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Abstract. Statistical machine learning is widely used in image classification.
However, most techniques 1) require many images to achieve high accuracy and 2)
do not provide support for reasoning below the level of classification, and so are
unable to support secondary reasoning, such as the existence and position of light
sources and other objects outside the image. In recent work an Inductive Logic
Programming approach called Logical Vision (LV) was shown to overcome some
of these limitations. LV uses Meta-Interpretive Learning combined with low-level
extraction of high-contrast points sampled from the image to learn recursive logic
programs describing the image. In published work LV was demonstrated capable of
high-accuracy prediction of classes such as regular polygon from a small number
examples of images where the compared statistical learning algorithms gave near
random prediction given hundreds of instances. LV has so far only been applied
to noise-free, artificially generated images. This paper extends LV by using a)
richer background knowledge such as light reflection that can itself be learned
and used for resolving visual ambiguities, which cannot be easily modeled using
statistical approaches, b) a wider class of background models representing classical
2D shapes such as circles and ellipses, c) primitive-level statistical estimators to
handle noise in real images, Our results indicate that in real images the new
noise-robust version of LV using a single example (ie one-shot LV) converges
to an accuracy at least comparable to thirty-shot statistical machine learner on
the prediction of hidden light sources. Moreover, we demonstrate that the learned
theory can be used to identify ambiguities in the convexity/concavity of objects
such as craters.

1 Introduction

Galileo’s Siderius Nuncius [11] describes the first ever telescopic observations of the
moon. Using sketches of shadow patterns Galileo conjectured the existence of mountains
containing hollow areas (i.e. craters) on a celestial body previously thought perfectly
spherical. His reasoned description, derived from a handful of observations, relies on a
knowledge of i) classical geometry, ii) straight line movement of light and iii) the Sun as
a light source. This paper investigates use of Inductive Logic Programming (ILP) [27] to
derive such hypotheses from a small set of real images. Figure 1 illustrates part of the
generic background knowledge used by ILP for interpreting object convexity.
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light(X,Y ) : −reflect(X,Z), light(Z, Y ).

Fig. 1: Interpretation of light source direction: a) Waxing crescent moon (Credit: UC Berkeley), b)
Concave/Convex illusion caused by the viewer’s assumption about the light source location, c)
Concave and d) Convex photon reflection models, e) Prolog recursive model of photon reflection

Figure 1a shows an image of the crescent moon in the night sky, in which convexity
of the overall surface implies the position of the Sun as a hidden light source beyond
the lower right corner of the image. Figure 1b shows an illusion caused by the viewer’s
assumption about where the light source is. Assuming the light source is above makes the
top right and bottom left circles appear convex and the other circles concave. Assuming
the light source is below makes the top left and bottom right circles appear convex and
the other circles concave. Figure 1c shows how interpretation of a convex feature, such
as a mountain, comes from illumination of the right side of a convex object. Figure 1d
shows that perception of a concave feature, such as a crater, comes from illumination of
the left side. Figure 1e shows how Prolog background knowledge encodes a recursive
definition of the reflected path of a photon.

This paper explores the phenomenon of knowledge-based perception using an ex-
tension of Logical Vision (LV) [7] based on Meta-Interpretive Learning (MIL) [26, 6].
In the previous work LV was shown to accurately learn a variety of polygon classes
from artificial images with low sample requirements compared to statistical learners. In
this paper we propose a noise-robust version of LV provided with basic generic back-
ground knowledge about radiation and reflection of photons to inform the generation of
hypotheses in the form of logic programs based on evidence sampled from a single real
image. Our experiments show that LV converges to high accuracy in prediction of light
source position. This compares with Support Vector Machines (SVMs) using stronger
supervision only achieving similar accuracy at least after more than 30 images. Clearly
such image sample requirements compare poorly with both LV and human vision for
situations in which effective learning must be achieved from small samples.

