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Abstract. As a form of Machine Learning the study of Inductive Logic Programming (ILP) is
motivated by a central belief: relational description languages are better (in terms of accuracy
and understandability) than propositional ones for certain real-world applications. This claim is
investigated here for a particular application in structural molecular biology, that of constructing
readable descriptions of the major protein folds. To the authors’ knowledge Machine Learning has
not previously been applied systematically to this task. In this application domain the domain ex-
pert (thord author) identified a natural divide between essentially propositional features and more
structurally-orientated relational ones. The following null hypotheses are tested: 1) for a given
ILP system (Progol) provision of relational background knowledge does not increase predictive
accuracy, 2) a good propositional learning system (C5.0) without relational background knowledge
will outperform Progol with relational background knowledge, 3) relational background knowledge
does not produce improved explanatory insight. Null hypotheses 1) and 2) are both refuted on
cross-validation results carried out over 20 of the most populated protein folds. Hypothesis 3 is
refuted by demonstration of various insightful rules discovered only in the relationally-oriented
learned rules.
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1. Introduction

Inductive Logic Programming (ILP) has been applied successfully in a large num-
ber of applications to structural biology [13, 8, 9, 20, 5, 19, 21]. Underlying these
investigations has been an attempt to test whether relational description languages
are better (in terms of accuracy and understandability) than propositional ones
for such applications. In general the advantages of relational representations seem
to be born out in these investigations. However, it is always possible to choose
propositional attributes which defeat such a conclusion. This can be demonstrated
as follows. Suppose investigator A applies ILP system B to problem C and shows
that the rule P(z,y) < Q(z,z2), R(z,y) has high accuracy and then submits a pa-



per to journal D. Referee R might now respond that the solution could have been
expressed in propositional form as P + S where S was defined (behind the scenes)
as Q(z,z),R(z,y). Such a response seems unreasonable since it was only possi-
ble for R to make such a suggestion after seeing the solution produced by system
B. Alternatively R could suggest that a large set of propositions could have been
introduced, which could then be combined to produce something equivalent to S.
However, for relational representations (like the rule produced by B) in which new
“existential” variables (like z) are introduced into the body it is far from clear how
such propositional variables would be defined. Any such attempts at “proposition-
alisation” seem rather contrived and tend to detract from the readability of the
resulting rules.

In this paper we take a different approach. The domain expert (third author)
defined what appeared to him to be a “natural” representation for the applica-
tion. One of these representations was more relationally-oriented than another. It
was not possible in any obvious way to “propositionalise” the relationally-oriented
representation. We used these representations to investigate the advantages and
disadvantages of relationally-oriented representations.

This paper is structured as follows. In Section 2 the main null hypotheses to
be empirically evaluated are laid out. The Molecular Biology motivation for the
general application area is given in Section 3. In Section 4 background is given for
both ILP (Section 4.1) and protein structure classification (Sections 4.2 and 4.3).
The experiments are described in Section 5. Section 6 concludes and discusses the
results.

2. Hypotheses to be tested

The null hypotheses to be empirically investigated in this paper are as follows.

1. For a given ILP system (Progol) provision of relational background knowledge
does not increase predictive accuracy.

2. A good propositional learning system (C5.0) without relational background
knowledge will outperform Progol with relational background knowledge.

3. Relational background knowledge does not produce improved explanatory in-
sight.

3. Molecular Biology motivation

The functional properties of proteins are determined by their three-dimensional
structure. Therefore, to understand the function of proteins we need to unravel
the principles that govern protein structure. Despite more than three decades of
research, we cannot deduce the three-dimensional structure from the knowledge
of its constituents (sequence) alone. However, vast amounts of data on protein
structure have been accumulated, approximately 10,000 protein structures, and new
projects, such as the Protein Structure Initiative, might produce as much as 10,000



new structures over the next five years[2]. Furthermore, classification schemes,
such as ScoP [4], have been developed and can be used as a starting point for
machine learning experiments. Here, we present an application of Inductive Logic
Programming (ILP) to learn rules relating local structures to the concept of folds
defined by Scop. The objective is to automate the discovery of structural features,
or signatures, of a fold that distinguish it from the rest. The three-dimensional
structures of proteins are highly complex and the identification of rules explaining
the observed fold remains a challenging area often involving the manual intervention
of experts [4, 3, 15]. For several folds, these signatures are reported in the literature
generally after extensive study. A few experts are familiar with many of these
signatures, but the knowledge is not formalised with a common language, in a form
suitable for automated testing as new structures are determined. Furthermore,
automated methods could identify features missed by manual examination.

