To the International Computing Community: a new

East-West Challenge

Donald Michie, Stephen Muggleton
David Page and Ashwin Srinivasan
Oxford University Computing Laboratory, UK.

Figure 1, following the appendix, originated 20 years ago from Ryszard
Michalski. As in scientific discovery, it is required to conjecture some plau-
sible Law, in this case governing what kinds of trains are Eastbound and
what kinds Westbound. A few years later, Donald Michie published the
trains problem in the British popular computer press. The post-bag con-
tained some neat conjectures from readers, such as:

Theory A: If a train has a short closed car, then it is Eastbound and
otherwise Westbound.

Theory B: If a train has two cars, or has a car with a jagged roof, then it
is Westbound and otherwise Eastbound.

One and the same set of observations can of course support different
theories. Pending new observations we generally take the simplest and hope
for the best. Theory A is marginally simpler than B and a good deal simpler
than C from one reader:

Theory C: If a train has more than two different kinds of load, then it is
Eastbound and otherwise Westbound.

No learning system of those days was capable of coming up with a theory
like C, still less one like the following from another reader:

Theory D: For each train add up the total number of sides of loads (taking
a circle to have one side). If the answer is a divisor of 60 then the train
is Westbound and otherwise Eastbound.

Time has moved on and thanks to Stephen Muggleton’s Prolog train
generator we have observed ten more trains (see Figure 2). We here present

three competitions inspired by these. Closing date for all three competi-
tions is eight weeks after the appearance on 4® August in the British weekly
Computing of an article from Donald Michie that poses Competition 1 to
their readership. Specifically, the closing date is September 30, 1994.

Competition 1

Merging the new trains with Michalski’s original ten we applied a freshly
conjectured Law to yield class labels for the resultant set of twenty. Theories
A, B, Cand D all now fail on the enlarged sample. Can inductive inference
recover the new Law, or one as good or better, fitting all 207

By kind donation of Oxford University Press, the best entry, judged on
accuracy and simplicity, wins a free copy of Richard Gregory’s handsome
book The Ozford Companion to the Mind (price £35, US$49.95, in the
bookstores). Laws may be of human or of machine authorship. To be in
line for the prize entrants should email their entries, along with their names
and postal addresses to:

Machine.Intelligence@comlab.ox.ac.uk

Each email entry for Competition 1 should have the subject heading of the
form Trains! (Entrant’s Code Name). For example, an acceptable subject
heading for an email entry to Competition 1 by M Bain is Trains! (bain).

The additional ten trains were selected from a randomly generated pool
and assigned class labels, all in a way that ensured that the resulting set of
20 was split into Fast and West subsets by a new Law — call it Theory X. The
train generator itself applies attribute constraints suggested by Michalski’s
original ten as follows:

1. A train has two, three or four cars, each of which can either be long
or short.

2. A long car can have either two or three axles.

3. A short car can be rectangular, u-shaped, bucket-shaped, hexagonal,
or elliptical, while a long car must be rectangular.

4. A hexagonal or elliptical car is necessarily closed, while any other car
can be either open or closed.

5. The roof of a long closed car can be either flat or jagged.

6. The roof of a hexagonal car is necessarily flat, while the roof of an
elliptical car is necessarily an arc. Any other short closed car can have
either a flat or a peaked roof.

7. If a short car is rectangular then it can also be double-sided.

8. A long car can be empty or it can contain one, two or three replicas of
one of the following kinds of load: circle, inverted-triangle, hexagon,
rectangle.

9. A short car contains either one or two replicas of the following kinds
of load: circle, triangle, rectangle, diamond.

10. No sub-distinctions are drawn among rectangular loads, even though
some are drawn square and others more or less oblong. The presump-
tion is that they are drawn just as oblong as they need to be in each
case to fill the available container space.

11. In Michalski’s original version a possible distinction between hollow
and solid wheels was ignored, as also here.

Muggleton’s Prolog train-generator embodies the above constraints to-
gether with certain distributional assumptions concerning values of descrip-
tors, so as to preserve statistical coherence with Michalski’s original ten.
The Prolog text of the generator supplied below will resolve any obscurities
in the above account. Figure 3 provides a randomly generated set of 100
unclassified trains that may also be useful for this purpose (see Table 2 for
the Prolog representation of these trains). The generator assigns no class
labels. We mentally performed such assignments according to Theory X and
found that 56 of the 100 trains are X-classified as Eastbound. The simplest
Law Y to be received that correctly classifies the twenty trains of Figures
1 and 2 (see Table 1 for their Prolog representation) wins Competition 1.
Y may or may not be equivalent to X. When all entries have been received
from readers of Computing and from readers of this communication, Law Y
will be divulged, along with results and analysis.

Measurement of complexity for Competition 1

For assessing the complexity of candidate theories (to be a candidate the
theory must correctly classify the given training set) we propose as follows:

1. If the candidate classifier is not expressed as a Prolog program, we will
encode it in Prolog as tersely as we can, using as reference language
Clocksin and Mellish’s Programming in Prolog (3¢ edition, 1987),
Springer-Verlag, including their library predicates, together with those
provided in the “concept tester” in Muggleton’s Prolog code below. If
the entry is already in Prolog, we will help it to score well by any ob-
viously advantageous re-phrasings that occur to us, within the bounds
of the specified rule language.

2. We will run the candidate theory on the set of 20 to check that it cor-
rectly reproduces the classification. For this we will apply Muggleton’s
concept tester, with the Prolog-encoding of the supplied rule set, to
the Prolog fact file corresponding to the trains of Figure 1 and 2. The
contents of this file are reproduced below in Table 1, following the text
of the train-generator and concept tester.

3. We will then compute a complexity score as the number of clause oc-
currences plus the number of term occurrences plus the number of
atom occurrences. Remember that the score includes the complexity
cost of any “background knowledge” in the form of additional proce-
dures that are found necessary to add in order to render the submitted
classifier runnable on the target data.

The definitions of clause occurrence, atom occurrence, and term occur-
rence that are clear for first-order definite clause logic are ambiguous for
Prolog in general. To redress this, a substring in a Prolog program is iden-
tified as a clause, atom, or term if it is labelled as such during a parse of
the program according to an unambiguous context-free grammar for Prolog.
Section A.1 of Appendix A describes such a grammar. For complete clar-
ity, this appendix also provides (as Section A.2) Ashwin Srinivasan’s Prolog
program for measuring complexity scores.

As a preliminary exercise, we applied the above three steps to an initial
encoding of Theory X and obtained a complexity score of 19. We first verified
that the machine execution of our Prolog version of X assigned precisely the
same class labels to the same trains as did the classification by hand, not
only over the set of 20, but also on the set of 100. For these machine tests, we
used two files of 20 and 100 Prolog facts respectively represented in Tables
1 and 2. These files, 20trains.pl and 100trains.pl, and the program for
computing the complexity score complex.pl are available as ASCII text in
the compressed tar file obtainable at

URL = ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/trains.tar.Z

FTP site

ftp.comlab.ox.ac.uk

FTP file

pub/Packages/ILP/trains.tar.Z

Competition 2

The rules of engagement in Competition 1 fail to allow for subsymbolic and
semi-symbolic forms of inductive analysis, ranging from multi-variate non-
linear statistical approaches through neural nets and genetic algorithms to
paranormal and other intuitive human mental skills. A separate compe-
tition is accordingly available for entries in the form of an allocation of
Eastbound/Westbound labels to the hundred trains of Figure 3 (and Table
2), unaccompanied by any explicit classifying rule or formula. Since Theory
X is the simplest known to us we provisionally take it as the oracle for ad-
jucating subsymbolically derived classifications of the test set of 100. But
what if a subsymbolic learner uncovers a classification that is closest to an
entry Z either taken from Competition 1 or otherwise known to us? Provided
that the complexity score of Z lies within the bottom quartile of the scores
of all such theories, then Z’s class labellings will be used for assessment of
that subsymbolic learner. The idea is that discovery of a sufficiently strong
regularity in the collection of trains of Figures 1 and 2 should be an optional
touchstone in Competition 2, rather than some particular regularity that
appeals to the judges.

