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Abstract
In recent years Predicate Invention has been under-
explored within Inductive Logic Programming due
to difficulties in formulating efficient search mech-
anisms. However, a recent paper demonstrated that
both predicate invention and the learning of re-
cursion can be efficiently implemented for regu-
lar and context-free grammars, by way of abduc-
tion with respect to a meta-interpreter. New pred-
icate symbols are introduced as constants repre-
senting existentially quantified higher-order vari-
ables. In this paper we generalise the approach of
Meta-Interpretive Learning (MIL) to that of learn-
ing higher-order dyadic datalog programs. We
show that with an infinite signature the higher-order
dyadic datalog class H2

2 has universal Turing ex-
pressivity thoughH2

2 is decidable given a finite sig-
nature. Additionally we show that Knuth-Bendix
ordering of the hypothesis space together with log-
arithmic clause bounding allows our Dyadic MIL
implementation MetagolD to PAC-learn minimal
cardinailty H2

2 definitions. This result is consistent
with our experiments which indicate that MetagolD
efficiently learns compact H2

2 definitions involv-
ing predicate invention for robotic strategies and
higher-order concepts in the NELL language learn-
ing domain.

1 Introduction
Suppose we machine learn a set of Family Relationships such
as those in Figure 1. If examples of the ancestor relation are
provided and the background contains only father and mother
facts, then a system must not only be able to learn ancestor as
a recursive definition but also simultaneously invent parent to
learn these definitions.

Although the topic of Predicate Invention was investigated
in early Inductive Logic Programming (ILP) research [Mug-
gleton and Buntine, 1988; Stahl, 1992] it is still seen as a hard
and largely under-explored topic [Muggleton et al., 2011].
ILP systems such as ALEPH [Srinivasan, 2001] and FOIL
∗The authors would like to acknowledge support from the Royal
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Target Theory
father(ted, bob)←
father(ted, jane)←
parent(X, Y )←mother(X, Y )
parent(X, Y )← father(X, Y )
ancestor(X, Y )← parent(X, Y )
ancestor(X, Y )← parent(X,Z),

ancestor(Z, Y )

First-order Meta-form
Examples

ancestor(jake, bob)←
ancestor(alice, jane)←

meta1(ancestor, jake, bob)←
meta1(ancestor, alice, jane)←

Background Knowledge
father(jake, alice)←
mother(alice, ted)←

meta1(father, jake, john)←
meta1(mother, alice, ted)←

Instantiated Hypothesis
father(ted, bob)←
father(ted, jane)←
p3(X, Y )← father(X, Y )
p3(X, Y )← mother(X, Y )
ancestor(X, Y )← p3(X, Y )
ancestor(X, Y )← p3(X,Z),

ancestor(Z, Y )

Abduced facts
meta1(father, ted, bob)←
meta1(father, ted, jane)←
meta2(p3, father)←
meta2(p3,mother)←
meta2(ancestor, p3)←
meta3(ancestor, p3, ancestor)←

Figure 1: Family Tree example

[Quinlan, 1990] have no predicate invention and limited re-
cursion learning and therefore cannot learn recursive gram-
mars from example sequences. By contrast, in [Muggleton et
al., 2013] definite clause grammars are learned using Meta-
Interpretive Learning (MIL). In extending MIL to Dyadic
Datalog we start by noting each clause of the target theory
in Figure 1 takes the form of one of the following meta-rules.

Meta-rules
P(X,Y)←
P(x, y)← Q(x, y)
P(x, y)← Q(x, z),R(z, y)

These three higher-order meta-rules are incorporated (with
existential variables P, Q, R, X, Y and universal variables x,
y, z) in the clauses of the following Prolog meta-interpreter.

Meta-Interpreter
prove(P,X,Y)←meta1(P,X, Y ).
prove(P,X,Y)← dyadic(Q),meta2(P,Q), prove(Q,X,Y).
prove(P,X,Y)← dyadic(Q), dyadic(R), object(Z),meta3(P,Q,R),

prove(Q,X,Z), prove( R,Z,Y).