4. Background
4.1.  Inductive Logic Programming

ILP is a logic-based approach to machine learning. Several features suggest it
might be particularly well suited to study problems encountered in molecular biol-
ogy. First, protein structures are the result of complex interactions between sub-
structures and the ability of ILP algorithms to learn relations might prove to be
a key feature. Second, ILP systems can make use of problem-specific background
knowledge. Vast amounts of knowledge have been accumulated over the years of
research on protein structure and can be used effectively. Third, logic programs
are used as a common representation for examples, background knowledge and
hypotheses, which provide a good integration for the development of applications
together with the machine learning experiments. Finally, hypotheses can be made
readable, by straightforward translation to natural languages, and integrated to the
cycles of scientific debate.

Inductive Logic Programming is concerned with the induction of hypotheses from
examples and background knowledge [14]. A restricted subset of first-order logic
is used as a common representation for the examples, the background knowledge
and also the generated hypotheses. In the case of the protein folds problem, a
positive example might be that domain d1h1lb__ belongs to the Globin fold, rep-
resented as fold(’Globin-like’, d1hlb_). The background knowledge might
contain information such as the relationship between secondary structure and the
presence of proline residues. The ILP algorithm then constructs a hypothesis which
explains this example in terms of the background knowledge. The following rule
was generated for the Globin-like fold.

fold(’Globin-1like’, X) :-
adjacent (X, _, B, 1, h, h),
has_pro(B).



According to this rule a domain X belongs to the Globin-like fold if its first helix is
followed by another one that contains a proline. The results presented here were
obtained with the ILP system Progol [12].

Progol is an ILP system which takes background knowledge, integrity constraints,
and examples in the form of a logic program. It is also given the description of the
hypothesis language in the form of “mode” declarations and “prune” statements.
Progol then progresses using a covering algorithm by forming general rules from
individual examples. For each example a “most specific” (or bottom) clause is
constructed. A graph search is then carried out over the generalisations of the
bottom clause. Individual clausal hypotheses in this search are evaluated by the
“information compression” produced. Progol can be viewed as a modified Bayesian
Maximum A Posteriori (MAP) learning algorithm.

4.2.  Protein structure

Protein structures can be described at various levels of abstraction. In general,
three levels are distinguished: primary, secondary and tertiary structure. Proteins
are polymers, which means that they are made of smaller molecules, amino acids,
assembled linearly. This level of abstraction is referred to as the primary structure
or sequence. There are twenty naturally occurring amino acids and each one has
a diverse set of chemical properties, for example hydrophobicity and size. Amino
acids are represented with a standard one letter code and protein sequences are
often written as strings of letters. The typical length of proteins varies from 100 to
500 amino acids.

A particular sequence of amino acids folds into a specific compact three-dimen-
sional or tertiary structure from which the exact location of every atom can be
deduced. The two predominant methods to structure determination are X-ray crys-
tallography and NMR spectroscopy. Those techniques require sophisticated equip-
ments — nowadays synchrotron facilities are often used as a source of radiation [7].
Because of technological limitations, the sequences of amino acids are routinely
determined in large quantities while the determination of the three-dimensional
structure remains difficult. It is estimated that as part of the structural genomics
projects there will be 10 large-scale initiatives and each of them will produce 200
structures per year [2].

Early on it was predicted that segments of the primary sequence would adopt
local regular structures [16]. The two main types being the a-helices and the -
strands, while the intervening regions are called loops or coils. Several computer
programs exist to identify secondary structure elements from the three-dimensional
structure.

The “Holy Grail” of molecular biology is to devise a method that would predict the
three-dimensional structure, the exact location of every atoms, from the knowledge
of the sequence alone. The problem is often broken down into two sub-problems;
i) prediction of the secondary structure and ii) docking of the secondary structure
elements to form the compact three-dimensional structure; for example, 3-strands



assemble together to form (-sheets. The problem of secondary structure prediction
is to map each residue to one of the three types (H - helix, E - strand and C - coil).