The main contributions of this paper are extending LV [7] by using 1) richer back-
ground knowledge in the form of a simple but generic recursive theory of light reflection
and also demonstrating that this recursive theory of light can itself be learned using MIL
in order to resolve visual ambiguities which cannot be easily modelled using statistical
approaches, 2) a wider class of background models representing classical 2D shapes
such as circles and ellipses, 3) primitive-level statistical estimators to handle noise in real
images and demonstrating that the extended LV using a single example (i.e. one-shot
LV) converges to an accuracy at least comparable to thirty-shot statistical learner.



The paper is organised as follows. Section 2 describes related work. The theoretical
framework for LV is provided in Section 3. Section 4 describes the implementation of LV,
including the recursive background knowledge for describing radiation and reflection
of light. Experiments on predicting the light source direction in images of the moon
and microscopic images of illuminated micro-organisms are described in Section 5.
In Section 6 we discuss how the approach interprets convexity, concavity and visual
illusions. Finally, we conclude and discuss further work in Section 7.

2 Related work
Statistical machine learning based on low-level feature extraction has been increasingly
successful in image classification [30]. However, high-level vision, involving inter-
pretation of objects and their relations in the external world, is still relatively poorly
understood [4]. Since the 1990s perception-by-induction [13] has been the dominant
model within computer vision, where human perception is viewed as inductive inference
of hypotheses from sensory data. The idea originated in the work of the 19th century
physiologist Hermann von Helmholtz [15]. The approach described in this paper is in
line with perception-by-induction in using ILP for generating high-level perceptual hy-
potheses by combining sensory data with a strong bias in the form of explicitly encoded
background knowledge. Whilst Gregory [12] was one of the earliest to demonstrate the
power of the Helmholtz’s perception model for explaining human visual illusion, recent
experiments [14] show Deep Neural Networks fail to reproduce human-like perception
of illusion. This contrasts with results in Section 6, in which LV achieves analogous
outcomes to human vision.

Shape-from-shading [16, 34] is a key computer vision technology for estimating
low-level surface orientation in images. Unlike our approach for identifying concavities
and convexities, shape-from-shading generally requires observation of the same object
under multiple lighting conditions. By using background knowledge as a bias we reduce
the number of images for accurate perception of high-level shape properties such as the
identification of convex and concave image areas.

ILP has previously been used for learning concepts from images. For instance, in [3,
1] object recognition is carried out using existing low-level computer vision approaches,
with ILP being used for learning general relational concepts from this already symbolised
starting point. By contrast, LV [7] uses ILP and abductive perception technique [31]
to provide a bridge from very low-level primitives, such as high contrast points, to
higher-level interpretation of objects such as shapes. ILP also has been used for 3D scene
analysis [10, 25] with 3D point cloud data, however there was no comparison made to
statistical learning and image ambiguity not addressed.

The present paper extends the earlier work on LV by implementing a noise-proofing
technique, applicable to real images, and extending the use of background knowledge
radiation to allow the identification of objects such as light sources, not directly identi-
fiable within the image itself. Moreover, this work shows that by considering generic
knowledge about radiation, LV can invent generic high-level concepts applicable to many
different images including concavity, convexity and light reflection, enabling 2D image
analysis to learn a 3D concept with ambiguity handled.

One-shot learning of concepts from images using probabilistic program induction
is discussed in [18, 19]. However, unlike the approach in this paper, the images are



relatively simple and artificially generated and learning involves parameter estimation
for a given program schema, rather than a search through general program space, relative
to incrementally generated background knowledge.

Various statistics-based techniques making use of high-level vision have been pro-
posed for one- or even zero-shot learning [29, 32]. They usually start from an existing
model pre-trained on a large corpus of instances, and then adapt the model to data with
unseen concepts. Approaches can be separated into two categories. The first exploits a
mapping from images to a set of semantic attributes, then high-level models are learned
based on these attributes [20, 23, 29]. The second approach uses statistics-based methods,
pre-trained on a large corpus, to find localised attributes belonging to objects but not
the entire image, and then exploits the semantic or spatial relationships between the
attributes for scene understanding [17, 21, 9]. Unlike these approaches, we focus on
one-shot from scratch, i.e. high-level vision based on just very low-level primitives such
as high contrast points.

