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Abstract. In this paper we describe the current status of an ongoing re-
search project investigating a novel form of Machine Learning in which the
learner’s vocabulary is enriched by the machine suggesting useful new descrip-
tive terms for the user to accept or reject. An algorithm called Duce has been
shown to be effective along these lines in developing and extending propositional
theories within a chess endgame domain and a diagnostic domain of neuro-
psychology. By showing that Duce’s transformational operators are based on
reversing the steps of a resolution proof we show that Duce’s learning method
is sufficient for learning any propositional theory.

1 Introduction

Duce [4] is an algorithm which produces hierarchical concept descriptions from
large numbers of examples. Whereas the ID [7] and AQ [3] families of inductive
algorithms require all necessary attributes to be provided before learning can
take place, Duce develops new attributes by incrementally building them from
existing ones, testing each against the user for comprehensibility. Duce uses a
set of transformations of propositional Horn clauses which successively compress
the example material on the basis of generalisations and the additions of new
terms. In the following description of three of the six Duce operators lower-case
Greek letters stand for conjunctions of propositional symbols.

1. Intra-construction. This is the distributive law of Boolean equations.
We take a set of rules such as

h1 <—oz,3
hy ¢ ay

and replace them with the rules

hy < Ozhg
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hs < B
h3<—’)/

The user either names the new concept hg or rejects it.

2. Absorption. This operator is due to Sammut and Banerji [10]. Given a
set of rules, the body of one of which is completely contained within the
bodies of the others, such as

hi <+ af
h2<—a

one can hypothesise

h1<—h25
h2<—a

The user can either accept this generalisation or reject it.

3. Identification. This operator has preconditions which are stronger than
those of intra-construction. A set of rules which all have the same head,
the body of at least one of which contains exactly one symbol not found
within the other rules, such as

hl — aﬂ
h1 «— Ozhg

can be replaced by

hl (—Olhz
hy

Again the user can either accept this generalisation or reject it.

Duce uses the compaction of the rulebase produced by each of the six op-
erators to guide the search for the next operator to apply. In [4] we give the
set of characteristic formulae, one for each operator which predict the exact
symbol reduction produced by each operator, the number of symbols in a rule
being equal to the rule-body length plus one for the rule-head. Since Duce only
applies operators which give a positive symbol reduction it can be easily shown
that the algorithm terminates after a finite number of operator applications.

2 Application domains.

2.1 KPa7KR application.

The first large-scale test of Duce’s capabilities[4], was an attempt to automati-
cally reconstruct Shapiro and Kopec’s expert system [11] for deciding whether



positions within the endgame of King-and-Pawn-on-a7 v. King-and-Rook were
won for white or not. A set of 3196 examples were used, and Duce’s questions
were answered by the chess endgame specialists Ivan Bratko and Tim Niblett.
The result was a comprehensible restructuring of the domain, topologically sim-
ilar to Shapiro and Kopec’s original structure, though an order of magnitude
more bulky.

2.2 Neuropsychology application.

A second, and previously undescribed structuring experiment was carried out
by the author using Duce at Interact Corporation, Canada. In this Duce was
used to construct a problem decomposition for deciding on dysfunction of the
left parietal brain area of children with learning disabilities. The input to the
algorithm consisted of 227 diagnosed cases. Each case contained the results
of a battery of approximately 100 binary-valued clinical tests. Each case was
marked with a diagnosis of normal/abnormal left parietal lobe by the resident
clinical neuro-psychologist, Dr. Russell. Using these cases Duce carried out an
interactive session in which Russell was asked to answer a total of 53 questions.
During and subsequent to the construction of the rulebase, a set of 48 indepen-
dent cases were used to test the performance of the new rule-set. Since the cases
and generated rules were inherently noisy, a majority-vote mechanism was used
for rule evaluation. After all 53 questions had been answered, 43 of the 48 test
cases agreed with Russell’s diagnosis, i.e. 90% agreement. In contrast, an ex-
isting expert system developed by Russell had only a 63% agreement rate with
Russell’s diagnoses over the same test data. While Duce’s structured rulebase
took 2-3 person-days to build and verify, the equivalent part of the hand-built
expert system is conservatively estimated to have taken 2-3 person-months to
generate, improve and verify.