4.8.  Protein structure classification

There are several stages in the process of scientific discovery. One of the earliest
is often the development of classification schemes [11]. Once in place, qualitative
and quantitative rules can be derived that relate the examples to each other. With
approximately 10,000 known protein structures, over the last few years, classifica-
tion schemes have been developed. In our study we have been using SCOP which
is a classification done manually by a world-expert on protein structure [4]. These
schemes facilitate our understanding of protein structure and her serves as a start-
ing point for machine learning experiments, Figure 1 illustrates the diversity of
protein structures.

The basic unit of this classification is a domain, a structure or substructure that
is considered to be folded independently, see Figure 1. Small proteins have a single
domain. For larger ones, a domain is a substructure.

Domains are grouped into families. Domains of the same family have evolved
from a common ancestry. In most cases, the relationship can be identified by
direct sequence comparison methods. The next level is called a super-family. The
members of a super-family are believed to have evolved from a common ancestry,
but often the relationship cannot be inferred by sequence comparison methods
alone; the expert relies on other evidence, such as functional features.

The next level is a fold, proteins that share the same core secondary structures,
and the same interconnections. The similarity is generally considered due to con-
vergence towards a stable architecture. Finally, folds are conveniently grouped
into classes based on the overall distribution of their secondary structure elements,
see Figure 1, the cytokines and globins are members of the all-a class, while the
Rossmann fold belongs to the a/3 class.

5. Experiments

The experiments in this section are aimed at evaluating the hypotheses in Section
2.

5.1. Materials

In order to allow reproducibility of the results, the algorithms and data have all
been made available. The algorithms used in these experiments were Progol4.4!
and C5.02. The data sets, including algorithm settings, for the experiments have
also been made available®.

We report on three experiments. In the first one, the background knowledge
was limited and learning was essentially attribute-valued based. In the second one,
the background knowledge was augmented with relational information. Finally,



integrity constraints were used to express preferences formulated by the protein
structure expert for certain forms of rules.

Table 1. Selected folds. Dom is the number of domains, Fam the num-
ber of families and Super the number of super-families. The number of
domains represents the number of entries after selection (scoplib.pl).

| Fold Dom Fam  Super |
All-a:
DNA-binding 3-helical bundle 30 17 4
EF Hand-like 14 7 2
Globin-like 13 2 1
4-helical cytokines 10 3 1
lambda repressor-like DNA-binding domains 10 3 1
Other folds (92) 210 139 111
All-8:
Immunoglobulin-like beta-sandwich 45 12 8
Trypsin-like serine proteases 21 4 1
OB-fold 20 11 4
SH3-like barrel 16 7 6
Lipocalins 14 2 1
Other folds (56) 220 123 90
a/B:
beta/alpha (TIM)-barrel 55 28 17
NAD(P)-binding Rossmann-fold domains 21 7 1
P-loop 14 4 1
alpha/beta-Hydrolases 12 10 1
Periplasmic binding protein-like IT 13 2 1
Other folds (70) 200 131 88
a+ B:
Ferredoxin-like 26 21 17
Zincin-like 13 8 2
SH2-like 13 1 1
beta-Grasp 12 6 6
Interleukin 8-like chemokines 9 1 1
Other folds (96) 240 158 113

Our study is restricted to the five most populated folds of each of the four main
classes, see Table 1. The justifications of this choice are as follows.

e Since these are the most populated folds they contain a relatively large number
of examples, which means that learning is more robust and the results more
meaningful. Many of the folds have only one known protein in them.

e Less populated folds are often ill-defined and contain multiple domains which
coagulated together.



e The highly populated folds have been well studied and characterised in the
literature, which means that the rules learned can be compared against what is
already known.

The four main classes of SCOP contain a total of 334 folds — representing 1251
domains, while the 20 folds we study in this paper contain 381 domains representing
30% of the total number of domains.

5.2. Method

Rules were generated for each fold as separate runs, in the case of the Globin-like
fold the positive examples are the 13 domains classified as such in Scop. Negative
examples were selected from all other folds of the same structural class, in the
case of the Globin-like 26 negative examples were randomly selected from the 274
domains from the 96 other folds of the all-a class. The ratio of positive to negative
examples was chosen to achieve rules which would have good coverage without
having too many general clauses per fold. This was achieved by trying to maximise
the number of rules plus the remaining number of uncovered examples. The best
ratio of positives to negatives was found to be 1:2.

To reduce the redundancy in the data-set, one representative domain per protein
was selected using scoplib.pl (Kelley et al. in press). Prior to the cross-validation
experiments the data was curated manually, when Progol was unable to find a rule
for a given example. Visual inspection often revealed abnormalities in the data.
The most common problem was the fusion of duplicated domains.

