali�, M. (1995). Induction of �rst-order decision lists: Results

on learning the past tense of english verbs. Journal of Arti�cial Intelligence

Research, 3:1{24.

Muggleton, S. (1991). Inductive logic programming. New Generation Comput-

ing, 8(4):295{318.

Muggleton, S. (1994a). Bayesian inductive logic programming. In Cohen, W.

and Hirsh, H., editors, Proceedings of the Eleventh International Machine

Learning Conference, pages 371{379, San Mateo, CA. Morgan-Kaufmann.

Keynote presentation.

Muggleton, S. (1994b). Bayesian inductive logic programming. In Warmuth,

M., editor, Proceedings of the Seventh Annual ACM Conference on

Computational Learning Theory, pages 3{11, New York. ACM Press.

Keynote presentation.

Muggleton, S. (1995). Inverse entailment and Progol. New Generation

Computing, 13:245{286.

Muggleton, S. (1998). Completing inverse entailment. In Page, C., editor,

Proceedings of the Eighth International Workshop on Inductive Logic

Programming (ILP-98), LNAI 1446, pages 245{249. Springer-Verlag, Berlin.

References 337

Muggleton, S. (2000). Learning from positive data.Machine Learning. Accepted

subject to revision.

Muggleton, S. and Bain, M. (1999). Analogical prediction. In Proc. of the 9th

International Workshop on Inductive Logic Programming (ILP-99), pages

234{246, Berlin. Springer-Verlag.

Muggleton, S. and Feng, C. (1992). E�cient induction of logic programs.

In Muggleton, S., editor, Inductive Logic Programming, pages 281{298.

Academic Press, London.

Muggleton, S., King, R., and Sternberg, M. (1992). Protein secondary struc-

ture prediction using logic-based machine learning. Protein Engineering,

5(7):647{657.

Muggleton, S. and De Raedt, L. (1994). Inductive logic programming: Theory

and methods. Journal of Logic Programming, 19,20:629{679.

ftp : ==ftp:cs:york:ac:uk=pub=ML

G

ROUP=Papers=lpj:ps:gz

Nienhuys-Cheng, S.-H. and de Wolf, R. (1997). Foundations of Inductive Logic

Programming. Springer-Verlag, Berlin. LNAI 1228.

Plotkin, G. (1971). Automatic Methods of Inductive Inference. PhD thesis,

Edinburgh University.

Rumelhart, D. and McClelland, J. (1986). On learning the past tense of english

verbs. In Explorations in the Micro-Structure of Cognition Vol. II, pages

216{271. MIT Press, Cambridge, MA.

Shaprio, E. (1983). Algorithmic Program Debugging. PhD thesis, Yale

University, MIT Press.

Srinivasan, A., , Muggleton, R. K. S., and Sternberg, M. (1997). Carcinogenesis

predictions using ILP. In Lavra�c, N. and D�zeroski, S., editors, Proceedings of

the Seventh International Workshop on Inductive Logic Programming, pages

273{287. Springer-Verlag, Berlin. LNAI 1297.

Srinivasan, A., Muggleton, S., King, R., and Sternberg, M. (1996). Theories for

mutagenicity: a study of �rst-order and feature based induction. Arti�cial

Intelligence, 85(1,2):277{299.

Sternberg, M., King, R., Lewis, R., and Muggleton, S. (1994). Application of

machine learning to structural molecular biology.Philosophical Transactions

of the Royal Society B, 344:365{371.

Thompson, C., Mooney, R., and Tang, L. (1997). Learning to parse

natural language database queries into logical form. In Workshop on

Automata Induction, Grammatical Inference and Language Acquisition.

Paper accessible from www-univ-st-etienne.fr/eurise/pdupont.html

Turcotte, M.,Muggleton, S., and Sternberg, M. (1998). Protein fold recognition.

In Page, C., editor, Proc. of the 8th International Workshop on Inductive

Logic Programming (ILP-98), LNAI 1446, pages 53{64, Berlin. Springer-

Verlag.

Turing, A. (1950). Computing machinery and intelligence. Mind, 59(236):435{

460.

Yamamoto,A. (1997). Which hypotheses can be found with inverse entailment?

In Lavra�c, N. and D�zeroski, S., editors, Proceedings of the Seventh

International Workshop on Inductive Logic Programming, pages 296{308.

Springer-Verlag, Berlin. LNAI 1297.

Zelle, J. and Mooney, R. (1993). Learning semantic grammars with constructive

inductive logic programming. In Proceedings of the Eleventh National

338 LOGIC-BASED ARTIFICIAL INTELLIGENCE

Conference on Arti�cial Intelligence, pages 817{822, San Mateo, CA.

Morgan Kaufmann.

Zelle, J. and Mooney, R. (1996a). Comparative results on using inductive

logic programming for corpus-based parser construction. In Connectionist,

Statistical and Symbolic Approaches to Learning for Natural Language

Processing, pages 355{369. Springer, Berlin.

Zelle, J. and Mooney, R. (1996b). Learning to parse database queries using

Inductive Logic Programming. In Proceedings of the Thirteenth National

Conference on Arti�cial Intelligence, pages 1050{1055, Portland, Oregon.

AAAI Press/MIT Press.