The two examples shown in the upper part of Figure 1 could
be proved using the Prolog goal

← prove(ancestor, jake, bob), prove(ancestor, alice, jane)
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given the abduced facts in Figure 1. Note that p3 is an in-
vented predicate corresponding to parent with the abduced
facts corresponding to the Instantiated Hypothesis1 in the
lower part of Figure 1.

Completeness of abduction ensures that all hypotheses
consistent with the examples can be constructed. Moreover,
unlike many ILP systems, only hypotheses consistent with all
examples are considered. Owing to the efficiency of Prolog
backtracking MIL implementations have been demonstrated
to search the hypothesis space 100-1000 times faster than
state-of-the-art ILP systems [Muggleton et al., 2013] in the
task of learning recursive grammars2. In this paper we show
how, by suitably constraining the search, MIL’s efficiency and
completeness advantages can be extended to the broader class
of Dyadic Datalog programs. We demonstrated this class to
be Turing equivalent, allowing the learning of complex recur-
sive programs such as robot strategies.

The paper is organised as follows. Section 2 describes the
MIL framework. The implementation of the MetagolD

3 sys-
tem is then given in Section 3. Experiments on predicate in-
vention for structuring robot strategies and construction of
higher-order concepts for the NELL language learning do-
main are given in Section 4. In Section 5 we provide a com-
parison to related work. Lastly we conclude the paper and
discuss future work in Section 6.

2 MIL framework
2.1 Logical notation
A variable is represented by an upper case letter followed by a
string of lower case letters and digits. A function symbol is a
lower case letter followed by a string of lower case letters and
digits. A predicate symbol is a lower case letter followed by a
string of lower case letters and digits. The set of all predicate
symbols is referred to as the predicate signature and denoted
P . The arity of a function or predicate symbol is the number
of arguments it takes. A constant is a function or predicate
symbol with arity zero. The set of all constants is referred
to as the constant signature and denoted C. Functions and
predicate symbols are said to be monadic when they have ar-
ity one and dyadic when they have arity two. Variables and
constants are terms, and a function symbol immediately fol-
lowed by a bracketed n-tuple of terms is a term. A variable
is first-order if it can be substituted for by a term. A vari-
able is higher-order if it can be substituted for by a predicate
symbol. A predicate symbol or higher-order variable imme-
diately followed by a bracketed n-tuple of terms is called an
atomic formula or atom for short. The negation symbol is ¬.
Both A and ¬A are literals whenever A is an atom. In this
case A is called a positive literal and ¬A is called a nega-
tive literal. A finite set (possibly empty) of literals is called
a clause. A clause represents the disjunction of its literals.
Thus the clause {A1, A2, ..¬Ai,¬Ai+1, ...} can be equiva-
lently represented as (A1 ∨ A2 ∨ ..¬Ai ∨ ¬Ai+1 ∨ ...) or

1Instantiate meta-rules using meta1, meta2 and meta3 facts.
2MetagolR and MetagolCF learn Regular and Context-Free

grammars respectively.
3MetagolD learns Dyadic Datalog programs.

A1, A2, .. ← Ai, Ai+1, .... A Horn clause is a clause which
contains at most one positive literal. A Horn clause is unit if
and only if it contains exactly one literal. A denial or goal is
a Horn clause which contains no positive literals. A definite
clause is a Horn clause which contains exactly one positive
literal. The positive literal in a definite clause is called the
head of the clause while the negative literals are collectively
called the body of the clause. A unit clause is positive if it
contains a head and no body. A unit clause is negative if it
contains one literal in the body. A set of clauses is called a
clausal theory. A clausal theory represents the conjunction
of its clauses. Thus the clausal theory {C1, C2, ...} can be
equivalently represented as (C1∧C2∧...). A clausal theory in
which all predicates have arity at most one is called monadic.
A clausal theory in which all predicates have arity at most
two is called dyadic. A clausal theory in which each clause is
Horn is called a logic program. A logic program in which
each clause is definite is called a definite program. Liter-
als, clauses and clausal theories are all well-formed-formulae
(wffs) in which the variables are assumed to be universally
quantified. Let E be a wff or term and σ, τ be sets of vari-
ables. ∃σ.E and ∀τ.E are wffs. E is said to be ground
whenever it contains no variables. E is said to be higher-
order whenever it contains at least one higher-order variable
or a predicate symbol as an argument of a term. E is said to
be datalog if it contains no function symbols other than con-
stants. A logic program which contains only datalog Horn
clauses is called a datalog program. The set of all ground
atoms constructed from P, C is called the datalog Herbrand
Base. θ = {v1/t1, .., vv/tn} is a substitution in the case that
each vi is a variable and each ti is a term. Eθ is formed by
replacing each variable vi from θ found inE by ti. µ is called
a unifying substitution for atoms A,B in the case Aµ = Bµ.
We say clause C θ-subsumes clause D or C �θ D whenever
there exists a substitution θ such that Cθ ⊆ D.

