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Abstract

Non-demonstrative or inductive reasoning is a crucial component in the
skills of a learner. A leading candidate for this form of reasoning involves
the automatic formation of hypotheses. Initial successes in the construc-
tion of propositional theories have now been followed by algorithms that
attempt to generalise sentences in the predicate calculus. An important
defect in these new-generation systems is the lack of a clear model for
theory justification. In this paper we describe a method of evaluating the
significance of a hypothesis based on the degree to which it allows com-
pression of the observed data with respect to prior knowledge. This can
be measured by comparing the lengths of the input and output tapes of a
reference Turing machine which will generate the examples from the hy-
pothesis and a set of derivational proofs. The model extends an earlier
approach of Muggleton by allowing for noise. The truth values of noisy
instances are switched by making use of correction codes. The utility of
compression as a significance measure is evaluated empirically in three
independent domains. In particular, the results show that the existence
of compression distinguishes a larger number of significant clauses than
other significance tests. The method also appears to distinguish noise as
incompressible data.

1 Introduction

The ability to form inductive hypotheses is a fundamental requirement for a
learner. This is evident even in the most rudimentary robots that plan actions
based on continuity assumptions about the state of the world around them. Lit-
erature on the automated formation of hypotheses has largely concentrated on



their construction. Initial successes in the induction of propositional theories
(Michalski 1983; Quinlan 1986; Clark and Niblett 1989) have been followed by
algorithms that attempt to generalise sentences in the predicate calculus (DeR-
aedt and Bruynooghe 1992; Muggleton and Feng 1990; Quinlan 1990; Rouveirol
1991). However, while the need to justify inductive theories has long been recog-
nised (Carnap 1952; Popper 1972) and is an important topic in the work by
Plotkin (1971), it remains largely unexplored within machine learning. In partic-
ular, although propositional theories have been justified using statistical measures
of significance (see for example, Clark and Niblett 1989), probability estimates
(Cestnik 1991), or simplicity (Quinlan and Rivest 1989), there appears to be no
clear method for evaluating first-order theories.

In this paper we describe a model that addresses the issue of hypothesis
justification within the framework of learning first-order theories. There are two
principal features in our approach. First, given a set of alternate first—order
hypotheses for some data, the one chosen is that which is least likely to have
explained the data by chance. Second, the model appears to be unique in that it
accounts for the use of relevant prior knowledge by the hypotheses. Significance
measures used in propositional learners are typically concerned only the accuracy
of a theory and number of examples it explains. Simply adopting such a measure
in a first-order learner would mean giving up the ability to judge if the explanation
was based on chance coincidences in the prior knowledge.

2 Incremental hypothesis construction

We adopt the logical framework described by Shapiro (1983). In this, the task of
the learning process is to infer some (unknown) target logic program P. There is
an intended interpretation (model) for this program Mp. We assume the presence
of some predicates whose interpretation is fixed and does not change in Mp.
These predicates constitute the background knowledge B. At any given stage
1 of incremental hypothesis construction, a learner has accumulated examples
known to be included in Mp (denoted E; ") and those known to be excluded from
it (denoted E;~) Current learning systems attempt to construct hypotheses H;
under the following constraints:
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There are in general, infinitely many consistent hypotheses that satisfy these
requirements. A snapshot of the construction of one such hypothesis by a “learn-
ing” (induction) machine is shown in Figure 1. Despite satisfying the constraints
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Figure 1: A stage in incremental hypothesis construction

listed above, a hypothesis H; may be incorrect or incomplete with respect to
Mp. This is remedied at subsequent stages when training examples exposing the
problem become available to the learner.

There are some practical difficulties with this model of learning:

e Examples may arise from a noisy data source and at a given stage, we
may have a theory that appears inconsistent. There is no mechanism for
accepting such a theory.

e Even with noise-free data, there may several consistent hypotheses to ex-
plain the data. There is no method of evaluating the explanatory power of
these hypotheses.

e There is no direction on how the examples for training are to be selected.

This paper is concerned with the first two issues. We note in passing that the
normal approach adopted to address the third problem involves either random
data-sampling or asking queries of an oracle. The former approach may require
a large number of examples before converging on the target program. Recent
efforts (Bain, 1991; Morales 1991) attempt to actively guide the generation of
new examples.

3 Incremental hypothesis evaluation

In this section we consider evaluating competing hypotheses constructed at a
single stage in the incremental learning process described earlier. Although in
the 1950’s Carnap (1952) and others suggested “confirmation theories” aimed at
providing statistical significance tests for logic-based inductive inference, various
difficulties and paradoxes encountered with these approaches meant that they
were never applied within machine learning programs (Mortimer 1988). Instead
machine learning researchers have for the most part made use of Occam’s ra-
zor with various ad hoc definitions of complexity. However the lack of a clear
model underlying such approaches makes it difficult to associate any independent
meaning to the simplicity of a hypothesis.



We concentrate on an approach described by Muggleton in (Muggleton 1988).
This addresses the theory evaluation question using ideas from algorithmic in-
formation theory (Chaitin 1987; Kolmogorov 1965; Solomonoff 1964). In this
approach, the utility of a Horn clause program is measured on a reference Turing
machine. Unlike the machine in Figure 1 this reference machine behaves like a
deduction machine. The input to this machine is a program that has two distinct
parts: a Horn clause theory and a proof specification. The machine uses the
latter to output examples derivable by the theory (Figure 2).