For this sub-symbolic section the solution that correctly classifies, on
the above assessment principle, the highest number of new trains wins a
free copy of the “Statlog Book” by kind donation of Paramount Publishing
International. This is the 265-page Machine Learning, Neural and Statis-
tical Classification (eds. D.Michie, D.J.Spiegelhalter and C.C.Taylor, Ellis
Horwood Series in Artificial Intelligence), 1994 (price £39.95, US$67.95, in
the bookstores). As before, we do not care whether the induction agent is
human, machine, or human-machine. To be in line for the prize, entrants
should email their entries, along with their names and postal addresses to:

Machine.Intelligence@comlab.ox.ac.uk

Each email entry for Competition 2 should have the subject heading of the
form Trains2 (Entrant’s Code Name). For example, an acceptable subject
heading for an email entry to Competition 2 by M Bain is Trains2 (bain).

Competition 3

Returning to theory discovery, we propose a further challenge, this time
based on induction from trains generated and pre-classified entirely ran-
domly (strictly speaking pseudo-randomly). For this final exercise, the cross-
ruling imposed on the first page of Figure 3 partitions 50 trains into five sets
of ten. Arbitrarily assigning “Eastbound” to the trains in the left column
and “Westbound” to those in the right column, we set up five separate
induction tasks analogous to Michalski’s original.

Viewing inductive inference as a way of compressing facts into theories,
the random origin of these five sets might seem to defy discovery of anything
beyond marginal regularities. This is of course true of large samples. It is
now open to the computing community, this time including ourselves, to
investigate on a competitive basis whether samples as small as these turn
out to possess interesting degrees of describability in terms of the descriptive
language and vocabulary supplied. Even the simplest and most compelling
theory got from one of these five small samples has, of course, zero predictiv-
ity — for example, as could be tested against the second 50 trains in Figure 3.
Within its own small world such a theory explains everything, but predicts
nothing. A neat example of the opposite kind, that predicts everything but
explains nothing, is presented by lan Stewart in the July 1994 Scientific
American (“The Ultimate in Anty-Particles”,—yes the spelling is correct!).

Only entries that submit theories for each of the 5 constituent sub-tasks
will be considered. First place will go to the entry with the lowest grand
total complexity summed over the 5 sub-tasks. No prizes are offered, but
the best entries will be published as part of a follow-up communication in
which the challenge as a whole and its outcomes will be discussed.

Entrants to Competition 3 should email their entries, along with their
names and postal addresses to:

Machine.Intelligence@comlab.ox.ac.uk

Each email entry for Competition 3 should have the subject heading of the
form Trains3 (Entrant’s Code Name). For example, an acceptable subject
heading for an email entry by M Bain is Trains3 (bain).

Prolog generator and concept-tester plus train files follow.

% Stephen Muggleton’s Prolog code for

% randomly generating Michalski trains.

% To run this you need a Prolog interpreter which executes

% a goal of the form:

% R is random

% Otherwise replace the definition of random/2 appropriately.
% ("R is random”’ binds R to a pseudo-random number--floating
% point--between O and 1.)

% The top-level predicates are trains/0O and trains/1.

trains :-
repeat, traini(X), show(X),
write(“More (y/n)?),
read(n).

trains([]) :- !.
trains([HIT]) :- traini(H), trains(T), !'.

traini(Carriages) :-
random([0,0.3,0.3,0.4] ,NCarriages),
leni(Carriages,NCarriages),
carriages(Carriages,1), !.

carriages([],_).

carriages([C|Cs],N) :-
carriage(C,N), N1 is N+1,
carriages(Cs,N1), !.

carriage(c(N,Shape,Length,Double,Roof ,Wheels,Load) ,N) :-
randprop(car_length,[0.7,0.3],Length),
shape(Length,Shape),
double(Length,Shape,Double),
roof1(Length,Shape,Roof),
wheels(Length,Wheels),
load(Length,Load), !.

shape(long,rectangle).
shape(short,S) :-
randprop(car_shape, [0.048,0.048,0.524,0.190,0.190],S).

double(short,rectangle,Double) :-
randprop(car_double, [0.73,0.27] ,Double), !.

double(_,_,not_double) :— !.

roofi(short,ellipse,arc) :— !.
roofl(short,hexagon,flat) :- !.
roofi(short,_,R) :- randprop(roof_shape,[0.842,0.105,0,0.053,0],R).
roofi(long,_,R) :- randprop(roof_shape,[0.333,0.444,0.223,0,0],R).

wheels(short,2).
wheels(long,W) :- random([0,0.56,0.44],W).

load(short,1(Shape,N)) :-
randprop(load_shape, [0.381,0.048,0,0.190,0.381,0],Shape),
random([0.952,0.048],N).

load(long,1(Shape,N)) :-
randprop(load_shape,[0.125,0,0.125,0.625,0,0.125],Shape),
random([0.11,0.55,0.11,0.23],N1), N is Ni-1.

random(Dist,N) :-
R is random,
random(1,0,R,Dist,N).

random(N,_,_,[_]1,N).
random(N,PO,R, [P|_1,N) :-

P1 is P+P0, R=<P1, !.
random(N,PO,R, [P|Rest] ,M) :-

P1 is P+PO, N1 is N+1,

random(N1,P1,R,Rest M), !.

randprop(Prop,Dist,Value) :-
random(Dist,R),
Call=..[Prop,R,Valuel,
Call, .

car_shape(1,ellipse). car_shape(2,hexagon).

car_shape(3,rectangle). car_shape(4,u_shaped). car_shape(5,bucket).
car_length(1l,short). car_length(2,long).

car_open(1l,open). car_open(2,closed).

car_double(1,not_double). car_double(2,double).

roof_shape(1,none). roof_shape(2,flat). roof_shape(3,jagged).
roof_shape(4,peaked). roof_shape(5,arc).

load_shape(1l,circle). load_shape(2,diamond). load_shape(3,hexagon).
load_shape(4,rectangle). load_shape(5,triangle). load_shape(6,utriangle).

show(Train) :-

nl,

(eastbound(Train) -> (write(Eastbound train: ‘), nl)
;otherwise —> (write(“Westbound train:“),nl)),
showO(Train), nl, !.

showO([]).
showO([C|Cs]) :-
C=c(N,Shape,Length,Double,Roof ,Wheels,1(Lshape,Lno)),
writes([“Car °,N, : Shape = -,Shape,
*, Length = “,Length,’, Double = “,Double,nl, tab(8),
‘Roof = 7,Roof,
’, Wheels = “,Wheels,
*, Load = “,Lno,” of “,Lshape,nl]),
show0(Cs), !.

% writes([]).

% writes([HIT]) :-
% mywrite(H),

% writes(T).

mywrite(nl) :— nl, !.
mywrite(tab(X)) :- tab(X), !'.
mywrite(X) :- write(X), !.