2.2 Framework
We first define the higher-order meta-rules incorporated
within the Prolog meta-interpreter.

Definition 1 (Meta-rules) A meta-rule is a higher-order wff

∃σ∀τP (s1, .., sm)← .., Qi(t1, .., tn), ..

where σ, τ are disjoint sets of variables, P,Qi ∈ σ ∪ τ ∪ P
and s1, .., sm, t1, .., tn ∈ σ ∪ τ ∪ C. Meta-rules are denoted
concisely without quantifiers as

P (s1, .., sm)← .., Qi(t1, .., tn), ..

In general, unification is known to be semi-decidable for
higher-order logic [Huet, 1975]. We now contrast the case
for higher-order datalog programs.

Proposition 1 (Decidable unification) Given higher-order
datalog atoms A = P (s1, .., sm), B = Q(t1, .., tn) the exis-
tence of a unifying substitution µ is decidable.
Proof. A,B has unifying substitution µ iff p(P, s1, .., sm)µ =
p(Q, t1, .., tn)µ.

This construction is used to incorporate meta-rules within
clauses of the Prolog meta-interpreter shown in Section 1 .
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Definition 2 (Meta-rule incorporation) The meta-rule
∃σ∀τP (s1, .., sm) ← .., Qi(t1, .., tn), .. is incorporated
in the Prolog meta-interpreter M iff M contains a clause
Head ← Body where Head = prove(P, s1, .., sm) and
Body contains prove(Qi, t1, .., tn), metar(σ) and typet(v)
for each v ∈ τ .

The atomsmetar(σ) and typet(v) provide groundings for all
variables within the meta-rule.

Definition 3 (MIL setting) Given a meta-interpreter M ,
definite program background knowledge B and ground pos-
itive and negative unit examples E+, E−, MIL returns a
higher-order datalog program hypothesisH if one exists such
that M,B,H |= E+ and M,B,H,E− is consistent.

2.3 Language classes and expressivity
We now define language classes for instantiated hypotheses.

Definition 4 (Hi
j program class) Assuming i, j are natural,

the class Hi
j contains all higher-order definite datalog pro-

grams constructed from signatures P, C with predicates of
arity at most i and at most j atoms in the body of each clause.

The class of dyadic logic programs with one function
symbol has Universal Turing Machine (UTM) expressivity
[Tärnlund, 1977]. Note that H2

2 is sufficient for the Family
example in Section 1. This fragment also has UTM expres-
sivity, as demonstrated by the following H2

2 encoding of a
UTM in which S, S1, T represent Turing machine tapes.

utm(S,S)← halt(S).
utm(S,T)← execute(S,S1), utm(S1,T).
execute(S,T)← instruction(S,F), F(S,T).

Below assume G is a datalog goal and program P ∈ H2
2 .

Proposition 2 (Undecidable fragment of H2
2 ) The satisfia-

bility of G,P is undecidable when C is infinite.
Proof. Follows from undecidability of halting of UTM above.

The situation differs in the case C is finite.

Theorem 1 (Decidable fragment of H2
2 ) The satisfiability

of G,P is decidable when P, C is finite.
Proof. The set of Herbrand interpretations is finite.