Input tape Output tape
1101, 1011000 T 001110110011101
Logic  Proofs Positive and Negative examples
program

Figure 2: A Turing machine model for evaluating logic programs

Following algorithmic information theory, the Horn clause theory is said to be
compressive if the length of an encoding of the input tape (in bits) is shorter than
that of the output tape. The use of a reference machine (as opposed to a universal
one) is motivated by demonstrating that the probability of obtaining a compres-
sive theory by chance decreases exponentially with the amount of compression
for any machine. This gives a clear meaning to the notion of compression. For
completeness, we reproduce the proof of this result here.

Theorem 1 Let Y, be the set of all binary strings of length n, T be an arbitrarily
chosen reference Turing machine and the k-bit-compressible strings of length n,
K, x, be defined as {y :y € ¥,z € ¥, ¢, T(x) = y}. The set K, has at most
2nkelements.

Proof Since Turing machines are deterministic 7' either induces a partial one-
to-one or many-to-one mapping from the elements of ¥, , to the elements of
Kn,k- Thus |Kn,k‘ < |En7k| ="k O

Corollary 2 The probability of a binary string generated by tossing an unbiased
coin being compressible by k bits using any Turing machine T as a decoding
mechanism is at most 27F.

These results provide the theoretical justification for the material in this pa-
per. Hypotheses are evaluated on the basis of the compression they produce.
Theories with higher compression are preferred as they are less likely to explain
the data by chance. This deductive evaluation of hypotheses nicely complements
the induction process depicted in Figure 1. Evaluating the hypothesis constructed
at any stage requires us to check the compression produced by the hypothesis at
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Figure 3: A Turing machine model for incremental hypothesis evaluation

that stage. As seen in Figure 3, this is, in some sense, like reversing the theory
construction stage.
In Figure 3, the machine 7" has the following input-output behaviour:

T(1(B A H;, Proof(B A Ej| B A H;))) = O(B A E;)

where I, O and Proof are input, output and proof encodings for 7. The k-bit
compression achieved by the theory on the input tape is then:

To be of practical value, we also have to specify the encodings I, O and Proof
(this aspect was left unexplored in Muggleton 1988). Clearly, we would like an
encoding that is guaranteed to be optimal. However, results from algorithmic
information theory have shown that finding an optimal encoding is equivalent
to the halting problem. Consequently, we have to be satisfied with a sufficient
test for significance based on the encoding scheme adopted. In the next section
we describe an efficient coding scheme that can be used to evaluate Horn clause
theories for the setting described by Figure 3.

4 An encoding scheme for the evaluation of log-
ical theories

4.1 Input tape encoding

The basic premise of the compression model is that efficient (ideally optimal)

encodings are found for input and output tapes of a machine. The components

of the input tape for the machine in Figure 3 are shown in Figure 4. In this figure,

the first three sections (upto the encoding of B) constitute header information.
The reference machine 7' interprets the input tape as follows:

e The size of the background knowledge (number of atoms and/or clauses
in B) allows the machine to distinguish between it and the hypothesis
constructed. The number of clauses is used for two purposes. It states how
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‘ Size-of-B ‘ No-of-clauses ‘ Symbol-Descrip ‘ B ‘ H; ‘ Proofs ‘

Figure 4: Sections of the input tape for machine T

many clauses to expect on the input tape and it is also used to construct a
special clause separator symbol. Although the background knowledge can
consist of clauses, it is common practice with current first-order learning
systems to represent it by a ground model (Muggleton and Feng 1990;
Quinlan 1990). The need to specify a symbol description in the header is
elaborated shortly.

e A header is generated for the output tape using B and the examples spec-
ified by the proof encoding. This header has the same form as that on the
input tape. The difference is that the clause count and symbol description
refer to the output tape.

e Each example on the output tape is generated by its proof encoding. The
machine acts as a logic program interpreter. For each example, the proof
encoding specifies the clauses in the hypothesis and background knowledge
that are used to derive the example.

e The machine outputs the atoms and/or clauses in B without interpreting
them onto the output tape.

4.1.1 Background knowledge and hypothesis encoding

A logic program can be viewed as a sequence of symbols. A near optimal choice for
encoding these symbols involves the use of prefix codes. We assume a vocabulary
S of symbols where each symbol s € S appears with relative frequency p,. A
prefix code is a function

Prefiz : S — {0,1}"

which has the property that no code is a prefix of any other code. This property
ensures that codes are self-delimiting. Information Theory (Shannon and Weaver
1963) tells us that the optimal code length for symbol s is —logsps bits. Huffman
coding (Gallager 1968) is a prefix coding which achieves approximately this code
length for each symbol.

In order for the machine to “understand” the encoding of symbols in B and
the hypothesis, it is necessary to define the frequencies of the different symbols
used. This can then be used to construct a code-book for the message on the
input tape. The components of this symbol description header are shown in
Figure 5.