% Concept tester below emulates Michalski predicates.

has_car(T,C) :- member(C,T).

infront(T,C1,C2) :- append(_,[C1,C2|_]1,T).

ellipse(C) :- arg(2,C,ellipse). hexagon(C) :- arg(2,C,hexagon).
rectangle(C) :- arg(2,C,rectangle). u_shaped(C) :- arg(2,C,u_shaped).
bucket(C) :- arg(2,C,bucket).

long(C) :- arg(3,C,long). short(C) :- arg(3,C,short).

double(C) :- arg(4,C,double).

has_roof (C,r(R,N)) :- arg(1,C,N), arg(5,C,R).

open(C) :- arg(5,C,none). closed(C) :- not open(C).

has_wheel(C,w(NC,W)) :- arg(1,C,NC), arg(6,C,NW), nlist(1,NW,L), member(W,L).

has_load(C,Load) :- arg(7,C,1(_,NLoad)), nlist(1,NLoad,L), member(Load,L).
has_load0(C,Shape) :- arg(7,C,1(Shape,N)), 1=<N.
has_load1(T,Shape) :- has_car(T,C), has_load0(C,Shape).

none(r(none,_)). flat(r(flat,_)).
jagged(r(jagged,_)). peaked(r(peaked,_)).
arc(r(arc,_)).

member (X, [X]_]).
member (X, [_IT]) :- member(X,T).

nlist(N,N,[N]) :— '.
nlist(M,N,[MIT]) :-

M=<N,

M1 is M+1, nlist(M1,N,T), !.

leni([1,0) :- .
len1([_IT],N) :- leni(T,N1), N is Ni+1, !.

append([],L,L) :— !.
append ([H|L1],L2, [H|L3]) :-
append(L1,L2,1L3), !'.

Table 1. Prolog representation of 20 trains.

eastbound([c(1,rectangle,short,not_double,none,2,1(circle,1)),c(2,rectangle,
long,not_double,none,3,1(hexagon,1)),c(3,rectangle,short,
not_double,peaked,2,1l(triangle,1)),c(4,rectangle,long,
not_double,none,2,l(rectangle,3))]).

eastbound([c(1,rectangle,short,not_double,flat,2,1(circle,2)),c(2,bucket,
short,not_double,none,2,1l(rectangle,1)),c(3,u_shaped,
short,not_double,none,2,1(triangle,1))]).

eastbound([c(1,rectangle,long,not_double,flat,3,1(utriangle,1)),c(2,hexagon,
short,not_double,flat,2,1(triangle,1)),c(3,rectangle,
short,not_double,none,2,1(circle,1))]).

eastbound([c(1,rectangle,short,not_double,none,2,l(rectangle,1)),c(2,ellipse,

10

short,not_double,arc,2,1(diamond,1)),c(3,rectangle,short,
double,none,2,1(triangle,1)),c(4,bucket,short,not_double,
none,2,1(triangle,1))]).

eastbound([c(1,rectangle,short,not_double,flat,2,1(circle,1)),c(2,rectangle,
long,not_double,flat,3,1(rectangle,1)),c(3,rectangle,
short,double,none,2,1(triangle,1))]).

eastbound([c(1,rectangle,long,not_double, jagged,3,1l(rectangle,1)),c(2,hexagon,
short,not_double,flat,2,1(circle,1)),c(3,rectangle,short,
not_double,none,2,l(triangle,1)),c(4,rectangle,long,not_double,
jagged,2,1(rectangle,0))]).

eastbound([c(1,rectangle,long,not_double,none,2,l(hexagon,1)),c(2,rectangle,
short,not_double,none,2,l(rectangle,1)),c(3,rectangle,
short,not_double,flat,2,1(triangle,1))]).

eastbound([c(1,rectangle,short,not_double,peaked,2,1(rectangle,1)),c(2,
bucket,short,not_double,none,2,1(rectangle,1)),c(3,rectangle,
long,not_double,flat,2,1(circle,1)),c(4,rectangle,short,
not_double,none,2,l(rectangle,1))]).

eastbound([c(1,rectangle,long,not_double,none,2,l(rectangle,3)),c(2,rectangle,
short,not_double,none,2,1(circle,1)),c(3,rectangle,long,
not_double, jagged,3,1(hexagon,1)),c(4,u_shaped,short,
not_double,none,2,1(triangle,1))]).

eastbound([c(1,bucket,short,not_double,none,2,1(triangle,1)),c(2,u_shaped,
short,not_double,none,2,1(circle,1)),c(3,rectangle,short,
not_double,none,2,1l(triangle,1)),c(4,rectangle,short,
not_double,none,2,1(triangle,1))]).

:— eastbound([c(1,rectangle,short,not_double,none,2,l(triangle,1)),
c(2,rectangle, long,not_double,flat,2,1(circle,3))]).

:— eastbound([c(1,rectangle,long,not_double, jagged,2,1(circle,0)),c(2,u_shaped,
short,not_double,none,2,1(triangle,1)),c(3,rectangle,short,

double,none,2,1(circle,1))]).

:— eastbound([c(1,u_shaped,short,not_double,none,2,1(circle,1)),c(2,rectangle,
long,not_double,flat,3,1(rectangle,1))]).

:— eastbound([c(1,bucket,short,not_double,none,2,1(circle,1)),c(2,rectangle,
short,not_double,none,2,l(rectangle,1)),c(3,rectangle,

11

long,not_double, jagged,3,1(rectangle,1)),c(4,bucket,short,
not_double,none,2,1(circle,1))]).

:— eastbound([c(1,rectangle,long,not_double,none,2,l(rectangle,2)),c(2,u_shaped,
short,not_double,none,2,1(rectangle,1))]).

:— eastbound([c(1,bucket,short,not_double,none,2,1(rectangle,1)),c(2,rectangle,
long,not_double,flat,2,1(utriangle,3))]).

:— eastbound([c(1,rectangle,long,not_double,none,2,l(hexagon,1)),c(2,rectangle,
short,not_double,none,2,1(circle,1)),c(3,rectangle,short,
double,none,2,1(circle,1)),c(4,rectangle,long,not_double,
none,2,1(rectangle,3))]).

:— eastbound([c(1,u_shaped,short,not_double,none,2,l(triangle,1)),c(2,rectangle,
long,not_double,none,3,1(rectangle,3))]).

:— eastbound([c(1,rectangle,long,not_double,flat,3,1(rectangle,3)),
c(2,rectangle, long,not_double,flat,2,1(rectangle,3)),c(3,rectangle,
long,not_double,none,2,1(rectangle,0)),c(4,u_shaped,short,
not_double,none,2,1(triangle,1))]).

:— eastbound([c(1,rectangle,long,not_double,flat,3,1(hexagon,1)),c(2,u_shaped,
short,not_double,none,2,1(triangle,1))]).

Table 2. Prolog representation of 100 trains, unclassified.

train([c(1,rectangle,long,not_double,flat,2,1(rectangle,3)),c(2,rectangle,
short,not_double,none,2,1(triangle,1)),c(3,rectangle,
long,not_double,none,2,1(rectangle,1))]).

train([c(1,rectangle,short,not_double,none,2,1(circle,1)),c(2,bucket,
short,not_double,flat,2,1(triangle,1)),c(3,rectangle,
short,not_double,none,2,1(circle,2))]).

train([c(1,rectangle,short,not_double,flat,2,1(circle,1)),c(2,rectangle,
short,not_double,none,2,1l(rectangle,1)),c(3,u_shaped,
short,not_double,none,2,1(triangle,1))]).

train([c(1,rectangle,short,not_double,none,2,l(rectangle,1)),c(2,rectangle,

long,not_double,none,2,l(rectangle,3)),c(3,u_shaped,short,
not_double,none,2,1(triangle,1)),c(4,bucket,short,not_double,

12

none,2,1(circle,1))]).

train([c(1,u_shaped,short,not_double,none,2,l(rectangle,1)),c(2,bucket,
short,not_double,flat,2,1(circle,1)),c(3,rectangle,short,
not_double,flat,2,1(triangle,1))]).

train([c(1,u_shaped,short,not_double,none,2,1(circle,1)),c(2,bucket,
short,not_double,none,2,1(circle,1)),c(3,bucket,short,
not_double,none,2,1(circle,2))]).