3 Framework
The framework for LV is a special case of MIL.

3.1 Meta-Interpretive Learning
Given background knowledge B and examples E the aim of a MIL system is to learn a
hypothesisH such thatB,H |= E, whereB = Bp∪M ,Bp is a set of Prolog definitions
and M is a set of metarules (see Figure 2). MIL [25, 26, 5, 24, 6] is a form of ILP based
on an adapted Prolog meta-interpreter. A standard Prolog meta-interpreter proves goals
by repeatedly fetching first-order clauses whose heads unify with the goal. By contrast,
a MIL learner proves a set of examples by fetching higher-order metarules (Figure 2)
whose heads unify with the goal. The resulting meta-substitutions are saved, allowing
them to be used to generate a hypothesised program which proves a the examples by
substituting the meta-substitutions into corresponding metarules.

Name Metarule
PropObj1 P (obj1)←
PropObj2 P (obj2)←
PropLight P (light)←
Conjunct3 P (x, y, z)← Q(x, y, z), R(x, y, z)
Chain3 P (u, x, y)← Q(u, x, z), R(u, z, y)
Chain32 P (u, x, y)← Q(u, x, z), R(z, y)
PrePost3 P (x, y, z)← Q(x, y), R(x), S(z)

Fig. 2: Metarules used in this paper. Uppercase letters P,Q,R, S denote existentially quantified
variables. Lowercase letters u, x, y, and z are universally quantified.

MIL sample complexity Use of metarules and background knowledge helps minimise
the number of clauses n of the minimal consistent hypothesis H and consequently the
number of examples m required to achieve error below ε bound. As shown in [6], n
dominates the lower bound for m4.

4 m ≥ n ln|M|+p ln(3n)+ln 1
δ

ε
for p predicates and M metarules



3.2 Logical Vision

In LV [7], the background knowledge B, in addition to Prolog definitions, contains a set
of one or more named images I . The examples describe properties associated with I .

4 Implementation
Our implementation of LV, called LogV is, is shown in Algorithm 1. Note that LogV is
calls the MIL system MetagolAI [6] for inductive inference over given images and
background knowledge.

4.1 Meta-interpretion in real images
The interpretion of image is based on the objectDetection procedure in Algorithm 1,
which is an extension of that in LV for polygon learning [7]. The new version supports
noise-robustness in real image analysis. The basic primitive of LV is edge point([X,Y]),
which decides if an image pixel belongs to the edge of a foreground object. An example
of object detection is shown in Figure 3.

The results of edge point/1 are affected by noise in real images. We address this by
using primitive predicates which call statistical models to perform evaluation on images.
For example, edge point/1 calls a pre-trained statistical model which classifies pixels
into background and foreground using Gaussian models or image segmentation.

Objects of interest in microscopic and telescopic images are often composed of
curves. Therefore, bounding boxes, popular for object representation in computer vision,
include surrounding areas that do not belong to the objects, resulting in reduced accuracy.
Consequently we use ellipse and circle models estimated from sets of edge points (see
Figure 3).

Algorithm 1: LogV is(I,B)

Input :Training images I; Background knowledge B.
Output :Hypothesised logic program H .

1 Candidates = Φ;
2 for each labelled image i ∈ I do
3 Angles = Φ;

/* Object & highlight detection */
4 for t ∈ [1, T ] do
5 Obj = objectDetection(i);
6 α = argmaxAngle contrast(split(Obj, Angle));
7 Angles = append(Angles, α);
8 end

/* Highlight angle */
9 HAngle = mode(Angles);

/* Light source angle */
10 LAngle = label(i);

/* Call MetagolAI to learn a model */
11 Model = MetagolAI (B, HAngle, LAngle);
12 Candidates = add(Model,Candidates);
13 end
14 Return(H = best(Candidates));



a) b) c)

Fig. 3: Object detection: a) Sampled lines with edge points; b) Fitting of initial ellipse centred at
O. Hypothesis tested using new edge points halfway between existing adjacent points. c) Revised
hypothesis tested until hypothesis passes test.