‘ PSyms ‘ Zero ‘ FSyms ‘ Zero ‘ Vars ‘ Zero ‘ PSym-arity ‘ FSym-arity

Figure 5: Sections of the symbol description header

Predicate, function and variable symbols have different codes. A prefix table,
such as that of the predicate symbols, consists of the individual symbol counts
in order of their appearance. This sequence of natural numbers is sufficient for a
unique reconstruction of the codes used in the theory. The clause separator sym-
bol (constructed using the clause count) is treated as though it were a predicate
symbol. The arities for predicate and function symbols are also number sequences
whose orders correspond to those in the prefix tables. Clearly the clause separa-
tor “predicate” symbol has no arity. “Zero” is defined to be the encoding of the
natural number 0 and acts as a separator for different sections of the header. Sep-
arators are not necessary to delimit the arities since their number is determined
by the predicate and function symbol counts. In order to avoid infinite regress we
must find a universal coding for the natural numbers that appear in the header.
Natural numbers can be encoded using prefix codes given an appropriate prior
distribution. Rissanen (1982) shows that an optimal distribution can be defined
for which the code length L(n) is bounded as follows

logan < L(n) < logan + r(n)

where 7(n)/logen — 0 and r(n) — oo as n — oo. For example, a universal code
for numbers could be constructed using N 0’s followed by a 1 followed by 2 —1
binary encoded digits N = 0,1,2.... This gives the following codes for natural
numbers.

0—1

1 — 010

2 — 011

3 — 001000

11 — 00010000000

The approximate code-length for the natural number n using this code is [logs (n+
2)] + [logz[loga(n + 2)]]. The prior probability distribution assumed for these
numbers is p(n) = (nlog,’n)~!. In general, the lengths of all such universal codes
for natural numbers have logan as the dominant term and to first approximation
can be taken as bounded by logs(n + 2) + 2logalogs(n + 2).

We assume that logical theories are expressed as a set of Prolog clauses. The
following grammar gives the syntax of our encoding of theories.



Theory ::= { Clause }No of clauses
Clause ::= Atom Clause | Stop

Atom ::= PredSym [Negated] {Term}Arity(PredSym)
Term = [“0”] FuncSym {Term}ATltY(ElnCSym) | [1”] VarSym
Negated::= “0” | “1”

Example 3 Consider encoding a theory that consists of the following clauses

normal(Year) :- year(Year), not leap4(Year).
leap4(Year) :- mod(Year,4,0).

The predicate symbols in order of appearance are normal/1, year/1, leap4/1 and
mod/3. In addition, there is a clause separator “predicate”. The function symbols
in order of appearance are 4/0 and 0/0. There is a single variable symbol that
occurs b times. The encodings for the symbol counts and arities follow (P, D
and B stand for Parse, Decimal and Binary). For the example, we shall use the
natural number coding described earlier.

P P-count F-count V-count
D 1 1 2 1 0 1 1 0 5 0
B 010 010 011 010 1 010 010 1 001010 1
P P-arity F-arity

D 1 1 1 3 0 0

B 010 010 010 001000 1 1

This is a total of 44 bits. Huffman codes for the clause separator and the
predicate symbols are 00, 10, 110, 01 and 111 respectively. The function symbols
have the codes 0 and 1. Since there is only one variable it does not need a code.
Thus the coding for the theory itself is as follows.

P normal(...) year(...) notleap4(...) Sep leap4(...) mod(...) Sep
P Atom

B 101 11001 0111 00 011 11110 00

This is a further 21 bits. The encoding illustrates several points. First, since
we are only concerned with Prolog clauses, the head of the clause does not have
to be flagged for negation. Further, codes are not needed once the identity of the
symbol is determined from the count and arity information. This is evident in the
case of encoding the variable: all that is needed is to indicate where Year occurs
(using the flag “1”). It is further illustrated in the encoding for mod/3. From the
header, it is clear that the predicate has 3 arguments. From the symbol counts,
these have to be single occurences of Year, 4/0 and 0/0. Thus once the position
of the variable is known (from the “1” flag), there is no need to flag the remaining
arquments as being function symbols. From the encoding of the second argument
(by “0”), the third is determined and does not have to be stated.



Although for longer theories we would expect that the header information
would be considerably shorter than the statement of the theory, prefix coding
may not be very efficient for small theories. Clearly, each symbol type (predicate,
function, variable) can be coded differently with bits at the front of the input
tape indicating the type of coding adopted for each symbol. This will change
the contents of the header. Within our implementation, we can select the most
efficient amongst three different coding schemes for a symbol: universal natural
number code, a fixed-length code or a prefix code (listed in order of increasing
header information). For each scheme, we use the non-integral code length as an
optimal estimate. The assumption here is that this value can be reached when
sufficiently long messages are encoded.

4.1.2 Proof encoding

The reference machine 7' takes the theory and a proof encoding and generates
the examples. Derivational proofs are represented as sequences of choices to be
taken by a Prolog interpreter. We illustrate this with a simple example.

Example 4 Consider a hypothesis that consists of the following clause:
p(Xi Y;Z) - Q(Xi Y)) T(KZ)
Background knowledge consists of the following ground atoms:

q(1,2).  r(2,3).
q(2,3). r(2,4).
a(3,4).  1(34)
q(4,5). r(3,6).

Consider deriving p(1,2,8) using this hypothesis and background knowledge.
In deriving the atom, the interpreter has to first choose which clause of p/1 to
erecute. In this case, there is only one such clause and thus, no choice. The
first atom in the body of the chosen clause q(X,Y) can be matched against any
one of the set of 4 ground unit clauses in the background. Specifying the choice
for the proof (that is q(1,2)) requires 2 bits. This choice determines the choice
of the variable Y and constrains the interpreter to one of 2 possible choices for
r(Y,Z). Specifying the atom r(2,3) requires 1 more bit. The complete choice-point
encoding for the atom p(1,2,3) is specified by the string 011.