We limit ourselves to the H2
2 fragment throughout this paper.

3 Implementation
The MetagolD system is an implementation of the MIL set-
ting in Yap Prolog and is a modification of a simple Meta-
Interpreter of the form shown in Section 1. The modifications
are aimed at increasing efficiency of a Prolog backtracking
search which returns the first satisfying solution of a goal

← ..e+i , .., not(e
−
j ), ..

where e+i ∈ E+ and e−j ∈ E− and not represents negation
by failure. In particular, the modifications include methods
for a) ordering the Herbrand Base, b) returning a minimal car-
dinality hypothesis, c) logarithmic-bounding the maximum
depth of iterative deepening and d) use of a series of episodes
for ordering multi-predicate incremental learning.

Lexicographic Interval inclusion
p1 parent(a alice,b ted) leq(0,0)
.. leq(1,1)
p2 parent(c jake,d john) leq(2,2)
.. ..
p3 grandparent(a alice,e jane) leq(0,1)
p3 grandparent(c jake,f bob) leq(1,2)
.. leq(0,2)

Lex OrderTest Inclusion OrderTest
〈P, x, y〉@ > 〈Q, x, z〉 AND x@ > z AND
〈P, x, y〉@ > 〈R, z, y〉 z@ > y

Figure 2: Datalog Herbrand Base orderings with chain meta-
rule OrderTests. @ > is “lexicographically greater”

3.1 Ordering the Herbrand Base
Within ILP, search efficiency depends on the partial order of
θ-subsumption [Nienhuys-Cheng and de Wolf, 1997]. Sim-
ilarly in MetagolD search efficiency is achieved using a to-
tal ordering to constrain deductive, abductive and inductive
operations carried out by the Meta-Interpreter and to reduce
redundancy in the search. In particular, we employ Knuth-
Bendix [Knuth and Bendix, 1970; Zhang et al., 2005] (lex-
icograhic) as well as interval inclusion total orderings over
the Herbrand Base to guarantee termination. To illustrate,
consider the following ordered variant of the chain meta-rule
from Section 1.

P (x, y)← Q(x, z), R(z, y), OrderTest(P,Q,R, x, y, z)

Figure 2 illustrates alternative OrderTests which each con-
strain the chain meta-rule to descend through the Herbrand
Base. In the lexicographic ordering predicates which are
higher in the ordering, such as grandparent, are defined in
terms of ones which are lower, such as parent. Meanwhile
interval inclusion supports definitions of (mutually) recursive
definitions such as leq, ancestor and even/odd. Interval inclu-
sion assumes all atoms p(u, v) precede the atom q(x, y) in the
ordering when the interval [x, y] includes the interval [u, v].
Finite descent guarantees termination even when an ordering
is infinitely ascending (eg over the natural numbers).

3.2 Minimum cardinality hypotheses
MetagolD uses iterative deepening to ensure the first hypoth-
esis returned contains the minimal number of clauses. The
search starts at depth 1. At depth i the search returns an hy-
pothesis consistent with at most i clauses if one exists. Oth-
erwise it continues to depth i+ 1.

3.3 Logarithmic bounding and PAC model
In MetagolD a maximum depth bound for iterative deepen-
ing is set as d = log2m, where m is the number of examples.
Assuming c is the number of distinct clauses inH2

2 for a given
P, C the number of hypotheses at depth d is

|Hd| ≤ cd = 2dlog2c = 2log2mlog2c = mlog2c
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Since the total number of hypotheses for an iterative deep-
ening strategy is a constant, k, times those at the maxi-
mum depth considered, logarithmic bounding ensures the to-
tal number of hypotheses considered grows polynomially in
m. Within the PAC model [Valiant, 1984] the Blumer bound
[Blumer et al., 1989] can be used to show that

m ≥
ln(k|Hd|) + ln 1

δ

ε
= O(ln(m))

for the boundary case of ε = δ = 1
2 . Therefore MetagolD

with logarithmic bounding PAC-learns the class H2
2 .

