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Abstract

In this paper we describe the results of a set of experiments in which we
compared the learning performance of human and machine learning agents.
The problem involved the learning of a concept description for deciding on
the legality of positions within the chess endgame King and Rook against
King. Various amounts of background knowledge were made available to each
learning agent. We concluded that the ability to produce high performance in
this domain was almost entirely dependent on the ability to express first-order
predicate relationships.

1 Introduction

It is a commonly held belief that the use of a restricted hypothesis language simplifies the
task of learning. In this paper we investigate a simple problem in which this is not the
case. We describe a set of experiments in which a number of different inductive learning
agents, with various hypothesis languages, were provided with the same training and test
material. In all the experiments described the training and test instances were selected
from an instance space of size 262,144 using a standard random generator. Unlike many
other comparative studies in the machine learning literature (eg. [2, 7]) we have tested
both human and machine learning agents. The machine learning algorithms involved were
Quinlan’s C4 [6], Clark and Niblett’s CN2 [2], Bratko et al's Assistant86 [1], Muggleton’s
Duce [3] and Muggleton and Buntine’s CIGOL [4]. Although CIGOL is capable of con-
structing new predicates, this feature did not come into play in these experiment. Instead
CIGOL’s performance excelled in some experiments due to its use of a first-order hypoth-
esis language. In all of these experiments the normally interactive algorithms CIGOL and
Duce were run in automatic mode. In this mode oracle questions are automatically taken
as being answered positively.

The learning problem involved deciding on the legality of positions in the chess endgame
King-and-Rook against King. Despite the fact that predecessors of several of the machine
learning algorithms involved were successfully developed and tested using chess endgame
problems [5, 3], these same algorithms performed poorly in some of our experiments. The
previous successes reported in the literature relied on the provision of special-purpose at-
tributes which encoded relevant features of the board. Typically the use of such attributes
dramatically reduces the size of the example space. In one of the experiments described
in this paper the only attributes provided were the coordinate values of pieces. This is the
lowest level representation of positions used widely by chess players. In this experiment
only CIGOL, a first-order learning system, required a small number of training instances
to produce reasonable performance on the test set. This shows that the use of a restricted,
propositional hypothesis language can prevent concepts from being learned efficiently.

This result confounds a common belief, which could be stated as follows. If a learning
algorithm fails to produce predictive performance P within resource-bound R it would
also fail to do so with a hypothesis space increased from H to H' (H' D H), since to find
a high performance hypothesis you would have to consider at least H. To show the error
of this argument consider Figure 1. The tape diagram represents a linear ordering over



Figure 1: Hypothesis ordering, r = 8

two hypothesis spaces H and H' where H' D H. The common ordering represents a sim-
plified version of what is often called learning bias [8]. Most practical learning algorithms
use a simplicity criterion for this bias. A resource-bounded learning algorithm will only
construct the first 7 hypotheses, limited by its resource bound R. The hypotheses in the
diagram are of two different types, which might be thought of as first-order (striped) and
propositional (spotted). Whereas a first-order algorithm will construct the r hypotheses
H'(R), a propositional algorithm with the same bias would construct the r hypotheses
H(R). This contradicts the belief that the first-order algorithm would have to consider at
least the hypotheses considered by a propositional learning algorithm since H'(R) 2 H(R).
In the case exemplified by Experiment la (section 3.1.1), whereas there is a simple first-
order description of part of the concept discoverable within the computational resource
bounds, there is no corresponding simple propositional description.

2 Definitions

Terms used in this paper are defined as follows.

Formalism: The syntax of the hypothesis language. Hypothesis vocabulary: Pred-
icate symbols used in constructing hypotheses. Hypothesis language: The formalism
plus the hypothesis vocabulary. Background knowledge: Axiomatisation of the indi-
vidual symbols in the hypothesis vocabulary. Instance vocabulary or piece-on-place
attributes: Position of a chess piece described in terms of its file (a-h) or rank (1-8).
Instance language: An instance is a class value paired with a vector of symbols from
the instance vocabulary. Example language: An example is a class value paired with a
vector of symbols from the instance and/or hypothesis vocabulary. Hypothesis space:
Set of all possible hypotheses within the hypothesis language. Instance space: Set of all
possible instances in the instance language. Example space: Set of all possible examples
in the example language.

