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Inductive Logic Programming (ILP) is the topic area of Computer Science
involved with the automatic synthesis and revision of logic programs (see
LOGIC PROGRAMMING) from partial specifications. The word “Induc-
tive” is used in the sense of Philosophical rather than Mathematical Induc-
tion. In his Posterior analytics Aristotle introduced Philosophical Induction
(in Greek epagogue) as the study of the derivation of general statements from
specific instances (see INDUCTION). This can be contrasted with deduc-
tion, which involves the derivation of specific statements from more general
ones. For instance, induction might involve the conjecture that a) “all swans
are white” from the observation b) “all the swans in that pond are white”,
where b) can be derived deductively from a). In the Principles of Science
the nineteenth century philosopher and economist Jevons gave some simple
demonstrations that inductive inference could be carried out by reversal of
deductive rules of inference. The idea of reversing deduction has turned out
to be one of the strong lines of investigation within ILP.

In ILP the general and specific statements are in both cases logic pro-
grams. A logic program is a set of Horn clauses (see LOGIC PROGRAM-
MING). Each Horn clause has the form Head<Body. Thus the definite
clause active(X)<«—charged(X), polar(X) states that any X which is charged
and polar is also active. In this case, active, charged and polar are called
“predicates”, and are properties which are either true or false of X. Within
deductive logic programming the inference rule of resolution is used to derive
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consequences from logic programs. According to resolution, given atom a
and clauses C, D, from the clauses a A C' and D A @ the clause C A D can
be concluded. A connected set of resolutions is called a proof or deductive
derivation.

The inductive derivations in ILP are sometimes thought of as inversions
of resolution-based proofs (see “inverse resolution” in Muggleton and De
Raedt 1994). Following Plotkin’s work in the 1970’s the logical specification
of an ILP problem is thought of as consisting of three primary components:
B, the background knowledge (eg. things cannot be completely black and
completely white), F the examples (eg. the first swan on the pond is white)
and H, the hypothesis (eg. all swans are white). The primary relation
between these three components is that the background together with the
hypothesis should allow the derivation of the examples. This can be written
in logical notation as follows.

B,H+E

Given only such logical specifications, it has long been known that induction
is not sound. That is to say, H is not a necessary conclusion from knowing
B and E.

A sound treatment is possible by viewing inductive inference as the deriva-
tion of statements with associated probabilities. This approach was advo-
cated by the philosopher Carnap in the 1950’s and has been taken up more
recently in a revised form within ILP. The framework typically chosen is that
of Bayesian inference (see BAYESIAN LEARNING). This is a probabilistic
framework which allows calculations of the probability of certain events hap-
pening given that other events have happened. Thus suppose we imagine
that nature, or a teacher, randomly and independently chooses a series of
concepts to be learned, where each concept has an associated probability of
coming up. Suppose also that for each concept a series of instances are ran-
domly and independently chosen and associated with the label true or false
depending on whether they are or are not examples of the chosen concept.
From an inductive agent’s point of view, prior to receipt of any examples the
probability that any particular hypothesis H will fit the data is p(H), the
probability of H being chosen by the teacher. Likewise, p(E) denotes the
probability that the teacher will provide the example sequence E, p(H|E) is
the probability the hypothesis chosen was H given that the example sequence



was E and p(E|H) is the probability that the example sequence was E given
that the hypothesis chosen was H. According to Bayes’s theorem

_ p(H)p(E|H)

p(E)
The most likely hypothesis H given the examples E is the one which max-
imises p(H|E). In fact it is sufficient to maximise p(H)p(E|H) since p(FE)
is common to all candidate hypotheses. As with all Bayesian approaches
the main issue is how to choose the inductive agent’s prior probabilities over
hypotheses. In common with other forms of machine learning, this is usu-
ally done within ILP systems using a MINIMUM DESCRIPTION LENGTH
(MDL) approach, i.e. probability distribution which provides assigns higher
probabilities to textually simple hypotheses.

Within any computational framework such as ILP, a key question in-
volves the efficiency with which the inductive agent converges on the “cor-
rect” solution. Here a number of ILP researchers have taken the approach of
COMPUTATIONAL LEARNING THEORY, which studies the numbers of
examples required for an inductive algorithm to return with high probability
an hypothesis which has a given degree of accuracy (this is Valiant’s Prob-
ably Approximately Correct (PAC) model). One interesting result of these
investigations has been that while it has been shown that logic programs can-
not be PAC-learned as a class, time-bound logic programs (those in which
the derivation of instances are of bounded length) are efficiently learnable
within certain Bayesian settings in which the probability of hypotheses de-
cays rapidly (eg. exponentially or with the inverse square) relative to their
size.

One of the hard, and still largely unsolved problems within ILP is that
of predicate invention. This is the process by which predicates are added to
the background knowledge in order to provide compact representations for
foreground concepts. Thus suppose you were trying to induce a phrase struc-
tured grammar for English, and you already have background descriptions for
noun, verb and verb phrase, but no definition for a noun phrase. “Inventing”
a definition for noun phrase would considerably simplify the overall hypoth-
esised descriptions. However, the space of possible new predicates that could
be invented is clearly large, and its topology not clearly understood.

ILP has found powerful applications in areas of scientific discovery in
which the expressive power of logic programs is necessary for representing
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the concepts involved. Most notably, ILP techniques have been used to dis-
cover constraints on the molecular structured of certain biological molecules.
These semi-automated scientific “discoveries” include a new structural alert
for mutagenesis and the suggestion of a new binding site for an HIV protease
inhibitor. ILP techniques have also been demonstrated capable of building
large grammars automatically from example sentences.

Recently the philosopher of science Gillies has made a careful comparison
of techniques used in ILP with Bacon and Popper’s conception of scientific
induction. Gillies concludes that ILP techniques combine elements from Ba-
con’s “pure” knowledge-free notion of induction and Popper’s falsificationist
approach. As indicated in this article, ILP has helped clarify a number of
issues in the theory, implementation and application of inductive inference
within a compuational logic framework.
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