Secondary structure information for each domain was calculated from the three-
dimensional structure using PROMOTIF [6].

Predictive accuracy was assessed by use of cross-validation.

5.3. Results

The cross-validation results are tabulated in Table 2. Weighted average accuracies,
accompanied by standard errors based on summed contingency tables, are given in
the last row of the table. The averaged accuracy differences between Progol IT and
all other systems are significant. No other differences are significant. We can thus
refute null hypotheses 1 and 2 (see Section 2). Null hypothesis 3 requires a more
in depth analysis of the contents of the rules in the experiments. This is provided
below.

5.4. Attribute-values learning

For the first experiment, the background knowledge contains only predicates which
encode global characteristics of protein folds, specifically, the total number of
residues and the total number of secondary structures of both types, a and .
This experiment shows that it is possible to construct good classifiers with a
background knowledge which is essentially limited to attribute-values, see Table 2.



Table 2. Cross-validation predictive accuracy. Columns labelled I, IT and III refer to
results obtained with Progol for three experiments.

| Fold C5.0 I I I |
All-a:
Globin-like 96.8 94.75 95.06 94.56
DNA-binding 3-helical bundle 84.6 65.36 82.97 81.92
4-helical cytokines 85.7 83.28 70.69 73.13
lambda repressor-like DN A-binding domains 73.7 49.95 73.43 63.37
EF Hand-like 78.5 66.64 77.57 68.48
All-g:
Immunoglobulin-like beta-sandwich 77.4 81.41 76.29 71.07
SH3-like barrel 90.7 91.37 91.40 76.53
OB-fold 79.3 62.93 78.43 76.92
Trypsin-like serine proteases 94.7 93.56 93.13 81.47
Lipocalins 87.9 75.90 88.30 78.50
a/B:
beta/alpha (TIM)-barrel 73.4 67.09 70.66 66.14
NAD(P)-binding Rossmann-fold domains 55.9 57.07 71.63 78.47
P-loop 56.7 67.29 76.02 81.21
alpha/beta-Hydrolases 52.4 66.89 72.18 75.08
Periplasmic binding protein-like IT 58.0 66.42 68.91 62.94
a+ B
Interleukin 8-like chemokines 86.0 92.36 92.93 85.63
beta-Grasp 59.3 75.18 71.66 63.56
Ferredoxin-like 69.8 63.56 83.07 80.38
Zincin-like 69.2 67.01 64.30 56.30
SH2-like 66.7 69.45 76.81 79.38
Average:
74.8 72.48 78.28 74.35
+130 +1.34 +1.23 +1.31

The C5.0 algorithm, successor of C4.5 [17], gives greater accuracy than Progol I,
though the difference between the two systems is not significant (Wilcoxon’s test).

Indeed, the two systems often produce similar rules, for example, Progol’s rule for
the Globin-like fold is:

Rule 1 (Globin-like) X is a Globin-like if the length of the domain is between
135 and 166 residues long.

fold(’Globin-1ike’, X) :-
len_interval(135 =< A =< 166).

while C5.0 gives an interval of 135 to 163. This is perhaps not so surprising with
such a restricted background knowledge.



5.5.  Relational learning

New predicates are added to the background knowledge which introduce relation-
ships between secondary structure elements and their properties, see Appendix A.1
for the complete list of predicates.

The overall accuracy for this experiment, Progol I1, is 78.8 %, which is significantly
higher than the mean accuracy for Progol I experiment. More importantly, some
of rules can now be related to published results in the relevant scientific literature.
Consider the rule generated for the lambda repressor:

Rule 2 (lambda repressor) The protein is between 53 and 88 residues long. He-
lir A at position 3 is followed by helix B. The coil between A and B is about 6
residues long.

fold(’lambda repressor’, X) :-
len_interval(53 =< X =< 88),
adjacent (X, A, B, 3, h, h),
coil(A, B, 6).

The particular coil region mentioned in the rule turns out to be important for
the specific recognition of DNA [3], see section 6. When inspecting the rules, our
protein structure expert (Sternberg) showed more interest in rules containing in-
formation about secondary structure elements. Although Progol had access to a
richer background knowledge, including information about secondary structure, of-
ten Progol produced the same rule as previously, Progol I experiment, in particular
this is seen for the Globin-like fold.

