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Abstract. In this paper we survey work being conducted at Imperial College
on the use of machine learning to build Systems Biology models of the effects
of toxins on biochemical pathways. Several distinct, and complementary mod-
elling techniques are being explored. Firstly, work is being conducted on apply-
ing Support-Vector ILP (SVILP) as an accurate means of screening high-toxicity
molecules. Secondly, Bayes’ networks have been machine-learned to provide
causal maps of the effects of toxins on the network of metabolic reactions within
cells. The data were derived from a study on the effects of hydrazine toxicity in
rats. Although the resultant network can be partly explained in terms of existing
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway descriptions, sev-
eral of the strong dependencies in the Bayes’ network involve metabolite pairs
with high separation in KEGG. Thirdly, in a complementary study KEGG path-
ways are being used as background knowledge for explaining the same data us-
ing a model constructed using Abductive ILP, a logic-based machine learning
technique. With a binary prediction model (up/down regulation) cross validation
results show that even with a restricted number of observed metabolites high
predictive accuracy (80-90%) is achieved on unseen metabolite concentrations.
Further increases in accuracy are achieved by allowing discovery of general rules
from additional literature data on hydrazine inhibition. Ongoing work is aimed
at formulating probabilistic logic models which combine the learned Bayes’ net-
work and ILP models.

1 Introduction

In the past experimental analysis of any single biological component, such as a gene
or its protein product, was extremely time consuming. Consequently a single biology
laboratory could study only a handful of such components at any one time. The recent
revolution in high-throughput technologies offers an exciting opportunity to study such
complex biological systems as an integrated whole. This new integrated approach to
modelling of biological entities is known as Systems Biology. Systems Biologists use
graph-based descriptions of bio-molecular interactions which describe cellular activi-
ties such as gene regulation, metabolism and transcription. Biologists build and main-
tain these network models based on the results of experiments in wild and mutated
organisms. This paper will provide an overview of recent research in this area involving
a consortium of computer scientists and biologists at Imperial College London. Some
of the intrinsic interest in the area from a logic-based machine learning perspective
include:



1. the availability of large-scale background knowledge on existing known biochemi-
cal networks from publicly available resources such as KEGG [2] (used in data sets
such as those in [1, 11, 5]);

2. an abundance of training and test data from a variety of sources including micro-
array experiments (see for instance [3]) and metabolomic data [10] from NMR and
mass spectroscopy experiments;

3. the inherent importance of the problem (see [6, 7]) owing to its application in biol-
ogy and medicine;

4. the inherent relational structure in the form of spatial and temporal interactions of
the molecules involved;

From a logical perspective the objects within this area include genes, proteins, metabo-
lites, inhibitors and cofactors. The relations include biochemical reactions in which one
set of metabolites is transformed to another in a biochemical reaction catalysed by an
enzyme. One of the representational challenges is that within various databases the
same object can be referred to in several ways.

A large part of the incentive for using machine learning techniques in this area
comes from the incompleteness of detailed knowledge concerning the effects of in-
hibitors on known biochemical reactions. The requirement to infer such objects and
relations indirectly from observational data necessitates the use of a mixture of abduc-
tion and induction within the ILP approaches to modelling in this problem.

Such models have wide potential application. For instance, in the new area of per-
sonalised medicines techniques which allow the construction of models of the toxic
reactions of individuals to drug treatment would be of great benefit. Non-invasive test-
ing, such as the NMR analysis of urine used in these studies, would be an appropriate
basis for such modelling.

The paper is arranged as follows. Section 2 describes a novel approach to combining
Support Vector Machines and ILP for directly predicting the effects of toxins on the
basis of molecular features of the inhibitors. Section 3 describes the use of Bayes’
network technology to estimate the structure and parameters of the causal network of
interactions between metabolites whose up and down regulation patterns are observable
within the NMR data. An ILP model built on the same data is described in Section 4.
The model provides more detailed and testable predictions of the inhibited enzymes.
Finally we conclude the paper in Section 5.

2 SVILP prediction of toxins

In [9] an accurate means of screening high-toxicity molecules is described. This ap-
proach uses a general method for constructing kernels for Support Vector Inductive
Logic Programming (SVILP). The kernel not only captures the semantic and syntactic
relational information contained in the data but also provides the flexibility of using
arbitrary forms of structured and non-structured data coded in a relational way. While
specialised kernels have been developed for strings, trees and graphs the approach uses
declarative background knowledge to provide the learning bias. The use of explicitly
encoded background knowledge distinguishes SVILP from existing relational kernels
which in ILP-terms work purely at the atomic generalisation level.



MSE R-squared
CHEM 1.04 0.48

PLS 1.03 0.47
TOPKAT 2.2 0.26

SVILP 0.8 0.57

Fig. 1. MSE and R-squared for CHEM, PLS, TOPKAT and SVILP.