Note that the choice-point encoding is procedural: hypotheses that are more
efficient to execute have lower choice complexity. This provides a natural bias
towards learning efficient clauses. We want to be able to encode a sequence
of proofs; one for each example on the output tape. This can be achieved by
preceding the series of proofs by an encoding of the number of examples. This



encoding of proofs is sufficient for examples which are derivable from range-
restricted (generative) theories. However, it has to be extended to accomodate
for the following:

1. For non-generative clauses, substitutions have to be provided for variables
that do not occur in the body of the clause (since these will never be
bound by any choice specification). The function codes for any substitutions
needed appear after the choice specifications.

2. Incorrect or incomplete theories can still be used for compressing data to a
certain degree. The theory in Example 3 is an example of a useful, though
incorrect, theory for distinguishing leap years from normal ones.

To address the second issue we distinguish three categories of results obtained
from the theory:

1. Correct. In this case the truth-value of the derived fact agrees with the
intended interpretation.

2. Error of commission. The truth-value of the derived fact is the opposite of
the intended interpretation.

3. Error of omission. The fact cannot be derived.

Each choice-point encoding is preceded by a prefix code indicating its category.
The prefix codes for the categories are constructed using three numbers indicating
the counts in each category. These numbers are coded using the universal coding
scheme and precede the proof encoding on the input tape. Clearly, the total
number of examples no longer have to be specified. The encoding of the errors
of omission is the same as their explicit encoding.

4.2 Output tape encoding

The output tape encoding is almost the same as that of the input tape (see Section
4.1). The difference is that instead of the hypothesis and proofs, examples are
explicitly encoded as atoms.

4.3 A comparison with FOIL’s encoding scheme

The selection criterion used by the model in previous sections is one of min-
imising description length. Within a first-order framework, the learning system
FOIL (Quinlan 1990) uses an encoding length criterion motivated by the Min-
imum Description Length principle described in (Rissanen 1978). Viewed as a

10



Turing machine model, the “output” tape length is computed using the following

function:
092 (| |) 092 ‘ F+ |

where |E| is the number of examples in the training set, and |E™| is the number
of positive instances covered by the hypothesis. The “input” tape encoding is
simply the encoding of the hypothesised clause. This is given by

> (1 + logs(|PredSyms|) + logs(|Args|)) — loga(n!)

where n is the number of literals in the clause, |PredSyms| is the number of
predicate symbols in the background knowledge, |Args| is the number of possible
arguments. The number of bits for the input tape must be less than the number
of bits for the output tape. Comparing this to our encoding method we note the
following:

1. There is no notion of proof encoding and consequently no apparent instruc-
tions on how to reproduce the examples on the output tape.

2. The hypothesis length grows logarithmically with the number of predicate
symbols in the background knowledge. A particular clause with given cover-
age can be invalidated by adding predicates to the background knowledge.
There is thus no distinction between relevant and irrelevant background
knowledge. In contrast, in our model, the effect of irrelevant background
knowledge is equal on input and output tapes.

3. Negative examples are treated asymmetrically.

4. The factor of loge(n!) is used to correct for the ordering of literals in clauses.
The assumption is that any literal ordering has equivalent information con-
tent. However in our model the literal ordering affects the choice complexity
for proving examples, and thus the corresponding lengths of proofs.

5 Compression as a significance measure

In this section, we illustrate the utility of using compression as a measure of
confidence in clauses learned for three different problems:

1. Prediction of protein secondary structure. The prediction of protein sec-
ondary structure from primary sequence is an important unsolved problem
in molecular biology. Recently it has been shown that the use of relational
learning algorithms (see King and Sternberg 1990; Muggleton et al. 1991)
can lead to improved performance.
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2. Modelling drug structure-activity relationships. The design of a pharma-
ceutical drug often requires an understanding of the relationship between
its structure and chemical activity. Rules learned to model this relationship

have been recently been shown to perform better than existing numerical
methods (King et al. 1992).

3. Learning rules of illegality for the KRK chess end-game. Despite its sim-
plicity, the KRK problem remains the test-bed for ILP techniques. We
evaluate the compression measure with different levels of noise. We use a
simple noise model that randomly changes the sign of a fixed percentage of
the data-set. This is similar to the Classification Noise Process introduced
by Angluin and Laird in (Angluin and Laird 1988). ! Training and testing
is done with 1000 examples in each set.

The error rate of a clause on training data (that is, the reclassification or
resubstitution error rate) can give a highly misleading estimate of the accuracy of
the clause on the whole domain. The protein folding domain provides a striking
example of this. Figure 6 shows a correlation diagram of the accuracies of clauses
on training and unseen (test) data for the protein structure prediction problem.
Each point in this figure represents a first-order clause constructed for predicting
the position of an a-helix. 2 The rank correlation between the training and test
set accuracies in the figure is 0.3.

In this section we evaluate compression as a method of identifying “stable”
clauses in the following sense. In general, we find a difference between the ac-
curacy of a clause over training and test data. Consider the variation of this
difference over a set of clauses judged to be significant by some measure. Small
variations indicate that the significance measure has largely avoided selecting
clauses that over-fitted the training data.

We compare the compression measure against the following alternatives:

1. Training set accuracy. The motivation for this is that the observed sample
accuracy is a consistent estimate of the domain accuracy of clauses. In the
presence of noise, this measure is not very efficient (as seen from Figure 6).

2. Training set coverage. These are the number of examples that can be
derived using a clause. The motivation for this comes from the expectation
that the greater the cover, the less likely that sample accuracy will be far

'In this, a noise of  implies that (independently) for each example, the sign of the example
is reversed with probability 7. This is not the only random noise process possible. For example,
a noise of 7 here corresponds to a class-value noise of 27 in that adopted by Quinlan (1986)
and Donald Michie (private communication) advocates a process that preserves the underlying
distribution of positive and negative examples.