3.4 Episodes for multi-predicate learning
Learning definitions from a mixture of examples of two inter-
dependent predicates such as parent and grandparent requires
more examples and search than learning them sequentially in
separate episodes. In the latter case the grandparent episode
is learned once it can use the definition from the parent
episode. This phenomenon can be explained by considering
that time taken for searching the hypothesis space for the joint
definition is a function of the product of the hypothesis spaces
of the individual predicates. By contrast the total time taken
for sequential learning of episodes is the sum of the times
taken for the individual episodes4 so long as each predicate is
learned with low error.

4 Experiments
In this section we describe experiments in which MetagolD
is used to carry out 1) predicate invention for structuring robot
strategies and 2) construction of higher-order concepts for
language learning using data from the NELL project [Carl-
son et al., 2010]. All datasets together with the implemen-
tation of MetagolD used in the experiments are available at
http://ilp.doc.ic.ac.uk/metagolD/.

4.1 Robot strategy learning
In AI, planning traditionally involves deriving a sequence of
actions which achieves a specific goal from a specific ini-
tial situation [Russell and Norvig, 2010]. However, vari-
ous machine learning approaches support the construction
of strategies5. Such approaches include the SOAR architec-
ture [Laird, 2008], reinforcement learning [Sutton and Barto,
1998], and action learning within ILP [Moyle and Muggleton,
1997; Otero, 2005].

In this experiment structured strategies are learned which
build a stable wall from a supply of bricks. Predicate in-
vention is used for top-down construction of re-usable sub-
strategies. Fluents are treated as monadic predicates which
apply to a situation, while Actions are dyadic predicates
which transform one situation to another.

Figure 3 shows a positive example (a) of a stable wall to-
gether with two negative examples (unstable walls) consist-
ing of a column (b) and a wall with insufficient central sup-
port (c). Predicates are either high-level if defined in terms of

4Misordering episodes leads to additional predicate invention.
5A strategy is a mapping from a set of initial to a set of goal

situations.

 a)  b) c)

Figure 3: Examples of a) stable wall, b) column and c) non-
stable wall

buildWall(X,Y )← a2(X,Y ), resourceEmpty(Y )
buildWall(X,Y )← a2(X,Z), buildWall(Z, Y )
a2(X,Y )← fetch(X,Z), putOnTopOf(Z, Y )

Figure 4: Column/wall building strategy learned from posi-
tive examples. a2 is invented.

other predicates or primitive otherwise. High-level predicates
are learned as datalog definitions. Primitive predicates are
non-datalog background knowledge which manipulate situa-
tions as compound terms.

A wall is a list of lists. Thus Figure 3a) can be repre-
sented as [[2, 4], [1, 3, 5]], where each number corresponds to
the position of a brick6 and each sublist corresponds to a row
of bricks. The primitive actions are fetch and putOnTopOf,
while the primitive fluents are resourceEmpty, offset and con-
tinuous (meaning no gap). This model is a simplification of a
real-world robotics application.

When presented with only positive examples, MetagolD
learns the recursive strategy shown in Figure 4. The in-
vented action a2 is decomposed into subactions fetch and pu-
tOnTopOf. The strategy is non-deterministic and repeatedly
fetches a brick and puts it on top of others so that it could
produce either Figure 3a or 3b.

Given negative examples MetagolD generates the refined
strategy shown in Figure 5, where the invented action a2 tests
the invented fluent f1. f1 can be interpreted as stable. This
revised strategy will only build stable walls like Figure 3a.

An experiment was conducted to test performance of
MetagolD. Training and test examples of walls containing
at most 15 bricks were randomly selected with replacement.
Training set sizes were {2, 4, 8, 16, 32, 64} and the test set
size was 1000. Both training and test datasets contain half
positive and half negative, thus the default accuracy is 50%.
Predictive accuracies and associated learning times were av-
eraged over 10 resamples for each training set size. The accu-
racy and learning time plots shown in Figure 5 indicate that,
consistent with the analysis in Section 3.3, MetagolD, given
increasing number of randomly chosen examples, produces
rapid error reduction while learning time increases roughly
linearly.