train([c(1,rectangle,long,not_double,flat,2,1(rectangle,1)),c(2,rectangle,
short,not_double,none,2,1(circle,1)),c(3,u_shaped,short,
not_double,none,2,l(rectangle,1)),c(4,rectangle,short,
not_double,none,2,1(triangle,1))]).

train([c(1,u_shaped,short,not_double,none,2,1(triangle,1)),c(2,rectangle,
short,double,flat,2,1(rectangle,1))]).

train([c(1,rectangle,long,not_double,flat,2,1(utriangle,2)),c(2,rectangle,
long,not_double,flat,3,1(rectangle,1)),c(3,bucket,short,
not_double,none,2,1(circle,1)),c(4,rectangle,short,not_double,
none,2,1(circle,1))]).

train([c(1,rectangle,long,not_double,none,3,1(rectangle,1)),c(2,u_shaped,
short,not_double,none,2,1(circle,1))]).

train([c(1,rectangle,short,not_double,none,2,l(triangle,1)),c(2,bucket,
short,not_double,flat,2,1(triangle,1)),c(3,rectangle,
long,not_double,none,3,1(rectangle,3)),c(4,u_shaped,short,
not_double,none,2,1(triangle,1))]).

train([c(1,u_shaped,short,not_double,none,2,1(triangle,2)),c(2,bucket,
short,not_double,none,2,l(rectangle,1)),c(3,rectangle,
short,not_double,none,2,1(rectangle,1)),c(4,ellipse,short,
not_double,arc,2,1l(rectangle,1))]).

train([c(1,ellipse,short,not_double,arc,2,1(triangle,1)),c(2,u_shaped,
short,not_double,none,2,1(circle,1))]).

train([c(1,rectangle,long,not_double, jagged,2,1l(rectangle,1)),c(2,rectangle,
short,not_double,none,2,1(triangle,1)),c(3,rectangle,
short,not_double,none,2,1(triangle,1)),c(4,rectangle,
short,double,peaked,2,1(circle,1))]).

13

train([c(1,u_shaped,short,not_double,none,2,1(triangle,1)),c(2,bucket,
short,not_double,none,2,1(rectangle,1))]).

train([c(1,rectangle,short,not_double,none,2,1(circle,1)),c(2,rectangle,
short,not_double,none,2,1(triangle,1))]).

train([c(1,u_shaped,short,not_double,none,2,1(triangle,1)),c(2,rectangle,
long,not_double,flat,2,1(circle,1)),c(3,rectangle,short,
not_double,flat,2,1(circle,1)),c(4,rectangle,long,not_double,
flat,2,1(rectangle,1))]).

train([c(1,bucket,short,not_double,none,2,1(triangle,1)),c(2,rectangle,
short,double,flat,2,1(diamond,1)),c(3,rectangle,long,
not_double,none,2,l(rectangle,3)),c(4,u_shaped,short,
not_double,none,2,1(diamond,1))]).

train([c(1,ellipse,short,not_double,arc,2,l(rectangle,1)),c(2,u_shaped,
short,not_double,none,2,1(triangle,1)),c(3,bucket,short,
not_double,none,2,1(circle,2))]).

train([c(1,rectangle,short,not_double,none,2,1(circle,1)),c(2,rectangle,
short,not_double,none,2,1(triangle,1)),c(3,bucket,short,
not_double,none,2,1(triangle,1))]).

train([c(1,rectangle,long,not_double,none,2,1l(rectangle,1)),c(2,rectangle,
long,not_double,flat,3,1(utriangle,1)),c(3,ellipse,short,
not_double,arc,2,1(circle,1))]).

train([c(1,rectangle,short,not_double,none,2,1l(triangle,1)),c(2,rectangle,
short,double,none,2,1(diamond,1)),c(3,u_shaped,short,
not_double,none,2,1(triangle,1))]).

train([c(1,rectangle,short,not_double,none,2,l(rectangle,1)),c(2,hexagon,
short,not_double,flat,2,1(circle,1)),c(3,rectangle,long,
not_double,none,3,1l(rectangle,0))]).

train([c(1,rectangle,short,not_double,none,2,1(circle,1)),c(2,rectangle,
short,not_double,none,2,1(circle,1)),c(3,rectangle,short,
not_double,none,2,1l(triangle,1)),c(4,rectangle,short,
not_double,none,2,1(triangle,1))]).

train([c(1,rectangle,long,not_double, jagged,2,1(circle,1)),c(2,rectangle,

long,not_double,none,2,1(circle,2)),c(3,u_shaped,short,
not_double,none,2,1(circle,1)),c(4,rectangle,short,not_double,

14

peaked,2,1(diamond,1))]).

train([c(1,bucket,short,not_double,flat,2,1(circle,1)),c(2,bucket,short,
not_double,none,2,1(triangle,1)),c(3,bucket,short,not_double,
none,2,1(circle,2)),c(4,rectangle,short,not_double,flat,
2,1(triangle,1))]).

train([c(1,rectangle,long,not_double,none,2,l(rectangle,3)),c(2,bucket,
short,not_double,none,2,1(triangle,1)),c(3,rectangle,
short,not_double,none,2,1(circle,1))]).

train([c(1,rectangle,short,not_double,none,2,1(circle,1)),c(2,rectangle,
long,not_double,flat,3,1(hexagon,1)),c(3,rectangle,short,
double,none,2,1(circle,1))]).

train([c(1,rectangle,short,not_double,none,2,1(circle,1)),c(2,rectangle,
short,not_double,flat,2,1(rectangle,1))]).

train([c(1,rectangle,short,double,none,2,1(circle,1)),c(2,rectangle,
short,not_double,peaked,2,1(triangle,1)),c(3,rectangle,
long,not_double, jagged,3,1(rectangle,1)),c(4,rectangle,
short,not_double,none,2,1(diamond,1))]).

train([c(1,rectangle,long,not_double,flat,3,1(hexagon,3)),c(2,rectangle,
long,not_double,none,2,1(rectangle,3)),c(3,rectangle,
short,not_double,none,2,1(triangle,1)),c(4,rectangle,
long,not_double,flat,2,1(rectangle,1))]).

train([c(1,u_shaped,short,not_double,none,2,1(circle,1)),c(2,rectangle,
long,not_double,none,3,1(circle,1)),c(3,ellipse,short,
not_double,arc,2,1(triangle,1))]).

train([c(1,ellipse,short,not_double,arc,2,1(triangle,1)),c(2,u_shaped,
short,not_double,none,2,1(circle,1)),c(3,bucket,short,
not_double,none,2,1(circle,1)),c(4,bucket,short,not_double,
peaked,2,1(circle,1))]).

train([c(1,bucket,short,not_double,none,2,l(rectangle,1)),c(2,rectangle,
short,not_double,none,2,1(diamond,1)),c(3,rectangle,short,
not_double,peaked,2,1l(triangle,1)),c(4,rectangle,long,
not_double,none,3,1(circle,1))]).

train([c(1,rectangle,short,not_double,none,2,l(triangle,1)),c(2,u_shaped,
short,not_double,flat,2,1(triangle,1))]).