2The clauses were learnt by the learning program Golem (Muggleton and Feng 1990). Note
that in this domain the accuracy of a rule which predicted all positions to be part of an a-helix
is 0.5.
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Figure 6: Training and Test set accuracies of clauses predicting protein structure

from domain accuracy. We consider the coverage of a clause as a percentage
of the total training set.

Bayesian posterior variance. This measure is described in (Cussens 1992). It
concerns the variance of the posterior distribution for the domain accuracy.
This distribution is obtained by using Bayes rule to update a uniform prior.
If a clause covers n examples, ¢, of which are true positives then the value
of this measure is:

(t,+1)(n—1t,+1)
(n+2)%(n+3)

VarianceMeasure =1 — 12

The comparison is done as follows.

For each domain, we first find the compressive clauses. These are the clauses
that the compression measure reports as having avoided over-fitting (that
is, significant).

The standard deviation of the difference in training and test accuracies s
of compressive clauses is determined.

For each of the other measures, we order clauses in increasing value of the
measure. We want to select the clauses reported significant by the measure.
Unlike the compression measure, there is no obvious threshold to determine
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this clause-set. Consequently, we chose a threshold that selects the largest
clause-set with an s value guaranteed to be less than or equal to that of
compressive clauses. This ensures that the set of significant clauses is at
least as “stable” as the compressive one.

e We compare the measures on the basis of the number of clauses reported
significant by each measure.

Figure 7 shows the number of clauses selected as significant by each measure.
The thresholds required to obtain these clauses are shown in Figure 8.

Domain Total Sd of Number of significant clauses
clauses | signif. clauses | Compress. | Acc. | % Cover | Var.
Proteins 89 0.09 16 0 7 9
Drugs 107 0.05 103 52 79 76
KRK(5%) 19 0.08 19 19 19 19
KRK(10%) 36 0.13 31 0 12 23
KRK(20%) 40 0.15 33 17 36 33

Figure 7: A comparison of significance measures

Domain Selection thresholds for significant clauses
Compression | Accuracy | % Cover | Variance
Proteins >0 >0.65 >2.9 >0.97
Drugs >0 =1.0 >2.1 > 0.99
KRK(5%) >0 >0.50 >0 >0.86
KRK(10%) >0 >0.54 >11.1 >0.92
KRK(20%) >0 >0.7 >0.59 >0.83

Figure 8: Selection thresholds for significance measures

The figures illustrate the following points:

e Training accuracy appears to be clearly the worst judge of clauses. Com-
pression usually distinguishes a larger number of significant clauses than
the other measures. Although there is probably not enough data to claim
that it does significantly better, we expect it to perform well in domains
such as the one predicting protein structure. A characteristic of this domain
is that the clauses are highly relational and the background knowledge is
quite complex. In these cases, simple measures relying on coverage and
accuracy may not be enough.
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e In practice, the selection threshold for a significance measure is pre-determined.

A compression-based choice is easy: all that is required is to select clauses
that are compressive. On the other hand, the threshold for the other mea-
sures is not obvious.

6 Compression as a noise-meter

The results in the previous section suggest that compressive hypotheses have good
“accuracy-stability”. We now consider extending this to estimate the amount of
noise in the domain. Besides being an interesting quantity in itself, this estimate
can be used to provide loose bounds on the expected accuracy of hypotheses on
unseen (test) data. Since we are dealing with noisy domains, it is necessary to
distinguish between the real sample accuracy (on noise-free data) of a hypothesis
and its observed one (on noisy data).

Consider a noise-free training set classified by an oracle. Let p be the fraction
of examples in this data whose classification by a hypothesis agrees with the
oracle’s classification (this is the real sample accuracy). Clearly, p < 1. Suppose
this data is then subject to noise that changes the class values of a fraction 1 — ¢
of the examples. That is, a fraction ¢ of the examples is not affected by the noise
process. For noisy domains ¢ < 1. Then, on unseen data from the same source
the observed accuracy of the hypothesis can at best be pg+(1—p)(1—¢q) = 1—p—
q+ 2pq. If the hypothesis does not fit any noise at all, then its observed accuracy
on the training set will be ¢. Its corresponding real accuracy p can at best be 1.
On the other hand, if the hypothesis fits all the noise, the observed accuracy on
the training set will be 1. The corresponding real accuracy will be ¢q. Therefore,
a rough estimate is that the observed accuracy of any hypothesis on independent
test data from the same distribution lies in the interval [2¢> — 2¢ + 1, q].

The problem with this analysis is that in general, the value of ¢ is unknown.
All that is known is that ¢ will be the observed training accuracy of a hypothesis
that exactly avoids fitting any noise. One possible method of identifying such a
hypothesis is to exploit the feature of noisy data as being incompressible by a
hypothesis. This suggests the following procedure for determining the amount of
noise in the domain. Progressively consider hypotheses with higher training accu-
racy. Determine the compression of each hypothesis. Estimate ¢ as the training
accuracy of the most compressive hypothesis. Clearly, given that we can never
prove that our input tape encoding is the shortest one possible, adopting this def-
inition may result in incorrectly condemning some data as noise. Thus, the value
of g obtained using this procedure will be an under-estimate (alternatively, the
amount of noise will be over-estimated). We test this on the KRK domain. The
experiments involved introducing different levels of noise (using the classification
noise model) into a data set of 10,000 examples. The noise level was then esti-
mated using the “most compressive” hypothesis. The results tabulated in Figure
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% Noise introduced | % Noise estimated

0 0

5 5.4
10 10.3
15 15.3
20 20.2
30 30.1
40 40.1

Figure 9: Noise estimation using compression

9 clearly show the tendency to over-estimate the amount of noise. The relatively
large size of the training set is also important to obtain reliable estimates using
the compression model. This issue is explored further in the next section.