Detected objects take the form elps(Centre, Parameter) or circle(Centre, Radius)
where Centre = [X,Y ] is the object’s centre, Parameter = [A,B, T ilt] are the axis
lengths and tilting angle and Radius is the circle radius.

To estimate light source direction LogVis (line 6) cuts the object in half at different
angles, and returns the angle α which maximises brightness contrast between the halves,
where α ∈ {1..12} is a clock face angle. Since noise may cause object detection to fail,
LV repeats the process T times and returns HAngle as the mode of {α}, (line 4 to 9).
The output H is the clock angle.

Background knowledge for MetagolAI is shown in Figure 4. Together with the
metarules in Figure 2,MetagolAI can learn an abductive theory (line 11 in Algorithm 1).

Primitives Compiled BK
prim(light source angle/3). % supervision
prim(highlight/2). % abduced by LV
prim(opposite angle/2).

highlight(obj1,obj2). % obj2 is highlight on obj1
opposite angle(3, 9). opposite angle(9, 3).
opposite angle(12, 6). opposite angle(6, 12).

Fig. 4: Background knowledge for MetagolAI

When a dataset has more than one example, LV runs the entire one-shot learning
process for a random example, and returns the most accurate hypothesis on the rest of
training set (line 14).

5 Experiments

This section describes experiments comparing one-shot LV with multi-shot statistics-
based learning5 on real image datasets. Here we investigate the following null hypothesis:

Null hypothesis: One-shot LV cannot learn models with accuracy comparable to
thirty-shot statistics-based learning on real images.

5.1 Materials

We collected two real image datasets for the experiments: 1) Protists drawn from a
(coloured) microscope video of a Protist micro-organism, and 2) Moons a collection
of (grey-scaled) images of the moon drawn from Google images. To formulate a clas-
sification problem, we use 12 clock angles6 to descretisize the learning target, light
source angle. The datasets consist of 30 images for each angle, providing a total of 360
images. Each image contains one of four labels as follows: North = {11, 12, 1} clocks,
East = {2, 3, 4} clocks, South = {5, 6, 7} clocks, and West = {8, 9, 10} clocks, as
shown in Fig 5.

5 Data and code at https://github.com/haldai/LogicalVision2
6 Clock face angle between 12 and each hour position in {1..12}.
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Fig. 5: Illustrations of data: a) Examples of the datasets, b) Four classes for twelve light source
positions, c) Crater on Mars (Credit: NASA/JPL/University of Arizona), d) 180◦ rotated crater.

5.2 Methods

The aim is to learn a model to predict the correct category of light source angle from real
images. For each dataset, we randomly divided the 360 images into training and test sets,
with 128 and 232 examples respectively. To evaluate the performance, the models were
trained by randomly sampling 1, 2, 4, 8, 16, 32, 64 and 128 images from the training set.
The sequences of training and test instances are shared by all compared methods. The
random partition of data and learning are repeated 5 times.

Logical Vision In the experiments, we used the grey intensity of both image datasets
for LV. The hyper-parameter T in Algorithm 1 is set at 11 by validating one-shot learned
models on the rest of the training data. To handle image noise, we use a statistics-based
estimator for predicate edge point/1. When edge point([X,Y]) is called, a vector of
colour distribution (histogram of grey-scale value) of the 10 × 10 region centred at
(X,Y) is calculated, then the statistical model is applied to determine whether this vector
represents an edge point. The statistical model is trained from 5 randomly sampled
images in the training set by providing the bounding box of the objects.

Statistics-based Classification The experiments with statistics-based classification
were conducted in different colour spaces combined with various features. Firstly, we
performed feature extraction to transform images into fixed length vectors. Next SVMs
(libSVM [2]) with non-linear kernel were applied to learn a multiclass-classifier model.
Parameters of the SVM are chosen by cross-validation on the training set.

Like LV, we used grey intensity from both image datasets for the experiments. For
the coloured Protists dataset, we transformed the images to HSV and Lab colour spaces
to improve the performance.