15

train([c(1,ellipse,short,not_double,arc,2,1(triangle,1)),c(2,hexagon,
short,not_double,flat,2,1l(rectangle,1)),c(3,rectangle,
long,not_double,none,2,1(circle,3)),c(4,rectangle,short,
not_double,none,2,1(triangle,1))]).

train([c(1,hexagon,short,not_double,flat,2,1(rectangle,1)),c(2,u_shaped,
short,not_double,none,2,1(circle,1)),c(3,rectangle,long,
not_double, jagged,2,1(rectangle,1))]).

train([c(1,rectangle,long,not_double,flat,2,1(rectangle,3)),c(2,rectangle,
short,not_double,none,2,1(triangle,1)),c(3,rectangle,
long,not_double, jagged,2,1(rectangle,1))]).

train([c(1,u_shaped,short,not_double,none,2,1(triangle,1)),c(2,rectangle,
short,not_double,none,2,1(circle,1)),c(3,u_shaped,short,
not_double,none,2,l(rectangle,1))]).

train([c(1,rectangle,short,double,none,2,1(circle,1)),c(2,u_shaped,
short,not_double,none,2,1(rectangle,1))]).

train([c(1,rectangle,long,not_double, jagged,3,1(rectangle,1)),c(2,bucket,
short,not_double,none,2,1(triangle,2))]).

train([c(1,rectangle,short,double,none,2,1(triangle,1)),c(2,rectangle,
short,not_double,none,2,1(rectangle,1))]).

train([c(1,rectangle,short,double,none,2,1(circle,1)),c(2,rectangle,
short,not_double,none,2,1(rectangle,1))]).

train([c(1,rectangle,long,not_double, jagged,2,1(circle,1)),c(2,rectangle,
long,not_double, jagged,2,1(rectangle,2)),c(3,rectangle,
long,not_double,none,2,1(rectangle,3)),c(4,u_shaped,short,
not_double,none,2,l(rectangle,1))]).

train([c(1,u_shaped,short,not_double,none,2,1(circle,1)),c(2,rectangle,
short,not_double,none,2,1(triangle,1)),c(3,rectangle,
long,not_double,flat,3,1(hexagon,1))]).

train([c(1,rectangle,long,not_double, jagged,3,1(rectangle,1)),c(2,ellipse,
short,not_double,arc,2,l(rectangle,1)),c(3,u_shaped,short,
not_double,none,2,l(rectangle,1)),c(4,rectangle,short,
not_double,none,2,1(triangle,2))]).

16

train([c(1,u_shaped,short,not_double,none,2,1(triangle,1)),c(2,bucket,
short,not_double,none,2,1(circle,1)),c(3,rectangle,short,
not_double,none,2,1(triangle,1))]).

train([c(1,rectangle,long,not_double,none,3,1(circle,1)),c(2,rectangle,
short,not_double,flat,2,1(triangle,1))]).

train([c(1,rectangle,short,not_double,none,2,l(rectangle,1)),c(2,hexagon,
short,not_double,flat,2,1(circle,1))]).

train([c(1,u_shaped,short,not_double,none,2,1(triangle,1)),c(2,rectangle,
long,not_double, jagged,3,1(utriangle,1)),c(3,bucket,short,
not_double,none,2,1(circle,1)),c(4,rectangle,short,double,
none,2,1(circle,1))]).

train([c(1,rectangle,short,double,none,2,l(rectangle,1)),c(2,rectangle,
short,not_double,none,2,1(triangle,1)),c(3,rectangle,
long,not_double,none,3,1(rectangle,3))]).

train([c(1,rectangle,short,not_double,none,2,1l(triangle,1)),c(2,rectangle,
long,not_double,flat,3,1(utriangle,1)),c(3,bucket,short,
not_double,none,2,1l(triangle,1)),c(4,u_shaped,short,not_double,
none,2,1(rectangle,1))]).

train([c(1,rectangle,short,not_double,none,2,l(rectangle,1)),c(2,rectangle,
short,double,none,2,1(circle,1))]).

train([c(1,rectangle,short,not_double,peaked,2,1(circle,1)),c(2,rectangle,
long,not_double,flat,3,1(hexagon,0)),c(3,rectangle,short,
not_double,flat,2,1(circle,1))]).

train([c(1,rectangle,short,not_double,none,2,1(circle,1)),c(2,rectangle,
short,not_double,none,2,1(circle,1)),c(3,bucket,short,
not_double,none,2,1(circle,1))]).

train([c(1,u_shaped,short,not_double,none,2,1(triangle,1)),c(2,rectangle,
long,not_double,none,3,1(rectangle,3)),c(3,rectangle,
short,double,none,2,1(circle,1)),c(4,rectangle,short,
not_double,none,2,1(circle,1))]).

train([c(1,rectangle,long,not_double, jagged,3,1(rectangle,1)),c(2,rectangle,

long,not_double, jagged,2,1(hexagon,3)),c(3,rectangle,
short,not_double,none,2,1(triangle,1))]).

17

train([c(1,bucket,short,not_double,peaked,2,1(circle,1)),c(2,hexagon,
short,not_double,flat,2,1(circle,1)),c(3,rectangle,short,
not_double,none,2,l(rectangle,1))]).

train([c(1,u_shaped,short,not_double,none,2,1(circle,1)),c(2,rectangle,
long,not_double, jagged,2,1(rectangle,1)),c(3,bucket,short,
not_double,none,2,1l(triangle,1)),c(4,rectangle,short,
double,none,2,1(triangle,1))]).

train([c(1,rectangle,short,double,none,2,1(circle,1)),c(2,bucket,short,
not_double,flat,2,1(circle,1)),c(3,rectangle,short,double,
none,2,1(circle,1)),c(4,rectangle,short,not_double,peaked,
2,1(triangle,1))]).

train([c(1,rectangle,long,not_double,none,3,1(rectangle,1)),c(2,rectangle,
long,not_double,flat,2,1(rectangle,1)),c(3,rectangle,
short,double,none,2,1(circle,1)),c(4,bucket,short,not_double,
peaked,2,1(rectangle,1))]).

train([c(1,rectangle,short,double,flat,2,1(triangle,1)),c(2,rectangle,
long,not_double,none,3,1(rectangle,1)),c(3,ellipse,short,
not_double,arc,2,1l(rectangle,2))]).

train([c(1,hexagon,short,not_double,flat,2,1(triangle,1)),c(2,bucket,
short,not_double,none,2,1(triangle,1)),c(3,rectangle,
short,not_double,peaked,2,1(triangle,1)),c(4,rectangle,
short,not_double,none,2,1(triangle,1))]).

train([c(1,rectangle,short,not_double,none,2,1l(triangle,1)),c(2,rectangle,
short,not_double,none,2,1(circle,1))]).

train([c(1,rectangle,short,not_double,flat,2,1(circle,1)),c(2,rectangle,
long,not_double, jagged,3,1l(rectangle,3)),c(3,u_shaped,
short,not_double,none,2,1(circle,1))]).

train([c(1,rectangle,short,not_double,none,2,1l(triangle,1)),c(2,rectangle,
long,not_double, jagged,3,1(rectangle,2)),c(3,rectangle,
short,not_double,none,2,1(triangle,1)),c(4,rectangle,
short,double,none,2,1(triangle,1))]).

train([c(1,rectangle,long,not_double,flat,3,1(rectangle,2)),c(2,rectangle,

long,not_double,none,2,l(rectangle,2)),c(3,rectangle,
short,not_double,flat,2,1(circle,1))]).