3 Experiments

Four experiments were carried out.
1. Learning from piece-on-place attributes.

(a) Small number of training instances (100). Involved CIGOL, Duce, C4, CN2,
Assistant, humans.

(b) Large number of training instances (1000). Involved Duce, C4, CN2, Assistant.
2. Learning with extended hypothesis vocabulary

(a) Small number of training examples (100). Involved CIGOL, Duce, C4, Assis-
tant, humans.



Figure 2: Three representations of the illegal position White: Kg6 Rc7; Black: Kc8;
White to move.

CIGOL(1a)’s representation is close to standard chess notation. In the representation
of Human(la) positions were coded using two separate substitutions for the “a,b,...h”
and “1,2,..,8” alphabets. The substitutions were respectively: “b,ehkn q,t,w” and
“c,filo,r,ux”. This encoding obscures while not removing the ordering of the alpha-
bets. In the Human(2a) grid the symbols for White King, White Rook and Black King
are O, X and @ respectively.

(b) Large number of training examples (1000). Involved Duce, C4, Assistant.

Owing to the diversity of the learning agents involved it was not possible to make the
learning conditions identical for each agent. For instance, although it is possible to define
and control the background knowledge available to machine learning algorithms, this can
only be approximated in humans. Our subjects knew nothing of chess, but inbuilt spatial
intuition is bound to have helped their ability to extract relations such as “collinear” from
the example data.

3.1 Method

3.1.1 Experiment 1la - Without extended hypothesis vocabulary, small
training set

Each machine learning algorithm was trained on five randomly generated sets of 100 in-
stances. Each instance consisted of an illegal/legal class value paired with 6 attribute
values. Each attribute value represented respectively the rank and file of each piece. An
instance taken from one of the CIGOL training sets is shown in Figure 2.

The five rule sets induced by each machine learning algorithm except CN2 were tested
on each of five randomly generated sets of 1000 instances, making 25 tests in total. Each
of the five rule sets learned by CN2 was tested on only one set of 1000 examples.

The human subjects consisted of 13 schoolchildren, aged 15-17, 7 boys and 6 girls.
These subjects were provided with symbolic descriptions of instances similar to those pro-
vided for other learning systems, one of which is shown in Figure 2, Human(1a). However,
to avoid errors due to fatigue human subjects were tested on only the first hundred of one
of the test sets.

3.1.2 Experiment 1b - Without extended hypothesis vocabulary, large
training set

Each machine learning algorithm was trained on five randomly generated sets of 1000 in-
stances. The test regime for all algorithms except CN2 was the same as that of Experiment
la. Each of the five rule sets learned by CN2 was tested on one set of 100 instances.



|| Agents | Expt. la | Expt. 1b | Expt. 2a | Expt. 2b ||
Humans | 51.2%, 1hr N/A 79.3%, 1hr N/A
CIGOL 84.2%, 1.5hr N/A 77.2%, 21.5hr N/A
C4 67.0%, 2.5hr 83.4%, 12.2hr | 61.9%* 1.6hr 99.0%* 10hr
CN2 69.5%" 0.4hr | 87.6%% 4hr N/A N/A
Assistant | 55.7%, 0.25hr | 56.2%*, 0.5hr | 71.0%", 0.25hr | 91.0%", 0.5hr
Duce 42.4%, 8hr 47.8%*, 10hr | 33.7%*, 2hr 37.7%*, 10hr

Figure 3: Averaged final performance for each agent in each experiment together with
approximate mean elapsed time for training and testing.

A “* appears beside those values for which testing is not complete. A ‘N/A’ appears
in those in which we are not attempting to carry out testing. A ‘+’ indicates a variant
training and testing regime, explained below.