Since the image sizes in the dataset are irregular, during the object detection stage
of LV, we used computer graphic techniques (e.g. curve fitting) to extract the main
objects and unified them into same sized patches for feature extraction. For the feature
extraction process, we avoided descriptors which are insensitive to scale and rotation,
instead choosing the luminance-sensitive features below.

– HOG: The Histogram of Oriented Gradient (HOG) [8] is known as its capability of
describing the local gradient orientation in an image, and widely used in computer
vision and image processing for the purpose of object detection.

– LBP: Local binary pattern (LBP) [28] is a powerful feature for texture classification
by converting the local texture of an image into a binary number.
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Fig. 6: Classification accuracy on the two datasets.

Remark Despite our best efforts it proved impossible to make testing entirely fair. In
the Moons task, LV and the compared statistics-based approach both used geometrical
background knowledge for fitting circles (though in different forms) during object extrac-
tion. However, in the Protists task, the noise in images always caused poor performance
in automatic object extraction for the statistics-based method. Therefore, we provided
additional supervision to the statistics-based method consisting of bounding boxes for the
main objects in both training and test images during feature extraction. By comparison
LV discovers the objects without any supervision.

5.3 Results

Figure 6a shows the results for Moons. Note that performance of the statistics-based ap-
proach only surpasses one-shot LV after 100 training examples. In this task, background
knowledge involving circle fitting exploited by LV and statistics-based approaches are
similar, though low-level feature used by statistics-based approach are first-order in-
formation (grey-scale gradients), which is stronger than the zero-order information
(grey-scale value) used by LV.

Results on Protists are shown in Figure 6b. After 30+ training examples only one
statistics-based approach outperforms one-shot LV. Since the statistics-based approaches
have additional supervision (bounding box of main object) in the experiments, improved
performance is unsurprising.

The results of LV in Figure 6 form a horizontal lines. When the number of training
examples exceeds one, LV performs multiple one-shot learning and selects the best
output, which we found is always in the same equivalent class in LV’s hypothesis space.
This suggests LV learns the optimal model in its hypothesis space from a single example,
while the mis-classification are resulted by the noise in LV’s object-detection stage. The
learned program is shown in Figure 7a.

By comparison the statistics-based approaches require 40 or even 100 more training
examples to reach similar accuracy, which refutes the null hypothesis.

LV is implemented in SWI-Prolog [33] with multi-thread processing. Experiments
were executed on a laptop with Intel i5-3210M CPU (2.50GHz), the time costs of object
discovery are 9.5 seconds and 6.4 seconds per image on Protists and Moons dataset
respectively; the average running time of MetagolAI procedure is 0.001 second on both
datasets.



clock angle(A,B,C):-
clock angle1(A,B,D),
light source angle(A,D,C).

clock angle1(A,B,C):-
highlight(A,B),
clock angle2(A),clock angle3(C).

clock angle2(obj1).
clock angle3(light).

clock angle(A,B,C):-
clock angle1(A,B,D),
clock angle4(A,D,C).

clock angle4(A,B,C):-
light source angle(A,B,D),
opposite angle(D,C).

a) b)

Fig. 7: Program learned by LV: a) with background knowledge about lighting, we can un-
derstand that the invented predicate clock angle2 stands for convex, clock angle3 stands for
light source name. b) Learned program when concave objects are given as training examples,
where clock angle1 is same with a).

Protists and Moons contain only convex objects. If instead we provide images with
concave objects (such as Figure 5c and d), LV learns a program such as Figure 7b. Here
the invented predicate clock angle2/1 can be interpreted as concave.

6 Discussion: Learning ambiguity

Figure 5c and 5d shows two images of a crater on Mars, where Figure 5d is a 180◦

rotated image of Figure 5c. Human perception often confuses the convexity of the crater
in such images7. This phenomenon, called the crater/mountain illusion, occurs because
human vision usually interprets pictures under the default assumption that the light is
from the top of the image.

LV can use MIL to perform abductive learning. We show below that incorporation
of generic recursive background knowledge concerning light enables LV to generate
multiple mutually inconsistent perceptual hypotheses from real images. To the authors’
knowledge, such ambiguous prediction has not been demonstrated previously with
machine learning.