18

train([c(1,rectangle,long,not_double,flat,3,1(rectangle,3)),c(2,rectangle,
short,double,none,2,1(diamond,1)),c(3,rectangle,long,
not_double,none,2,l(utriangle,1)),c(4,rectangle,short,
not_double,none,2,1(circle,1))]).

train([c(1,rectangle,long,not_double,flat,3,1(rectangle,0)),c(2,rectangle,
long,not_double,none,3,1(rectangle,0))]).

train([c(1,rectangle,long,not_double,flat,2,1(circle,1)),c(2,rectangle,
short,not_double,none,2,1(circle,1)),c(3,rectangle,long,
not_double,none,2,l(rectangle,3))]).

train([c(1,u_shaped,short,not_double,none,2,1(rectangle,1)),c(2,rectangle,
long,not_double,flat,3,1(rectangle,1)),c(3,rectangle,
short,double,none,2,1(triangle,1)),c(4,bucket,short,not_double,
none,2,1(triangle,1))]).

train([c(1,rectangle,short,not_double,none,2,1(circle,1)),c(2,rectangle,
short,not_double,none,2,1(diamond,1)),c(3,bucket,short,
not_double,flat,2,1(circle,1))]).

train([c(1,hexagon,short,not_double,flat,2,1(triangle,1)),c(2,bucket,
short,not_double,peaked,2,1(circle,1))]).

train([c(1,u_shaped,short,not_double,flat,2,1(circle,1)),c(2,ellipse,
short,not_double,arc,2,1(circle,1)),c(3,rectangle,long,
not_double,none,3,1l(rectangle,1)),c(4,bucket,short,not_double,
none,2,1(circle,1))]).

train([c(1,rectangle,short,not_double,none,2,1l(triangle,1)),c(2,rectangle,
short,not_double,none,2,1(rectangle,1))]).

train([c(1,ellipse,short,not_double,arc,2,1(rectangle,1)),c(2,rectangle,
long,not_double,none,3,1(hexagon,1))]).

train([c(1,rectangle,long,not_double,flat,2,1(rectangle,0)),c(2,rectangle,
short,not_double,none,2,1(triangle,1)),c(3,bucket,short,
not_double,none,2,1(triangle,1))]).

train([c(1,rectangle,short,not_double,none,2,1(circle,1)),c(2,rectangle,
long,not_double,flat,3,1(rectangle,3)),c(3,rectangle,
short,not_double,none,2,1(circle,1)),c(4,rectangle,long,
not_double,flat,2,1l(rectangle,1))]).

19

train([c(1,rectangle,long,not_double,none,2,1l(hexagon,1)),c(2,rectangle,
short,not_double,none,2,1(triangle,1)),c(3,hexagon,short,
not_double,flat,2,1(circle,1)),c(4,rectangle,short,not_double,
none,2,1(circle,1))]).

train([c(1,hexagon,short,not_double,flat,2,1(circle,1)),c(2,rectangle,
long,not_double,flat,2,1(rectangle,3)),c(3,rectangle,
short,not_double,flat,2,1(rectangle,1)),c(4,bucket,short,
not_double,none,2,1(triangle,1))]).

train([c(1,rectangle,long,not_double,flat,3,1(hexagon,1)),c(2,bucket,
short,not_double,none,2,l(rectangle,1)),c(3,rectangle,
short,not_double,none,2,1(circle,1))]).

train([c(1,rectangle,long,not_double,flat,3,1(rectangle,2)),c(2,rectangle,
long,not_double,flat,3,1(rectangle,3)),c(3,rectangle,
long,not_double,flat,2,1(rectangle,3)),c(4,bucket,short,
not_double,none,2,1(triangle,1))]).

train([c(1,rectangle,short,not_double,none,2,1l(triangle,1)),c(2,rectangle,
long,not_double,flat,2,1(hexagon,3))]).

train([c(1,rectangle,long,not_double,flat,2,1(hexagon,1)),c(2,rectangle,
long,not_double, jagged,2,1(rectangle,1)),c(3,rectangle,
long,not_double, jagged,2,1(hexagon,0))]).

train([c(1,u_shaped,short,not_double,none,2,1(circle,1)),c(2,rectangle,
long,not_double,flat,2,1(rectangle,3)),c(3,rectangle,
short,not_double,none,2,1(circle,1)),c(4,rectangle,short,
not_double,none,2,l(rectangle,1))]).

train([c(1,rectangle,short,double,flat,2,1(rectangle,1)),c(2,bucket,
short,not_double,none,2,1(triangle,1)),c(3,bucket,short,
not_double,none,2,1(diamond,1))]).

train([c(1,rectangle,long,not_double,flat,3,1(rectangle,3)),c(2,bucket,
short,not_double,none,2,1(triangle,2)),c(3,bucket,short,
not_double,none,2,1l(triangle,1)),c(4,hexagon,short,not_double,
flat,2,1(circle,1))]1).

train([c(1,rectangle,long,not_double, jagged,3,1(rectangle,2)),c(2,rectangle,

short,not_double,none,2,1(circle,1)),c(3,rectangle,long,
not_double,flat,2,1l(rectangle,1))]).

20

train([c(1,rectangle,short,not_double,none,2,1(circle,1)),c(2,rectangle,
short,not_double,none,2,1(rectangle,1)),c(3,bucket,short,
not_double,none,2,1(circle,1))]).

train([c(1,rectangle,short,not_double,none,2,1(circle,1)),c(2,rectangle,
long,not_double,flat,2,1(rectangle,3)),c(3,rectangle,
short,not_double,none,2,1(rectangle,1))]).

train([c(1,rectangle,long,not_double,flat,3,1(utriangle,1)),c(2,u_shaped,
short,not_double,flat,2,1(triangle,1))]).

train([c(1,rectangle,short,not_double,none,2,1l(triangle,1)),c(2,rectangle,
short,not_double,none,2,1(circle,1))]).

train([c(1,u_shaped,short,not_double,flat,2,1(circle,1)),c(2,rectangle,
long,not_double,flat,3,1(utriangle,0)),c(3,rectangle,
long,not_double,flat,3,1(circle,1)),c(4,rectangle,short,
double,none,2,1(circle,1))]).

train([c(1,u_shaped,short,not_double,peaked,2,l(triangle,1)),c(2,ellipse,
short,not_double,arc,2,1(diamond,1)),c(3,rectangle,long,
not_double,none,2,l(rectangle,1)),c(4,rectangle,long,
not_double,none,2,l(rectangle,1))]).

train([c(1,rectangle,short,double,none,2,1(triangle,1)),c(2,rectangle,
long,not_double,flat,2,1(circle,1))]).

train([c(1,rectangle,short,double,none,2,1(triangle,1)),c(2,bucket,
short,not_double,none,2,1(triangle,1)),c(3,hexagon,short,
not_double,flat,2,1(circle,1)),c(4,rectangle,long,not_double,
none,2,1(rectangle,3))]).

train([c(1,rectangle,long,not_double,flat,2,1(rectangle,3)),c(2,hexagon,
short,not_double,flat,2,1(circle,2))]).

train([c(1,rectangle,long,not_double,flat,3,1(rectangle,1)),c(2,rectangle,
short,not_double,peaked,2,1(circle,1))]).

train([c(1,rectangle,short,not_double,none,2,1l(triangle,1)),c(2,rectangle,
short,not_double,peaked,2,1(triangle,1))]).

train([c(1,u_shaped,short,not_double,none,2,1(triangle,1)),c(2,bucket,

short,not_double,none,2,1(circle,1)),c(3,bucket,short,
not_double,none,2,l(rectangle,1))]).

21

Appendix A Details of Complexity Measurement

The definitions of clause occurrence, atom occurrence, and term occurrence
that are clear for first-order definite clause logic are ambiguous for Prolog
in general. This ambiguity arises because some of the predicates described
in Clocksin and Mellish’s Programming in Prolog (3" edition, 1987) are
actually meta-logical. Specifically, some predicates (more precisely, predi-
cate symbols) may be used to build atoms with arguments that are actually
goals (atoms or combinations of atoms) rather than terms. These predicates
include not, findall, call, and the semicolon operator (for disjunction). In
the presence of such meta-logical predicates, the definitions of clause occur-
rence, atom occurrence, and term occurrence become unclear. For example,
consider the following theory.

Example 1

eastbound(T) :- findall(C, (has_car(T,C),has_load0(C,triangle)), L),
length(L) > 2.