3.1.3 Experiment 2a - With extended hypothesis vocabulary, small train-
ing set

Each machine learning algorithm was trained on the same randomly generated sets of 100
instances used for training in Experiment la, but in some cases extra background knowl-
edge was supplied and in others the examples were presented in an extended hypothesis
vocabulary. This was done as follows.

1. CIGOL and Duce - background knowledge predicate definitions for equality, adja-
cency and less than for files and ranks.

2. C4 and Assistant - hypothesis vocabulary extension consisting of all pairwise arith-
metic differences between the integer file and rank values of all pieces.

These algorithms were tested on examples based on the same test instances as those used
in Experiment la, using the same testing regime.

For the human subjects each example was presented as a diagram of an 8 x 8 array
with circles and crosses in place of the pieces (see Figure 2). Each diagram was marked
“yes” (illegal) or “no” (legal). All positions were the same as those appearing in one of
the training and test sets of Experiment la. At no time was it suggested that the concept
being learned concerned chess.

3.1.4 Experiment 2b - With extended hypothesis vocabulary, large train-
ing set

Each learning agent was supplied with the background knowledge used in Experiment 2a.
The sets of training and test instances were the same as those used in Experiment 1b.

3.2 Results

In order to record the incremental performance change, shown, we tested the performance
against the entire test set in increments of 10 training instances. The Experiment la
incremental performance figures for the all the machine learning algorithms except CN2,
averaged over the 25 test runs, are graphed in Figure 4. A summary of the averaged
final performance figures for each agent in each experiment together with the approximate
mean elapsed time for training and testing is provided in Figure 3.1.1. A breakdown of
the performance of individual human subjects together with the significance levels of their
performances is provided in Figure 3.2.

4 Discussion

4.1 Experiment 1
4.1.1 CIGOL

The incremental performance graph shown in Figure 4 are in many ways more informa-
tive than the final values shown in Figure 3.1.1. In experiment la all machine learning



Figure 4: Incremental performance for Experiment la

I | Humans(la) | Humans(2a) |
Subject performance T 71T B4, | 98%, 9677, 927,
47,44,20"" 88™"*, 64", 64",
53
Group mean performance | 51.2 79.3

Figure 5: Breakdown of human results.
Subject performances were tested for significance using 2 x 2 x? test with Yates’ correction.
A “*** indicates a significance value of p < 0.001. A “*’ indicates a significance value of
0.05 < p < 0.01. Unmarked subject performance values are not significant at the 0.05
level.

techniques start from a value of 67%. Since 67% of the instances in the instance space
are legal, this is the “null” performance which would be expected from any system which
assumes the default “everything is legal”. Within the space of around 50 training exam-
ples CIGOL’s performance rises to an average value of around 85% (91.4% maximum). In
doing so CIGOL’s hypothesis in Prolog is as follows.

illegal(A,B,C,D,A,B). % The position is illegal iff the White King and the Black King are on the same square or
illegal(A,B,C,D,C,E). % the White Rook and the Black King are on the same file or
illegal(A,B,C,D,E,D). % the White Rook and the Black King are on the same rank

Within this domain it is possible to analyse how many examples would be necessary for
CIGOL to learn any particular unit clause. CIGOL needs at least two examples to be able
to form an hypothesis such as “illegal(A,B,C,D,C,E)” by using its truncation rule. This
would require two instances in which the White Rook and the Black King were on the
same file. Imagining that we placed the White Rook on an arbitrary position on a chess
board and then placed the Black King on another randomly chosen position the probability
that they would lie on the same file is clearly %. However, CIGOL will often need more
than two examples to make the generalisation “illegal(A,B,C,D,C,E)” since there is a g
chance that any two arbitrarily chosen instances of this rule will have a corresponding
rank or file value. This would lead to an hypothesis such as “illegal(A,3,C,D,C,E)”, i.e. an
under-generalisation. On the basis of this argument we would expect to require between
2 x 8 =16 and 3 x 8 = 24 positive examples to develop the rule “illegal(A,B,C,D,C,E)”.
Since only one in three instances are “illegal” we would expect to require between 48 and
72 randomly chosen examples to develop the two collinearity rules “illegal(A,B,C,D,C,E)”
and “illegal(A,B,C,D,E,D)”. In practice this takes between 40 and 80 examples, much as
predicted. The fact that such analysis is possible points to an advantage of carrying out
this kind of experimentation within a closed and analytically tractable domain.