4.2 NELL learning
NELL [Carlson et al., 2010] is a Carnegie Mellon University
(CMU) online system which has extracted more than 50 mil-
lion facts since 2010 by reading text from web pages. The

6Bricks are width 2 and position is a horizontal index.
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buildWall(X,Y )← a2(X,Y ), f1(Y )
buildWall(X,Y )← a2(X,Z), buildWall(Z, Y )
a2(X,Y )← a1(X,Y ), f1(Y )
a1(X,Y )← fetch(X,Z), putOnTopOf(Z, Y )
f1(X)← offset(X), continuous(X)

Figure 5: Stable wall strategy built from positive and negative
examples. a1, a2 and f1 are invented.
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Figure 6: Graphs of a) Predictive accuracy and b) Learning
time for robot strategy learning

facts cover everything from tea drinking to sports personali-
ties and are represented in the form of dyadic ground atoms
of the following kind.

playssport(eva longoria,baseball)
playssport(pudge rodriguez,baseball)
athletehomestadium(chris pronger,honda center)
athletehomestadium(peter forsberg,wachovia center)
athletealsoknownas(cleveland browns,buffalo bills)
athletealsoknownas(buffalo bills,cleveland browns)

Initial experiment - debugging NELL using abduction
A variant of the ILP system FOIL [Quinlan, 1990] has previ-
ously been used [Lao et al., 2011] to inductively infer clauses
similar to the following from the NELL database.

athletehomestadium(X,Y )← athleteplaysforteam(X,Z),
teamhomestadium(Z, Y )

In our initial experiment MetagolD inductively inferred the
clause above from NELL data and used it to abduce the fol-
lowing facts, not found in the database.

1. athleteplaysforteam(john salmons,los angeles lakers)
2. athleteplaysforteam(trevor ariza,los angeles lakers)
3. athleteplaysforteam(shareef abdur rahim,los angeles lakers)
4. athleteplaysforteam(armando marsans,cincinnati)
5. teamhomestadium(carolina hurricanes,rbc center)
6. teamhomestadium(anaheim angels,angel stadium of anaheim)

Abductive hypotheses 2,4,5 and 6 were confirmed correct us-
ing internet search queries. However, 1 and 3 are erroneous.
The problem is that NELL’s database indicates that only Los
Angeles Lakers has Staples Center as its home stadium. In
fact Staples is home to four teams7. The MetagolD abduc-
tive hypotheses thus uncovered an error in NELL’s knowl-
edge8 which assumed uniqueness of teams associated with a
home stadium. This demonstrates MIL’s potential for helping
debug large scale knowledge structures.

Learning higher-order concepts
NELL presently incorporates manual annotation on concepts
being symmetric or transitive. The following meta-rule al-
lows MetagolD to abduce symmetry of a predicate.

P (X,Y )← symmetric(P ), P (Y,X)

Using this MetagolD abduced the following hypothesis.

symmetric(athletealsoknownas)←
athletealsoknownas(buffalo bills, broncos)←
athletealsoknownas(buffalo bills, kansas city chiefs)←
athletealsoknownas(buffalo bills, cleveland browns)←

This example demonstrates the potential for the MIL frame-
work to use and infer higher-order concepts.

5 Related work
Predicate Invention has been viewed as an important problem
since the early days of ILP (e.g. [Muggleton and Buntine,
1988; Rouveirol and Puget, 1989; Stahl, 1992]), though lim-
ited progress has been made in this important topic recently
[Muggleton et al., 2011]. In the MIL framework described
in [Muggleton et al., 2013] and in this paper, predicate in-
vention is conducted via abduction with respect to a meta-
interpreter and by the skolemisation of higher-order variables.
This method is related to other studies where abduction has
been used for predicate invention (e.g. [Inoue et al., 2010]).
One important feature of MIL, which makes it distinct from
other existing approaches, is that it introduces new predicate
symbols which represent relations rather than new objects or
propositions. This is critical for challenging applications such
as robot planning. The NELL language learning task sepa-
rately demonstrates MIL’s abilities for learning higher-order
concepts such as symmetry.