Should the occurrence of has_car(T,C') in this theory be counted as an
atom occurrence (since it is built from a predicate symbol), a term occur-
rence (since it is an argument to a predicate symbol), or both? Even more
fundamentally, this theory does not actually contain any clause occurrences
under the standard definition, since

findall(C,(has_car(T,C), has_load0(C'triangle)),L)

is not a literal under the standard definition. As another example, consider
the theory

Example 2

eastbound(T) :- has_car(T,C), (has_roof(C,jagged) ;
has_roof (C,peaked) ;
has_load(T,utriangle)).

This theory does not contain a well-defined clause either, since the semicolon
represents disjunction. Nevertheless, it is a correct Prolog theory. We now
extend the definitions of term occurrence, atom occurrence, and clause oc-
currence, in what seems to be the most natural way possible, to apply to all
Prolog theories rather than only to pure first-order definite clause theories.

22

Our extension of the definitions simply identifies a substring of a Prolog
program as a term occurrence, atom occurrence, or clause occurrence if it is
labeled as a term, atom, or clause, respectively, during a parse of the Prolog
program according to an unambiguous context-free grammar for Prolog.
In addition to presenting such a grammar, below, we provide a high-level
description in the following paragraph. For complete clarity, we also provide
Ashwin Srinivasan’s Prolog program for measuring the complexity of any
theory (this code also appears in the file complex.pl).

A term occurrence (as standard) has the form either X (a variable) or
f(t1,...,t,), where f is an n-ary function symbol and ti,...,t, are terms.
Shorthand expressions for terms, most notably the representation of lists
in the form [1,2,3], are expanded before complexity is measured. Thus, for
example, the complexity of [1,2,3] is 7, since the expanded representation is

cons(1,cons(2,cons(3,nil))).

An atom occurence has the form p(ty, ..., ¢,), where either (1) p is an ordinary
predicate symbol and ¢y, ...,t, are terms (in which case we call the atom
ordinary), or (2) p is a meta-logical predicate symbol, and each t; is a term
or a goal as specified for that predicate in Clocksin and Mellish (in which
case we call the atom meta-logical). For example, in a meta-logical atom
not(t), t must itself be a goal, while in the meta-logical atom findall(ty,t2, t3),
t; must be a variable, {3 must be a goal, and {3 must be a term denoting a
list. It is worth special observation that a cut is treated as an atom (built
from the nullary predicate symbol ‘I"). A clause occurrence has either form
(1) ‘A’ or (2) ‘A: =By, ..., B,.” where A is an ordinary atom and By, ..., B,
are atoms.

Returning to the earlier examples, the theory in Example 1 consists of
one clause, containing one occurrence of each of the following 5 atoms:

eastbound(T)

findall(C, (has_car(T,C),has_load0(C,triangle)),L),
has_car(T,C)

has_load0(C,triangle)

length(L) > 2.

The theory also contains 9 term occurrences, for a total complexity score
of 15. What about the theory in Example 27 It consists of one clause,
containing one occurrence of each of the following 7 atoms:

eastbound(T)
has_car(T,C)

23

; (has_roof (C, jagged),; (has_roof (C,peaked) ,has_load(T,utriangle)))
; (has_roof (C,peaked) ,has_load(T,utriangle))

has_roof (C, jagged)

has_roof (C,peaked)

has_load(T,utriangle)

This theory has 9 term occurrences, for a total complexity score of 17.

A.1 An LL(1) grammar for Prolog

The following grammar is an LL(1)—and therefore unambiguous context-
free—grammar for Prolog, together with our symbols and any new symbols
that may be introduced to define a theory, given that each new symbol
is appropriately inserted into the grammar. (The grammar is not com-
plete, but we believe it makes obvious the complete LL(1) grammar.) Note
that meta-logical predicates have been accorded special treatment, since
some of their arguments may be goals rather than terms. It is also worth
noting that, to keep matters simple, we view the list syntax as syntactic

sugar, giving shorthand for terms built from the cons function (e.g., [X,Y]
is cons(X,cons(Y,nil)), and [X|Y] is cons(X,Y)), and we view infix rep-

resentation of operators such as ‘=" and ‘;” as syntactic sugar for a prefix
representation. Nonterminals are alphanumeric strings beginning with a

capital letter; terminals are strings enclosed in single quotes.

LL(1) Grammar for Prolog

Theory = Clause Theory | “end-of-file~
Clause ::= OrdAtom Remainder
Remainder ::= ~.” | ~:-7 Body
Body ::= Atom Bodyl
Body1 ::= .7 | ~,” Body
Goal 1:= Atom | *(” Comp_goal
Comp_goal ::= Atom Goall
Goall 1=)7 | ¥, Comp_goal
OrdAtom ::= PredSym_0O |
PredSym_1 ~(° Term)~ |
PredSym_2 ~(’ Term *,” Term “)~ |
Atom ::= OrdAtom |

“findall” ~(° Term ~,” Goal >, ” LTerm)~ |
37 (7 Goal ,” Goal)~

24

*not” ~(° Comp_goal |
“call” ~(’ Comp_goal |

Term ::= VarSym |
FuncSym_0 |
FuncSym_1 ~(” Term)~ |
FuncSym_2 ~(’ Term *,” Term “)~ |

LTerm ::= VarSym |

*nil~”
“cons” (7 Term >, LTerm)~
PredSym_0 ::= ~!” |
PredSym_1 ::= “eastbound” |
PredSym_2 ::= “has_car”
FuncSym_0 ::= “triangle’ |
“jagged” |
Number
FuncSym_1 = “roof-shape’ |

FuncSym_2 ::= “cons”

Integer | Floating-Point

Number

(The productions for Integer and Floating Point are omitted.)

A.2 A Prolog program for measuring complexity of theories
in Competition 1

The Prolog program for measuring theory complexity follows.

% Ashwin Srinivasan’s Prolog code

25

% for measuring theory complexity.

% dynamic statements are only for compiled Prologs
% (not Clocksin and Mellish standard)

:— dynamic counts/2.

% count clauses, literals and terms in file FileName
count (FileName) : -

reset_counts,

see(FileName),

count_clauses,

seen,

print_theory_counts.

count_clauses:-
repeat,
read(Clause),
count_clause(Clause),

Clause = end_of_file,
]

count_clause(end_of_file):- !

count_clause((Head:-Body)):-
]
inc(clauses,1),
get_litterm_count ((Head,Body)).
count_clause(UnitClause): -
inc(clauses,1),

get_litterm_count(UnitClause).

get_litterm_count((LitTerm;LitTerms)):-
!
inc(litterms,1), % for ~; /2
get_litterm_count(LitTerm),
get_litterm_count(LitTerms).

get_litterm_count((LitTerm,LitTerms)):- % no charge for
!
get_litterm_count(LitTerm),
get_litterm_count(LitTerms).
get_litterm_count(LitTerm):-
inc(litterms,1), % for Lit
functor(LitTerm,Name, Arity),

26

get_arg_count(LitTerm,Arity,0,TO0),
inc(litterms,TO).

get_arg_count(_,0,LT,LT).
get_arg_count (Expr,Arg,T,LitTerms):-
arg(Arg,Expr,Term),
var(Term), !,
Arg0 is Arg - 1,
T1 is T + 1,
get_arg_count (Expr,Arg0,T1,LitTerms).
get_arg_count (Expr,Arg,T,LitTerms):-
arg(Arg,Expr,LitTerm),
functor(LitTerm,LitTermName,LitTermArity),
inc_term_count(LitTermName/LitTermArity,T,T1),
get_arg_count (LitTerm,LitTermArity,T1,T2),
Arg0 is Arg - 1,
get_arg_count (Expr,Arg0,T2,LitTerms).

inc_term_count(’,/2,T,T):- % no charge for -, /2
]

inc_term_count(_,T,T1):-
Ti is T + 1.

reset_counts:-
retractall(counts(_,_)),
asserta(counts(clauses,0)),
asserta(counts(litterms,0)).

print_theory_counts:-
counts(clauses,C),
write(“clauses:), write(C), nl,
counts(litterms,LT),
write(lits+terms:), write(LT), nl, nl,
Total is C + LT,
write(“total: "), write(Total), nl.

inc(Parse,N): -
retract(counts(Parse,N1)),
NO is N1 + N,
asserta(counts(Parse,NO)).