In the Progol III experiment, integrity constraints are introduced in the back-
ground knowledge to express the preference of the protein structure expert towards
rules containing information about specific secondary structure elements. In effect
this means that Progol now returns sub-optimal solutions. Indeed, the accuracy is
reduced to 74.8%, but a larger fraction of the rules can now be interpreted in terms
of previously published results in the relevant scientific literature.

5.6.  FExpert-type knowledge

In this section, we review four rules and present a possible biological interpretation.
The complete set of rules is available from our Web site (www.bmm. icnet.uk/ilp).

Rule 3 (Globin fold) Heliz A at position 1 is followed by helix B. B contains a
proline residue.

fold(’Globin-1ike’, X) :-
adjacent (X, A, B, 1, h, h),
has_pro(B).

The Globin-fold is a good example of divergent evolution. In SCOP, this fold com-
prises diverse sequences such as myoglobin, hemoglobin and phycocyanins. Yet the
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Rule 5 (4-helical cytokines) Rule 6 (4-helical cytokines)

Figure 1. Schematic representation showing §-strands (arrows), a-helices (ribbons) and interven-
ing loop regions. The figure shows the diversity of protein structures, for example the top two
domains belong to two different folds while the bottom two domains belong to the same one. The
secondary structure elements which are used in the description of a rule have been coloured in
black, see text for details.

three-dimensional structure of these proteins is well preserved. One hallmark of
this fold is the presence of a conserved proline residue in helix B, which causes a
sharp bend in the main chain. This observation has been reported previously by
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Bashford et al. [1], see Figure 1 where helices A and B are coloured black while the
proline is represented as ball-and-stick.

Rule 4 (Rossmann fold) Strand A at position 1 is followed by helix B. Strand C
at position 6 is followed by heliz D. The coil between A and B is about one residue
long.

fold (’NAD(P)-binding Rossmann-fold’, X) :-
adjacent (X, A, B, 1, e, h),
adjacent (X, C, D, 6, e, h),
coil(A, B, 1).

NAD-binding domains of the Rossmann fold all have a similar binding mechanism.
The adenosine is bound to the short loop between the first strand and the following
helix. The region is embedded in a 8 — a — # motif which is highly conserved
and contains the sequence motif G-X-G-X-X-G [22]. The fifth and sixth secondary
structures clamp the nicotinamide moiety of NAD, see Figure 1, elements A, B, C
and D are coloured black, while NAD is shown as ball-and-stick.

Similarly the rules generated for the lambda repressor and P-loop can be related to
regions which are important for recognition and activity and have been documented
in the literature.

Rule 5 (4-helical cytokines) The first heliz is long and followed by another he-
liz.

fold(’4-helical cytokines’, X) :-
adjacent (X, A, B, 1, h, h),
unit_len(A, hi).

Rule 6 (4-helical cytokines) The second strand is immediately followed by a
helix.

fold(’4-helical cytokines’, X) :-
adjacent (X, A, B, 2, e, h),
coil(A, B, 0).

Often, Progol produces more than one rule to cover all the positive examples of a
fold. Similarly, Scop classification has often more than one family and/or more
than one super-family per fold. Thus, sometimes the mapping of the rules onto the
examples matches that of Scop. This occurs for the 4-helical cytokines, which has
two families, the long-chain and short-chain cytokines. Members of the long-chain
cytokines family all start with a long helix, as observed by Progol, see Rule 5. While
the distinctive feature of the short-chain cytokines is the absence of a coil between
the last strand-helix pair, Rule 6. Although these proteins have been classified in
the same family, their sequences are quite diverged (with pairwise distances within
the so-called twilight zone) [18]. The fact that the second strand and last helix
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form a contiguous segment was observed by [18] and used to tether their structural
alignment. Further investigation reveals that the first residue of the helix also
participates in the hydrogen bonds network of the sheet; except for one domain
where the sheet is distorted.

The analysis above is sufficient to convince us that null hypothesis 3 (Section 2)
can also be rejected.

6. Conclusion and discussion

We have presented three learning experiments using two background knowledge
sets, attribute-valued and relational. All of the null hypotheses of Section 2 were
rejected on the basis of the results. Overall we conclude that relational background
knowledge has demonstrable advantages for learning in the construction of fold
descriptions. The rules constructed in the experiments described in this paper
represent the first systematic characterisation of the major protein folds.