Recall the learned programs from Figure 7 from the previous experiments. If we
rename the invented predicates we get the general theory about lighting and convexity
shown in Figure 8.

clock angle(O,H,A):-
highlight(O,H),convex(O),light source(L),
light source angle(O,L,A).

clock angle(O,H,A):-
highlight(O,H),concave(O),light source(L),
light angle(O,L,A1),opposite(A1,A).

Fig. 8: Interpreted BK learned by LV.

Now we can use the program as a part of interpreted background knowledge for LV
to do abductive learning, where the abducible predicates and the rest of background
knowledge are shown in Figure 9.

7 http://www.universetoday.com/118616/do-you-see-a-mountain-or-a-crater-in-this-picture/



Abducibles Interpreted BK
prim(convex/1).
prim(concave/1).
prim(light source/1).
prim(light angle/3).

highlight(X,Y):-
contains(X,Y),brighter(Y,X),light source(L),
light path(L,R),reflector(R),light path(R,O),
observer(O).
Compiled BK

% “obj1” is an object abduced from image; “obj2” is the brighter part of “obj1”;
% “observer” is the camera
contains(obj1,obj2). brighter(obj2,obj1). observer(observer). reflector(obj2).
light path(X,X).
light path(X,Y):-unobstructed(X,Z), light path(Z,Y).

Fig. 9: Background knowledge for learning ambiguity from images.

If we input Figure 5c to LV, it will output four different abductive hypotheses for the
image, as shown in Figure 108. From the first two results we see that, by considering
different possibilities of light source direction, LV can predict that the main object (which
is the crater) is either convex or concave, which shows the power of learning ambiguity.
The last two results are even more interesting: they suggest that obj2 (the highlighted
part of the crater) might be the light source as well, which indeed is possible, though
seems unlikely.9

Convex
Obj1

a)

light source(light).
light angle(obj1,light,south).
convex(obj1). Concave

Obj1

b)

light source(light).
light angle(obj1,light,north).
concave(obj1).

Bright
(Obj2)

c)

light source(obj2).
light angle(obj1,obj2,south).
convex(obj1). Bright

(obj2)

d)

light source(obj2).
light angle(obj1,obj2,north).
concave(obj1).

Fig. 10: Depiction and output hypotheses abduced from Figure 5c.

7 Conclusions and further work

Human beings learn visual concepts from single image presentations (so-called one-shot-
learning) [18]. This phenomenon is hard to explain from a standard Machine Learning
perspective, given that it is unclear how to estimate any statistical parameter from a
single randomly selected instance drawn from an unknown distribution. In this paper
we show that learnable generic logical background knowledge can be used to generate
high-accuracy logical hypotheses from single examples. This compares with similar
demonstrations concerning one-shot MIL on string transformations [22] as well as
previous concept learning in artificial images [7]. The experiments in Section 5 show
that the LV system can accurately identify the position of a light source from a single
real image, in a way analogous to scientists such as Galileo, observing the moon for
the first time through a telescope or Hook observing micro-organisms for the first time

8 Code also at https://github.com/haldai/LogicalVision2
9 The result can be reproduced and visualised by the example in Logical Vision 2 repository.



through a microscope. In Section 6 we show that logical theories learned by LV from
labelled images can also be used to predict concavity and convexity predicated on the
assumed position of a light source.

As future work, we aim to investigate broader sets of visual phenomena which can
naturally be treated using background knowledge. For instance, the effects of object
obscuration; the interpretation of shadows in an image to infer the existence of out-of-
frame objects; the existence of unseen objects reflected in a mirror found within the
image. All these phenomena could possibly be considered in a general way from the
point of view of a logical theory describing reflection and absorption of light. We will
also investigate the use of universal meta-rules similar to those used in [5]. Future work
also includes the use of probabilistic representation.

The authors believe that LV has long-term potential as an AI technology with the
potential for unifying the disparate areas of logical based learning with visual perception.
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