We close this Appendix with an extensive list of additional examples.

27

We omit the phrase occurrence in presenting the complexity calculations.

eastbound(T): -
findall(C, (has_car(T,C),short(C)),[_,_,_1),
has_car(T,Car),
not(arg(6,C,3)).

1 Clause + 7 Atoms + 17 Terms = 25
Prolog program output:

clauses: 1
lits+terms: 24

total: 25
westbound(T): -
has_car(T,C),
(
closed(C) ,has_load0(C,triangle)
)

)

has_load0(C,hexagon).
1 Clause + 6 Atoms + 8 Terms = 15
Prolog program output:

clauses: 1
lits+terms: 14

total: 15

eastbound(T): -
(
in_front(T,C1,C2),
has_load0(C1,S),
has_load0(C2,S)
)

%indall(C,(has_car(T,C),not(double(C))),[_,_]).

28

1 Clause + 9 Atoms + 17 Terms = 27
Prolog program output:

clauses: 1
lits+terms: 26

total: 27

westbound(T): -
(
has_car(T,C),
arg(6,C,3)
)
(
append(_, [FirstCar],T),
short(FirstCar),
has_loadO(FirstCar,rectangle)

).
1 Clause + 7 Atoms + 14 Terms = 22
Prolog program output:

clauses: 1
lits+terms: 21

total: 22

westbound(T) : -
append(_, [FirstCar],T),
(
has_loadO(FirstCar,triangle)
hexagon(FirstCar)
double(FirstCar)
).

1 Clause + 7 Atoms + 10 Terms = 18

Prolog program output:

29

clauses: 1
lits+terms: 17

total: 18

eastbound([LastCar|Cars]):-
short(LastCar),
rectangle(LastCar),
findall(C, (has_car(Cars,C),long(C)),LongCars),

(
LongCars = []
LongCars =[]
).

1 Clause + 9 Atoms + 16 Terms = 26
Prolog program output:

clauses: 1
lits+terms: 25

total: 26

eastbound(T): -
(
in_front(T,C1,C2),
short(C1), short(C2),
has_load0(C1,S), has_load0(C2,S)

)

(

has_car(T,C1), has_car(T,C2),
c1 \= C2,

has_load0(C1,_), has_load0(C2,_),
arg(5,C1,jagged), arg(5,C2,jagged)
).

1 Clause + 14 Atoms + 26 Terms = 41

Prolog program output:

clauses: 1
lits+terms: 40

30

total: 41
eastbound(T): -
has_car(T,C),
(
arg(5,C,peaked)
ellipse(C)

(closed(C), rectangle(C))

T=10[__1
).

1 Clause + 10 Atoms + 15 Terms = 26
Prolog program output:

clauses: 1
lits+terms: 25

total: 26
westbound(T) : -
append(_, [FirstCar],T),
(

(open(FirstCar), bucket(FirstCar))

hexagon(FirstCar)

(rectangle(FirstCar), has_loadO(FirstCar,rectangle))
).

1 Clause + 9 Atoms + 12 Terms = 22
Prolog program output:

clauses: 1
lits+terms: 21

total: 22

eastbound(T) :-

31

(
(T = [c1,c2],
(

short(C1)

)

short (C2)

)

)
Eappend(_,[C2,Cl],T),

(
(has_load0(C2,triangle), has_load0(C1,triangle))

(has_load0(C2,rectangle), has_load0(Cl,rectangle))
)
)
).

1 Clause + 12 Atoms + 24 Terms = 37
Prolog program output:

clauses: 1
lits+terms: 36

total: 37
eastbound(T) :-

append(_, [FirstCar],T),

(
bucket (FirstCar)

)

(open(FirstCar), rectangle(FirstCar))
).

1 Clause + 6 Atoms + 9 Terms = 16
Prolog program output:

clauses: 1
lits+terms: 15

total: 16

32

eastbound(T) :-
has_car(T,C),
(
double(C)
arg(5,C,peaked)

ellipse(C)
).

1 Clause + 7 Atoms + 8 Terms = 16
Prolog program output:

clauses: 1
lits+terms: 15

total: 16

eastbound(T): -
has_car(T,C),
(
long(C), closed(C),
(
has_load(C,1)

(has_load(C,2) ,has_load0(C,circle))
)

éouble(C)
).

1 Clause + 10 Atoms + 12 Terms = 23
Prolog program output:

clauses: 1
lits+terms: 22

total: 23
westbound(T) : -

(
(T = [_,_], has_car(T,C), short(C))

33

(has_car(T,C), arg(5,C,jagged))
).

1 Clause + 7 Atoms + 14 Terms = 22
Prolog program output:

clauses: 1
lits+terms: 21

total: 22

eastbound(T): -
findall(C, (has_car(T,C),long(C), rectangle(C), arg(5,C,flat)),[_]1)

findall(C, (has_car(T,C),short(C)),[_,_,_1).
1 Clause + 10 Atoms + 23 Terms = 34
Prolog program output:

clauses: 1
lits+terms: 33

total: 34

34

Figure 1: Michalski’s original set of trains.

1. TRAINS GOING EAST 2. TRAINS GOING WEST

S Te = AW 2 [e e)
o [V J<a>|o 0 s o =0
o [OFColal /B v \o/ o HE== o/ [T

s Lo e -0 s lpgHa

Figure 2: A new set of 10 trains concocted with the aid of Muggleton’s train
generator.

1. TRAINS GOING EAST 2. TRAINS GOING WEST

Lo E o a L B o vy v [
> Lo HeH s > Lo Ho HeHpag i)
» (Ol o Mol [» laHooor 0]

o [DooH o MBS 3y . Coolooo] NN .

s \a/ Lo Jdalda s o o)

35

Figure 3: 100 more trains, unclassified, randomly generated by Muggleton’s
train generator. The cross-ruling added to this page are for purposes of
Competition 3.

L mEoa s He—= Y % \o/\a/ oot (A [T

» | o LS\aZz ool N » Dool\a o L

s [0 o a » o} o ol I

. |l OoHoool a o/ 5 » | o e]

s \m)So/La -0 o Lo a e o 3]

o LO o/ oo [h n (000l loool] a =1
. [o o) a -5 » o o o>

o == o) I s [o A]

n Lo &z loool s 0N % (B)<E>{oool|a T
PPV BN o VA [o | B G S 1 5 v (D o =y [

v (oo o) B w [ODOOH o e)

w B2 a o o309 » oo Ho I

s Lo\ Y o Lol Y

6 o a 0 a [a0

v (s o Ho - e a0y

s \a/ ol loooll e 3] P e e I

v, (o J oo 9 w [T ooo o L
w | O A A /0N) s o 1Y

a |2 v 1o 00— 6 [T\)Han o
2 | o Lol a)19 v La o/ a
[0 > 03— . o S .

u o oldalla M o | <o> 03

s 78 oo Ho)To I w La)TV o I

36

51.

52.

53.

55.

56.

57.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Lo lSo/ o7 a Y

CaoA\sfT ot a3
s Ho F]

Lo MOt o -]
A HETEIH o Ha - 13—
(o Ho o H o FI
mooklo | v o -
I i
[[o HoHoooI]
o = Ha b\ a0
o H o FSoz]
CE>SoZ]

(o} Cood=—\o, 7

77.
78.
79.
80.
81.
82.
83.

84.

87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.

98.

37