7 Compression-guided learning: a case study

Based on the positive empirical results of the previous sections, we now describe
a case study that involves incorporating the compression model in the learn-
ing process. We concentrate on the non-monotonic learning framework called
closed-world specialisation (Bain and Muggleton 1991). This method progres-
sively corrects a first-order theory by inventing (and possibly generalising) new
abnormality predicates. The process has recently been used to construct a com-
plete and correct solution for the standard KRK illegality problem (Bain 1991).
However, a key issue remains to be addressed: there is no mechanism by which
a non-monotonic learning strategy can reliably distinguish true exceptions from
noise. For example, a strategy based on closed-world-specialisation would con-
tinue specialising until a correct theory is obtained. In noisy domains, this will
necessarily result in fitting the noise. To address this, we incorporate the Tur-
ing machine compression model in Figure 3 within the non-monotonic learning
framework. A simple search procedure is developed to find as compressive an
explanation as possible for the data. The result of this compression-guided non-
monotonic learning is evaluated on the KRK domain.

7.1 Closed-World Specialisation

Figure 10 shows an algorithm that performs the alternate operations of speciali-
sation and generalisation characteristic of closed-world specialisation.
It is worth noting here that:

1. As in (McCarthy 1986), there is an assumption that the exceptions to a
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start:
PosE = positive examples of target concept
NegE = negative examples of target concept
return learn(PosE,NegE)

learn(Pos,Neg):
ClauseList = []
repeat
C = generalise(Pos,Neg)
ifC # [
PosC = positive examples covered by C
NegC = negative examples covered by C
Pos = Pos - PosC
Neg = Neg - NegC
ClauseList = ClauseList + (C,PosC,NegC)

until C = ]
Theory = []
foreach (Clause,PosC,NegC) in ClauseList
if |NegC| # 0
Theory = Theory + specialise(Clause,PosC,NegC)
else

Theory = Theory + Clause
return Theory

specialise(HornClause,Pos,Neg):
hd(V1, ..., V,,) = head of HornClause
Body = body of HornClause
ab = a new predicate symbol
SpecialisedClause = hd(V7, ..., V,;) « Body, not ab(V1, ..., V;,)
PosE = positive examples of ab formed from Neg
NegE = negative examples of ab formed from Pos
return SpecialisedClause + learn(PosE,NegE)

Figure 10: Non-monotonic inductive inference using closed-world-specialisation

(CWS)
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rule are fewer than the examples that satisfy it.

2. The call to generalise results in an attempt to induce a (possibly over-
general) rule by a learning algorithm.

3. All rules are added to the theory. Further, all negative examples covered
by an over-general clause are taken to be exceptions and the clause is spe-
cialised with a (new) abnormality predicate.

7.2 Compression-based clause selection

Each correction performed by the CWS algorithm is an attempt to improve the
accuracy of the theory, at the expense of increasing its size. Clearly, if the correc-
tion was worthwhile, the gain in accuracy should outweigh the penalty incurred
in increasing the theory size. In encoding terms, each correction increases the
theory encoding on the input tape and decreases the proof encoding. In the model
in Figure 3, a net decrease in the length of the input tape occurs when the correc-
tion succeeds in identifying some pattern in the errors (that is, the errors are not
noise). The new theory consequently compresses the data further by exploiting
this pattern. Using this feature, we evaluate the utility of updating a theory by
checking for an increase in compression. We note the following consequences of
using the compression model within the non-monotonic framework adopted:

1. We can be confident of not having fitted the noise only if the theory itself
is compressive.

2. With the closed-world assumption, all examples are covered. Consequently,
the output tape has to be encoded only once. Input tapes for alternate
theories are compared against this encoding.

3. Consider an over-general clause in the current theory. The proof encoding
described ensures all variables of the clause are bound to ground terms.
Specialising this clause involves adding a negated literal to its body. By
appending this literal to the body, we are guaranteed that it will be ground.
This ensures safety of the standard Prolog computation rule used by the
Turing machine.

4. Recall that the proof encoding for each example has two parts: a choice-
point specification and a proof tag. Since the negative literal appended to
a clause can never create bindings, the choice-point specification remains
unaltered. The size-accuracy trade-off referred to earlier therefore reduces
to a trade-off between increasing theory size and decreasing tag size. Not
having to recalculate the choice-point encoding for each specialisation is a
major benefit as this is an extremely costly exercise.
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While the aim is to obtain the most compressive subset of the clauses produced
by the CWS algorithm, it is unnecessary to examine all subsets since clauses
constructed as generalisations of an abnormality predicate cannot be considered
independent of the parent over-general clause. For example, it makes no sense to
consider the following set of clauses for explaining leap years:

normal(Year) :- year(Year), not leap4(Year).
leap400(Year) :- modulo(Year,400,0).

Despite this, there may still be an intractably large number of clause-sets to
consider. Consequently, we adopt a greedy strategy of selecting clauses in order
of those that give the most gain (in compression). This strategy has to confront
two important issues: devising a reliable method of deciding on the “best” clause
to add to the theory and the fact that adding this clause may not produce an
immediate increase in compression.