Although John McCarthy long advocated the use of higher-
order logic for representing common sense reasoning [Mc-
Carthy, 1999], most knowledge representation languages

7Los Angeles Lakers, Clippers, Kings and Sparks.
8Tom Mitchell and Jayant Krishnamurthy (CMU) confirmed

these errors and the correctness of the inductively inferred clause.
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avoid higher-order quantification owing to problems with de-
cidability [Huet, 1975] and theorem-proving efficiency. λ-
Prolog [Miller, 1991], is a notable exception which achieves
efficient unification through assumptions on the flexibility
of terms. Various authors [Feng and Muggleton, 1992;
Lloyd, 2003] have advocated higher-order logic learning
frameworks. However, to date these approaches have diffi-
culties in incorporation of background knowledge and com-
patibility with more developed logic programming frame-
works. As a knowledge representation, higher-order data-
log (see Section 2), first introduced in [Pahlavi and Muggle-
ton, 2012], has advantages in being both expressive and de-
cidable. The NELL language application demonstrates that
higher-order concepts can be readily and naturally expressed
in H2

2 and learned within the MIL framework.

6 Conclusions and further work
MIL [Muggleton et al., 2013] is an approach which uses a
Declarative Machine Learning [De Raedt, 2012] description
in the form of a set of Meta-rules, with procedural constraints
incorporated within a Meta-Interpreter. The paper extends the
theory, implementation and experimental application of MIL
from grammar learning to the dyadic datalog fragment H2

2 .
This fragment is shown to be Turing expressive in the case of
an infinite signature, but decidable otherwise. We show how
meta-rules for this fragment can be incorporated into a Prolog
Meta-Interpter. MIL supports hard tasks such as Predicate
Invention and Recursion via abduction with respect to such
a Meta-Interpreter. The MIL framework can be implemented
using a simple Prolog program or within a more sophisticated
solver such as ASP (see [Muggleton et al., 2013]).

We have applied MetagolD to the problem of inductively
inferring robot plans and to NELL language learning tasks.
In the planning task the MetagolD implementation used pred-
icate invention to carry-out top-down construction of strate-
gies for building both columns and stable walls. Experimen-
tal results indicate that rapid predictive accuracy increase is
accompanied by polynomial (near linear) growth in search
time with increasing training set sizes.

In the NELL task abduction with respect to inductively
inferred rules uncovered a systematic error in the existing
NELL data, indicating that MetagolD shows promise in help-
ing debug large-scale knowledge bases. MetagolD was also
shown to be capable of learning higher-order concepts such
as symmetry from NELL data.

Although H2
2 is theoretically Turing equivalent, some con-

cepts are awkward to express in this fragment. For in-
stance, although symmetry and reflexivity are readily ex-
pressed within H2

3 , transitivity requires H2
3 .

In future work we aim to explore the incorporation of prob-
abilities within the MIL framework. In the robot planning
domain this would allow modelling of actions and fluents
which fail with certain probabilities. Similarly, uncertainty
of abductions of player-teams relations could be modified by
taking into account the ambiguity of the home stadium re-
lationship in the NELL application. One approach to this
might be to incorporate a MIL meta-interpreter into an ex-
isting representation such as SLPs [Muggleton, 1996], Blog

[Milch and Russell, 2006] or Problog [De Raedt et al., 2007;
den Broeck et al., 2010]. If successful these representations
could gain from the model estimation methods of MIL, while
MIL would gain from the probability estimation approaches
within these systems.

Finally it is worth noting that a Universal Turing Machine
can be considered as simply a meta-interpreter incorporated
within hardware. In this sense, meta-interpretation is one of,
if not the most fundamental concept in Computer Science.
Consequently we believe there are fundamental reasons that
Meta-Interpretive Learning, which integrates deductive, in-
ductive and abductive reasoning as higher-level operations
within a meta-interpreter, will prove to be a flexible and fruit-
ful new paradigm for Artificial Intelligence.
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