In parallel with the supervised construction of the Duce rulebase, Duce was
run on the same cases in unsupervised mode. In this mode, all generalisation
questions were answered affirmatively and all new concepts were arbitrarily
named. Performance with unsupervised learning stabilised after 27 questions
to a level of 25% agreement with Russell’s diagnoses of the same test cases.

Unlike the endgame experiment in which an exhaustive example set was
used, the neuro-psychological example set was relatively sparse. As a conse-
quence, whereas no rejections were necessary in the case of the chess experi-
ment, an average of 10 rejections were required per acceptance with the neu-
ropsychological data. This seems to indicate the need for expert supervision
of Duce where sparse data is involved, and explains the dramatic difference in
verification results between the supervised and unsupervised data.

The structure of the rulebase created by Russell working with Duce is shown
in Appendix A. This hierarchical structure contains groups of rules associated
with each node of the network. The sub-types implied by this hierarchy were,
according to Russell, ”clinically significant”, and relate directly to neuropsy-
chological sub-types based on Wide-range-achievement-test (WRAT) results in
arithmetic, reading and spelling.



3 Theory.

Duce has shown a considerable amount of success within the application do-
mains described in the previous section. However, there are a number of ques-
tions concerning the methodology employed within Duce which are of interest
both from a theoretical and a practical viewpoint.

¢ Completeness of operators. Six operators are used by Duce to carry
out generalisations and introduce new terms. How complete are these?
Are they sufficient to learn any arbitrary set of propositional clauses given
enough examples? (see section 3.2)

e Search. Duce presently searches through the set of conjunctions of pred-
icate symbols to find which operator to apply next. For this reason Duce
can be myopic in its choice of new terms. The discrepency in complexity
between Duce’s solution and human solutions (see section 2.1) seems to
indicate that this problem can be quite severe. New methods of searching
for operators are required. (see section 3.3)

e Extensions to first-order representation. Bain [2] has described a
failed attempt to use Duce to learn a simple chess definition of position
legality from only positional attributes. Although the definition can be
simply described in first-order predicate calculus the cumbersomeness of
Bain’s description is not eased by adding extra propositional attributes.
This gives incentive to an investigation into extending the Duce approach
to deal with first-order predicate calculus. (see [5])

3.1 Inverting resolution.

Although it is apparent to many researchers in Machine Learning that there
is a strong relationship between deductive theorem-proving mechanisms and
inductive inference, this idea has rarely been investigated to any greater depth
than to notice that the idea of logical subsumption or logical implication are
central to both. One exception to this is Plotkin [6], who investigated the idea
that

just as unification was fundamental to deduction, so might a con-
verse be of use in induction.

From this idea Plotkin went on to develop the concept of least general gen-
eralisation, or anti-unification of literals and clauses.

Unification is a basic idea within Robinson’s [9] theory of resolution. An-
other important concept within this theory is that of the resolution tautology,
or rule of inference. As Plotkin [6] notes

It is interesting that ... the similarity between induction and deduc-
tion breaks down ... [with anti-unification]. What is useful is not
a concept of unification of two clauses, but the deduction principle
called resolution.



We now show that the analogy between deduction and induction can be
extended fruitfully, and that in fact the operators used by Duce are merely the
inverse of resolution. In a later section, this fact will lead us to a proof of the
sufficiency of the Duce operators.