In 1972, Irwin D. Kuntz wrote: “Although more than ten protein crystal struc-
tures have been determined, the principles by which these molecules develop sec-
ondary and tertiary structure are not yet well understood.”[10] Twenty eight years
later, approximately 10,000 protein structures are known yet our understanding
of the principles governing protein folds is still not sufficient to provide accurate
predictions.

In such a complex field as protein structure, it is unlikely that understanding will
come from machine learning experiments alone. Rather the machine learning tools
must be strongly integrated into the human process of scientific discovery. Induc-
tive Logic Programming offers many distinct advantages with this respect. First,
protein structures are the result of complex interactions between secondary struc-
ture elements and the ability of ILP algorithms to learn relations is a key feature.
Second, ILP systems can make use of problem-specific background knowledge, al-
lowing the expert to guide the search through the hypothesis space. Third, logic
programs are used as a common representation for examples, background knowl-
edge and hypotheses, which provides a good integration for the development of
applications together with the machine learning experiments. Finally, hypotheses
can be made readable, by straightforward translation to natural languages, and
integrated to the cycles of scientific debates.

The two ways to describe protein folds have different biological implications. In
the first paradigm, attribute values correspond to global properties, such as the
number of residues of a domain or the number of secondary structure of a given.
The rules produced in the context of the relational learning experiments, were found
to be more informative, as judged by the protein structure expert. The rules can
be explained in terms of structural and/or functional concepts, such as active site
location. Progol, when constructing a rule, looks for motifs which are common to
all the domains of a given fold but almost never encountered in others, except for
a limited number of cases which is set by a user defined threshold (noise). Features
which are important for structure and/or function tend to be conserved amongst
members of the same fold, at least up to the super-family level. Hence the rules
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constructed by Progol can sometimes identify conserved functional motifs. Of the
59 rules generated for the experiment III, at least 5 can be related to previously
published results. Unfortunately, no one seems to provide new insights. The current
limitations of this application are concerned with the representation and we are
currently investigating the possibility to introduce superposition information in the
background knowledge as mean to circumvent these problems.

Acknowledgments

This work is supported by a BBSRC/EPSRC Bioinformatics grant. This work was
supported also by the Esprit Long Term Research Action ILP II (project 20237),
EPSRC grant GR/K57985 on Experiments with Distribution-based Machine Learn-
ing and an EPSRC Advanced Research Fellowship held by the second author.

Appendix
A.1. Protein folds background knowledge

This appendix lists the predicates constituting the background knowledge.

A.1.1.  Global information (attribute-valued)

len_interval (Lo =< Dom =< Hi) when Lo and Hi variables are both instantiated,
len_interval is true if the length of the domain Dom is in the range Lo to Hi.
Otherwise, Lo is bound to the length of the smallest positive example and Hi is
bound to the length of the longest positive example.

nb_alpha interval (Lo =< Dom =< Hi) similar to len_interval but process the
number of alpha helices.

nb_beta_interval (Lo =< Dom =< Hi) similar to len_interval but process the
number of beta strands.

A.1.2. Relational information

adjacent(Dom, S1, S2, Loop, TypeS1l, TypeS2) if S1and S2 are both instanti-
ated this predicate returns true if the type of secondary structure S1 is TypeS1
and S2 is TypeS2, and the length of the loop separating S1 and S2 is Loop
plus or minus an allowed delta. Otherwise, S1 and S2 are bound to two con-
secutive secondary structure elements, Loop, TypeS1 and TypeS2 are bound
appropriately. Through backtracking all successive pairs are found.
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A.1.8. Local information

unit_len(S,Cst) is true if the length of the secondary structure S is Cst, the
values for Cst are very_lo, lo, hi and very_hi.

unit_aveh(S,Cst) similar to unit_len but process the average hydrophobicity.
unit_hmom(S,Cst) similar to unit_len but process the hydrophobic moment.

unit_pro(S) is true if S contains a proline amino acid, the presence of a proline is
known to disrupt secondary structure.

c0il(S1,S2,Len) bounds Len to the length of the loop between secondary struc-
tures S1 and S2 or is true if the length of the loop is Len plus or minus 50%.

Notes

1. Available from ftp://ftp.cs.york.ac.uk/pub/ML_GROUP /progol4.4 .
2. Available from http://www.rulequest.com/ .
3. http://www.bmm.icnet.uk/ilp/ML2000.tar.gz .
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