A simple way to address the first problem is to select the clause that corrects
the most errors. Since decreasing errors is the only way to shorten the input
tape, the gains are larger for theories that make fewer errors. This works well
if all clauses are of approximately the same descriptional complexity. A better
estimate would account for the complexity of individual clauses as well. This can
be done using average estimates of the cost of encoding predicates, functions and
variables. In the experiments in the next section, this more sophisticated estimate
has proved unnecessary. This is because the clauses fitting noisy data tend to
correct fewer errors and therefore, considered later using the simpler estimate.
For the other clauses, the gain from correcting errors dominates the loss from
increased theory size.

To address the problem of local minima, it is clearly desirable to have a method
of looking ahead to see if a (currently non-compressive) clause will be part of the
final theory. To decide this, we calculate an estimate of the compression produced
by the most accurate theory containing the clause. The clause is retained if this
expected compression is better than the maximum achieved so far. Each time an
actual increase in compression is produced, the theory is updated with all clauses
that have been retained. Figure 11 shows how the estimate is calculated. The
estimated compression will usually be optimistic because it it assumes that all
errors can be compressed. Of course, one way to guarantee an optimistic estimate
is to assume that there will be no increase in theory size (as opposed to the scaled
estimate in Figure 11). However, this gives no heuristic power and usually only
prolongs a futile search for a correct theory. Figure 12 summarises the main steps
in the compression-based selection of clauses as described here.  The following
points deserve attention:

1. At any given stage, only some clauses produced by CWS are candidates
to be added to the theory (recall the earlier statement that over-general
clauses have to be considered before their specialisations).
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estimate(Theory):
Ncorrect = number of examples correctly classified by Theory
Nmaximum = number of examples that the learner can classify correctly
Outbits = length of output tape (in bits)
OldTheory = length of Theory (in bits)
OldTags = current length of correction tags (in bits)
Choices = length of choice-point encoding (in bits)

NewTheory = OldTheory x Nmaximum / Ncorrect

NewTags = length of error tags to correctly classify Nmaximum examples
EstInbits = NewTheory + Choices + NewTags

return (Outbits - EstInbits)

Figure 11: Estimating the compression from a theory

start:
ClauseList = clauses produced by CWS
return select_clauses(ClauseList)

select_clauses(ClauseList):
Theory = PartialTheory = []
Compression = 0

repeat
PotentialClauses = clauses in ClauseList that can be added to theory
C = “best” clause in PotentialClauses
i£C#

PartialTheory = PartialTheory + C
NewCompression = compression of PartialTheory
if NewCompression > Compression
Theory = PartialTheory
Compression = NewCompression
else
EstCompression = estimate(PartialTheory)
if EstCompression < Compression return Theory
until C = ||
return Theory

Figure 12: Compression-based selection of clauses produced by CWS

20



% legal(WK _file, WK _rank, WR_file, WR_rank, BK file, BK_rank)
legal(A,B,C,D,E,F) :- not ab00(A,B,C,D,E,F).
ab00(A,B,C,D,C,E) :- not ab11(A,B,C,D,C,E).
ab00(A,B,C,D,E,D) :- not ab12(A,B,C,D,E,D).
ab00(A,B,C,D,E,F) :- adj(A,E), adj(B,F).
ab00(A,B,A,B,C,D).

ab12(A,B,C,B,D,B) - lt(A,D), lt(C,A).

ab12(A,B,C,B,D,B) - It(A,C), It(D,A).

ab11(A,B,A,C,A,D) :- It(B,D), lt(C,B).

ab11(A,B,A,C,A,D) :- It(B,C), lt(D,B).

Figure 13: A complete and correct theory for KRK-legality

2. The “best” clause refers to the clause selected using the simple error-count
measure, or the more sophisticated one that accounts for the estimated
theory increase. To obtain the latter requires a knowledge of the number
of predicate, function and variable symbols in the clause.

3. Consider the situation when the estimated compression from adding the
“best” clause is no better than the compression already obtained. Figure
12 does not acknowledge the possibility that some of the other clauses can
do better. It is possible to rectify this by progressively trying the “next
best” clause until all clauses have been tried.

4. The procedure in Figure 12 is reminiscent of post-pruning in decision—tree
algorithms (the clauses are constructed first and then possibly discarded).
A natural question that arises is whether it is possible to incorporate the
compression measure within the specialisation process The analogy to zero-
order learning algorithms is whether tree pre-pruning is feasible. The an-
swer is yes, and in practice it is the mechanism preferred as it avoids in-
ducing all clauses. The procedure in Figure 12 however serves to bring out
the main features succintly.

7.3 Empirical Evaluation

We evaluate the compression-guided closed-world specialisation procedure on the
KRK domain. However, contrary to normal practice, we chose to learn rules
for KRK-legality (as opposed to KRK-illegality). This provides an extra level
of exceptions for the specialisation method. Given background knowledge of the
predicates lt/2 and adj/2, Figure 13 shows the target theory. It is possible to
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legal(A,B,C,D,E,F) :- not ab00(A,B,C,D,E,F).
ab00(A,B,C,D,C,E).

ab00(A,B,C,D,E,D).

ab00(A,B,C,D,E,F) :- adj(A,E), adj(B,F).

Figure 14: An “approximately correct” theory for KRK-legality

achieve an accuracy of about 99.6% without accounting for the second level of
exceptions. In fact, the theory shown in Figure 14 is about 98% correct.