In this section we limit our discussion of resolution to binary resolution of
propositional Horn clauses. However, in [5] we extend this analysis to deal with
first-order representations. Let C7 and Cy be the two clauses

Cl = (h1<—ah2)
Cy = (he2 < PB)

We write the resolvent or resolved product of C; and Cy as
C=0C1-Cy=(h1 < af)
We now define the resolved quotient as follows.
C,=C/Cs
Alternatively, the author calls Cy the identificant of C' and Cs. Similarly
Cy=0C/Cy

Again we call Cy the absorbant of C and C. Note that in both cases, the
resolved quotient is unique for propositions. It is now straightforward to define
the absorption and identification operators described informally in section 1.

Definition 1 Given a propositional Horn clause program P D {C,Ci}, the
absorption operator, Abs, transforms P to P' = (P — {C})U{C/C}.

Definition 2 Given a propositional Horn clause program P D {C,Cs}, the
identification operator, Ident, transforms P to P' = (P —{C}) U {C/C>}.

We can also define the inverse of both of these operators uniquely.

Definition 3 Given a propositional Horn clause program P D {Cy,Ca2}, the
inverse absorption operator, Abs~!, transforms P to P' = (P—{C>})U{C}-Cs}.

Definition 4 Given a propositional Horn clause program P D {Cy,Cs}, the
inverse identification operator, Ident™', transforms P to P' = (P — {C1}) U
{C1 - Cy}.

We now give a formal definition of the intra-construction operator of sec-
tion 1 and its inverse. Let A = (hg < vh4), BB = {By,..,Bp} = {(h4 +
51),--’(h4 A 5“)}’ cC = {Cla--acn} = {(A : Bl)a-'a(A : Bn)} = {(h’3 A
Y61); -, (h3 <= 0n)}-

Definition 5 Given a propositional Horn clause program P 2 CC, the intra-
construction operator, Intra, transforms P to P' = (P — CC)U{A} UBB.



Definition 6 Given a propositional Horn clause program P D ({A} U BB),
the inverse intra-construction operator, Intra™!, transforms P to P' = (P —

({A}UCC)) U BB.

Lemma 1 If the program transformation P — P' is carried out by either
Abs™1, Ident™" or Intra=' then P subsumes P'.

Proof. Follows from the fact that all these operators replace more general
clauses with more specific ones. O

The reader may wonder how A and BB are constructed in the defini-
tion of Intra. As a special case of Plotkin’s [6] least general generalisation
(lgg) of clauses, we say that 7 is the lgg of the bodies of clauses within C'C
(bodies(CC)) if and only if 7 is the common intersection of propositional sym-
bols of bodies(CC). Given 7 and a new predicate symbol hg, it is straightfor-
ward to construct A and BB. In fact, while Abs and Ident represent the only
two ways in which a single resolution step can be reversed, Intra is one of a
number of ways in which the effects of multiple resolution steps can be reversed.
It is only through reversal of multiple resolution steps that the introduction of
new predicate symbols becomes possible.

3.2 Completeness of Duce operators.

In order to ensure that the success of the Duce applications described in section
2 was not due to some peculiar property of the domains involved we need to
show that the operators used by Duce are sufficient to learn any arbitrary set
of propositional clauses. Clearly we need to specify some restriction on the
allowable forms of examples used, otherwise Duce could merely be presented
with any desired solution as its input. Let P be an arbitrary target propositional
Horn clause program. The vocabulary used in P (vocab(P)) is then simply the
set of propositional symbols in P. The primitive vocabulary of P (prim(P))
is the set of symbols not defined in terms of other predicate symbols. Thus
prim(P) = vocab(P) — heads(P), where heads(P) is the set of clause heads of
clauses within P. Now let E be a set of example propositions from which P can
be learned by Duce. A reasonable restriction on allowable forms of examples
used would seem to be that

1. P subsumes FE, i.e. any statement which can be derived from E can also
be derived from P,

2. each clause body in bodies(F) is composed only of predicate symbols from
prim(P) and

3. the vocabulary of P is an extension of that of E, i.e. vocab(P)—vocab(E) #

{-

If these conditions are met then we will say that F is a legitimate example
set of P. First we define the abstract algorithm Duce(aps, rntrq) Which is a non-
deterministic version of the Duce algorithm limited to using only the Abs and
Intra operators. In the following an inverse derivation £ — P, — .. — P, is



a mixed sequence of absorption and intra-construction transformations of the
example set F into the propositional Horn clause program P = F,,.