It is also easy to see that CIGOL’s performance will not ever rise to 100%. The reason
is that the collinearity rules, although allowing rapid promotion to high performance, are
overgeneralisations. Exceptions exist to these rules when the White King is interposed
between the White Rook and Black King. Since CIGOL learns monotonically, it is not



possible to correct such overgeneralisations. Specialisation techniques to overcome this
problem are presently under investigation.

4.1.2 CN2 and C4

CN2 and C4 produced very similar performance, with performance almost indistinguish-
able from the performance of the null rule “every position is legal” in Experiment la.
Both performances rise gradually when presented with ten times as much training data to
a more reasonable 88% and 83% respectively.

4.1.3 Assistant and Duce

The performance of both Assistant and Duce rapidly diminishes from an initial 67%. In
Assistant’s case performance levels out at 56%, whereas Duce levels out at 48% (Expt 1b).

These poor performances by C4, Assistant and Duce can be partly explained by the fact
that a complete description of collinearity within a decision tree propositional formalism is
very large and thus needs a large number of examples to justify such an hypothesis. With
some work it might be possible to predict just how many examples would be required in
the same way as we have done for CIGOL.

4.1.4 Humans

At first sight the human mean performance value given in Figure 3.1.1 looks close to that
produced by random guessing. However this is clearly not the case when we look in depth
at the individual scores in Figure 3.2. As evidenced by the starred significance indications,
individual scores are strongly polarised into those that found an effective prediction method
and those which merely guessed. In all cases but one insigificant performances agree with
the children’s reporting that they merely guessed on the answer sheet. The exception to
this is the unexplained 20% score which produces a highly significant score with “YES”
and “NO” reversed.

4.2 Experiment 2
4.2.1 CIGOL and Duce

Information on the time taken for each learning agent to reach the performance levels
shown in Figure 3.1.1 helps to understand these results. CIGOL typically takes longer
to learn by an order of magnitude when supplied with background knowledge than in
Experiment la. Usually none of the background predicates appear in the final hypothesis
so they do not add to predictive power. However the number of predicates in the knowledge
base is doubled when the background knowledge is included. This enlarged search space
means that CIGOL is unable to find the best hypotheses within available resources.

Duce and CIGOL are machine learning algorithms which construct their own back-
ground predicates when doing so simplifies the problem. It was this capability that sug-
gested that they might be appropriate candidates for this learning task. However, we
now realise that the achievement of high performance within this domain is not dependent
on the availability or constructibility of background predicates, but rather a problem of
having a sufficiently expressive formalism. This seems to contradict the results of strong
performance of C4 and Assistant given appropriate background knowledge. However, a
glance at the form of necessary background knowledge for C4 and Assistant’s strong per-
formance (Section 3.1.3) shows that it is essentially relational, i.e. could only be expressed
in a First-order language. The usually vague notion of “background knowledge” in this
case conceals a change of formalism.

4.2.2 Humans

The question of formalism also appears in the human results. When asked to describe the
rules that they were applying all successful candidates gave rules similar to the following.



Concept is true
If black nought is in the same line as the cross
If white nought is right next to the black nought
If white and black noughts are in the same boz
If black nought is in the same boz as the cross

It is clear from this description that relational attributes are used throughout. This sup-
ports our main conclusion that the ability to produce high performance in this domain is
almost entirely dependent on the ability to express first-order predicate relationships.
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