We experiment with learning the legality theory with artificially introduced
noise on different sized training sets. For the experiments, we again adopt the
classification noise model referred earlier. Finally, although the procedure de-
scribed in Figure 12 is not dependent on any particular induction algorithm, the
results quoted here use Golem (Muggleton and Feng 1990).

Figure 15 tabulates the percentage accuracy of the most compressive theory
for different noise levels. Here “accuracy” refers to accuracy on an independent
(noise-free) test set of 10000 examples. Since the compression model only guar-
antees reliability for compressive theories, nothing can be said about those for
which compression is less than 0 (irrespective of their accuracy on the test set).
In Figure 15, an entry of “_” denotes that the theory obtained is non-compressive
on the training data and consequently, no claim is made regarding its accuracy on
the test set. The results highlight some important points. Compressive theories
do appear to avoid fitting the noise to a large extent. The price for this reliability
is reflected in the amount of data required. In comparison, it is possible that other
techniques may require fewer examples. However, they either require various pa-
rameters to be set (Dzeroski 1991), use ad hoc constraints (Quinlan 1990) or need
an additional data set for pruning (Brunk and Pazzani 1991). Further, most of
them are unable to offer any guarantee of reliability (the approach followed in
Dzeroski 1991 can select clauses above a user-set significance threshold). In this
respect, our empirical results mirror PAC (Valiant 1984) results for learning with
noisy data in propositional domains (Angluin and Laird 1988): with increasing
noise, more examples are needed to obtain a good theory. It is also worth noting
that the conditions covered by the second level of exceptions (the cases in which
the White King is in between the White Rook and Black King) occur less than
4 times in every 1000 examples. This is only picked up in the noise-free data set
of 10000 examples (in which there were 38 examples where the rules applied).

Extending the PAC analogy further, Figure 16 shows the results from a dif-
ferent perspective. For different levels of noise, this figure shows the number of
training examples required for the “approximately correct” theory of Figure 14
to be compressive. For example, at least 170 examples are required to obtain a
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Training Set Size
Noise (%) | 100 | 250 | 500 | 1000 | 5000 | 10000
0 - 99.7 1 99.7 | 99.7 | 99.7 | 100
5 - 98.1 1 98.1{99.7 | 99.7 | 99.7
10 - - 98.1 | 98.1 | 99.7 | 99.7
15 - - 98.1 | 98.1 | 99.7 | 99.7
20 - - - 98.1 | 99.7 | 99.7
30 - - - - 98.1 | 98.1
40 - - - - - 98.1

Figure 15: Test-set accuracy for the “most compressive” theory

compressive theory that is 98% accurate on noise-free data. While these numbers
are approximate (they are obtained by extrapolating the compression produced
by the theory for the different training sets in Figure 15) they do indicate the
general trend of requiring larger example sets for increasing noise levels.

8 Conclusion

In this paper we have developed a general encoding scheme for deciding the sig-
nificance of first-order hypotheses by refining the approach found in (Muggleton
1988). The requirement to encode both hypotheses and proofs results in some
unique advantages

1. The resulting compression measure appears to be the first significance mea-
sure that accounts for the relevance and utility of background knowledge.
This issue has been avoided to date by relational learning systems.

2. The measure appears to reliably distinguish noisy data by finding them to
be incompressible with the background knowledge.

3. The encoding incorporates notions of efficiency in the same units (bits) as
the program description. Michie (1977) discusses in detail the time-space
tradeoff for encoded knowledge using the standard Machine Intelligence
problem of perfect play in chess. Within Machine Learning various methods
including EBL (Mitchell et al. 1986) have been developed to learn the
time-space tradeoff. EBL systems take a set of axioms and add redundant
theorems in order to reduce proofs lengths for specific types of problems.
These systems do not contain any sound criterion of whether theorems being
added are significant. A method of estimating the utility of adding these
theorems is described in (Subramanian and Hunter 1992). The method does
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Figure 16: Examples required for a 98% correct and compressive theory

not appear to directly account for the space dimension. The compression
model described in this paper should be able to provide a criterion that
accounts for this as well.

The question of how well hypotheses perform on unseen data was dealt with first
by Gold (1967) and more recently within the PAC (Probably-Approximately-
Correct) framework (Valiant 1984). The Gold and PAC frameworks describe the
conditions under which a class of concepts can be said to be learnable. In the
PAC framework it is explicitly assumed that the distribution of examples in the
training and test sets are the same. Blumer et al. (1986), Board and Pitt (1989)
and Li and Vitanyi (1989) have in various ways shown that a class of concepts
is PAC-learnable if and only if it can be guaranteed that a learning algorithm is
able to find a hypothesis which is smaller than the data. It remains to be shown
that our concept of hypothesis size (that is, hypothesis and proofs) is equivalent
to that adopted in these theoretical results.

The task of distinguishing between exceptions and noise is an issue that is
typically ignored in the literature on non-monotonic reasoning. It is, however, of
fundamental importance for a learning program that has to construct theories us-
ing real-world data. One way to approach the problem is to see if the exceptions
to the current theory exhibit a pattern. The compression model we have used
in this paper does precisely this. Our empirical results suggest that by selecting
the most compressive theory, it is possible (given enough data) to reliably avoid
fitting most of the noise. Clearly, it would be desirable to confirm these results
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with controlled experiments in other domains. In practice, the method has found
interesting rules on an independent problem of pharmaceutical drug design (King
et al. 1992). Finally, the results also lend support to the link between compres-
sive theories for first-order concepts and their PAC-learnability.
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