Definition 7 The algorithm Duce(aps rnira)(E) returns a set of possible Horn
clause programs H = {P : P is an inverse derivation of E}.

We can see H as being the hypothesis space of an algorithm which returns a
single hypothesis. Angluin [1] introduced the notion of a characteristic sample
set of examples for language L as being a set of examples which are sufficient to
allow the inference of L. Here we use the term somewhat loosely to define a set
of examples which induces a hypothesis space containing a given logic program
P. If we can show that for any arbitrary propositional Horn clause program P
we can generate a characteristic sample set, it follows that there is a sample set
from which any P can be induced. This in turn would show that given
a large enough set of examples, which in the limit must contain a
characteristic sample, the Duce operators are sufficient to learn any
propositional Horn clause program.

Definition 8 Given a propositonal Horn clause logic program P we say that E
is a characteristic sample of P for algorithm Duce aps,intra) if and only if E is
a legitimate example set of P and P € Duce(aps, rntra)-

Before showing how to construct a finite characteristic sample for any logic
program we will introduce the auxilliary notion of an isolated reference.

Definition 9 The clause (h < ap) € P is said to reference predicate symbol
.

Definition 10 The clause C € P contains an isolated reference to predicate
symbol p if and only C is the only clause within P which references p.

Remark 1 If Abs ™! is applied to P D {C1,Cy} to produce P' = P — {Cy} U
{C1.C3} then the operator Abs™ ' reduces the number of clauses which reference
predicate symbol p € vocab(P) by one.

Remark 2 If Intra™! is applied to P O (AU BB) to produce P' = P —
({A} UBB) UCC, where A = (h < ap) contains an isolated reference to p,
BB ={(p < B1),..,(p < Bn)} is the set of all clauses conatining the predicate
symbol p in their heads and CC = {(h < af1),..,(h < afyn)} then the program
P' does not contain the predicate symbol p.

The following algorithm Char(aps,rntra) can be used to generates a characteristic sample
of a given propositional Horn clause logic program P.

algorithm Char(aps rnira) (P)
leti=0,FP =P
until P; is a legitimate example set of P do
if 4A € P; such that A contains an isolated reference to p



P, is the result of applying Intra ! to remove p in P
else
P;, 1 is the result of applying Abs~! to remove reference A in P,
leti=7+1
done
let f =1
E is Py
return(E)
end Char

Now we must show that this algorithm will generate a characteristic sample
for any propositional Horn clause logic program.

Theorem 1 Char( Abs,Imm)(P) returns a characteristic sample for any propo-
sitional Horn clause logic program P.

Proof. Let E = Char(aps,intra)(P). According to definition 8 E is a a char-
acteristic sample of P for Duceaps, ntrq) if and only if E is legitimate and
P € Duce(ps,intra)(E). Let us assume that E is not a characteristic sample of
P.

We will first look at the case in which the until loop in Char(aps,rnira) ter-
minates. According to the loop termination condition, Py must be a legitimate
example set of P. Since each step ¢ in the derivation P — .. — P; was carried
out by either Abs~! or Intra™' it follows that the sequence of transformations
(E = P;) — .. = P is an inverse derivation of P from E. It follows from
definition 7 that P € Duce(aps, nira)(E), and thus E is a characteristic sample
of P. We must therefore assume that the until loop does not terminate.

Let p be some predicate symbol in vocab(P) — prim(P). By definition
there must be clauses which reference p in P. These references will be reduced
one by one by the else statement (Remark 1), with the last reference being
removed by the if statement, together with all remaining occurrences of p in P
(Remark 2). Referenced predicate symbols will be removed one by one until only
unreferenced predicate symbols remain for some P;. From repeated application
of Lemma 1, P subsumes P;. Moreover the vocabulary of P; will have been
successively reduced from that of P by applications of Intra~! (Remark 2).
Thus by definition P; is legitimate and the until loop will terminate with
f = j. This contradicts the assumption and completes the proof. O

We now investigate the size of the characteristic sample set for a given
propositional Horn clause logic program.

Theorem 2 Let E = Char(aps ntra)(P) and Ps be the set of referenced predi-
cate symbols in P. The size of the characteristic sample set |E| = |P| — |Ps|.

Proof. From definition 2 Abs~! applies the transformation P’ = P — Co U C,

and therefore | P'| = | P|. From definition 4, Intra~—' applies the transformation
P' = (BB U{A}) UCC, where |BB| = |CC|. Tt follows that for Intra=!,
|P'| = |P|—1. In the proof of Lemma 1 we have shown that referenced predicate

symbols are removed one by one using Intra—!. All other transformations



employ Abs !. Since there must therefore be |Ps| applications of Intra ! it

follows that |E| = |P| — |Ps|. O

Thus not only have we shown that the operators Abs and Intra are suffi-
cient to learn any arbitrary propositional program but also, surprisingly, less
examples are needed to induce a propositional program than there are clauses
in that program. This is counter-intuitive to the normal belief in inductive
knowledge engineering, in which we expext to use a large number of examples
to induce a small number of rules.

3.3 Search: Duce macro-operators.

Duce presently searches through the set of conjunctions of predicate symbols
to find which operator to apply next. For this reason Duce can be myopic in
its choice of new terms. The discrepency in complexity between Duce’s solu-
tion and human solutions (see section 2.1) seems to indicate that this problem
can be quite severe. However, by considering the characteristic set generat-
ing algorithm of section 3.2 as being an inverted strategy for propositional
program construction, we have discovered a simple and effective method of im-
proving Duce’s present search mechanism. The argument is as follows. The
algorithm Char(aps, 1nirq) Temoves intermediate concepts (predicate symbols)
one at a time. For every predicate symbol p removed, Char(aps, rntra) 2pplies
Abs~! repeatedly to remove all but the last reference to p. p is finally removed
from the vocabulary by application of Intra~!. In reverse this strategy becomes

1. Introduce p using Intra
2. Apply Abs to all clauses with head p.

This can be view as a form of macro-operator. Attempts are presently
being made to implement this and other macro-operators within Duce. One
severe impediment to the approach has been that whereas the symbol reduction
effect of the old Duce operators can be efficiently and accurately computed using
the characteristic equations of [4], no efficient method of computing the exact
effect of macro-operators has been found outside application and measurement.
It is estimated that application and measurement would slow the execution of
the Duce algorithm by a factor of 1000 on applications the size of the KPa7TKR
experiment. However, various methods of approximating the evaluation have
been tried, the most effective of which led to a 20% compaction of the KPa7TKR
result [4].

4 Discussion.

Although much progress has been made in applying Duce to various problem
domains, the present aim of our research is to extend Duce’s capabilities. For
these purposes it has been necessary to work out the theory underlying the
Duce approach in more detail. In so doing we have discovered that Duce is a
form of inverse resolution theorem prover. Many useful insights into possible



improvements and extensions of the Duce algorithm have resulted from this,
some of which are described in section 3.

The two most interesting adaptions of Duce seem to lie in the directions

of changing the underlying knowledge representation to first-order predicate
calculus and dealing with noisy data. Although other authors have looked at
related problems [8, 12, 10], all such attempts have dealt with learning sin-
gle predicates, none with the more difficult problem of automatic vocabulary
extension.
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