The SVILP approach is a form of generalisation relative to background knowledge,
though the final combining function for the ILP-learned clauses is an SVM rather than
a logical conjunction. SVILP was evaluated empirically against related approaches, in-
cluding an industry-standard toxin predictor called TOPKAT. Evaluation was conducted
on a broad-ranging toxicity dataset DSSTox [12]. Figure 1 shows the cross-validated er-
ror of SVILP compared to a number of alternative predictors on the DSSTox dataset.
The results demonstrate that the approach significantly outperforms other state-of-the-
art approaches on the wide-ranging set of toxins represented.

Such toxin-substructure based techniques, much like the ILP approach to predicting
mutagenesis in [4, 13], are appropriate for large-scale screening of potential toxic side-
effects of drugs. By contrast, techniques for detailed analysis of the causes of toxic
reaction are addressed in the next two sections.

3 Bayes’ network model for metabolic pathways

Metabolism comprises the network of chemical reactions involved in the biological
processes of cells. These reactions are typically catalysed by enzymes and are highly
interconnected.

In [15] a modular approach for representing metabolic pathways using Bayes’ net-
works is described. The authors examined different models for a single reaction metabolism
and introduced a Bayes’ network model for this purpose. The performance of the model
was compared to a Stochastic Logic Program representation for learning the aromatic
amino acid pathway of yeast.

In subsequent work the authors have used this approach to model the effects of the
toxin hydrazine administered to rats. The data were derived from Nuclear Magnetic
Resonance (NMR) studies conducted by the Consortium for Metabonomic Toxicology
(COMET) [10]. The derived Bayes’ network is shown in Figure 2. Although the resul-
tant network can be partly explained in terms of existing KEGG pathway descriptions,
several of the strong dependencies in the Bayes’ network involve metabolite pairs which
are distant in the KEGG network.

4 Abductive ILP models of toxicity

In [14] the hydrazine NMR toxicity data studied previously using Bayes’ nets was re-
analysed within an ILP framework using Progol5.0 [8]. Figure 3 shows the approach



Fig. 2. Metabolic network showing the effects of hydrazine on rat metabolism. The thickness of
arcs indicates the strength of dependencies between observable metabolites.

adopted. KEGG pathway descriptions were used as background knowledge. Only a lim-
ited subset (less than 10%) of the up/down regulation levels of metabolites in the KEGG
model were directly observable within the NMR data. Progol5.0 was given this data as
examples together with background knowledge consisting of the KEGG model and
some general background rules concerning the transitive behaviour of the inhibitory ef-
fects of the toxin on various enzymes. From this it generated a set of ground hypotheses
to explain the data in terms of inhibition of various enzymes. These ground hypothe-
ses were then further generalised inductively together with known facts concerning the
inhibition of various enzymes by hydrazine.

The resulting set of predicted inhibitions are shown in Figure 4. Owing to the spare-
seness of the known and documented inhibitory effects of hydrazine, all but one of the
predicted inhibitory effects is novel. With the help of biological experts the model has
been compared in detail with the Bayes’ net model shown in Figure 2. In general the
ILP model gives more detailed suggestions for the location of the inhibitory effects
of the toxin. This level of detail allows for the possibility of laboratory testing of the
inhibitory effects suggested by the ILP model.

The model was tested by randomly leaving out subsets of the examples and testing
the predictions on the remaining observations. The resulting learning curves for ab-
duction on its own versus the combination of abduction and subsequent induction are
shown in Figure 5.
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Fig. 3. Abductive ILP modelling of hydrazine toxicity

5 Conclusions and further work

In this paper we have described three distinct machine learning approaches to modelling
the toxic effects of molecules. These three approaches should not be considered as being
in competition, but rather as complementary approaches to the problem which can be
used in a series of analytical phases. During drug development it is usual to consider a
large set of potential candidates in the early stages of development. The SVILP toxicity
predictor described in Section 2 has been proved to be at least as good as alternative
state-of-the-art toxicity predictors in such a setting.

Having selected a particular candidate for further investigation it would be advan-
tageous to apply more detailed analysis to the compound in question to understand its
toxic effects better. NMR analyses of urine could then be conducted. Such an analysis
incurs experimental costs, but could potentially be applied non-invasively in both an-
imal and human testing. The results could then be modelled in a broad-brush fashion
using the Bayes’ network technology described in Section 3. An advantage of this ap-
proach is that no additional background knowledge of metabolism need be considered.

A more detailed analysis of inhibitory effects of the compound could be produced
using the ILP modelling approach. It makes sense to apply ILP modelling last, since
both the development of appropriate background knowledge and the computational
costs of running ILP models incur more costs than the other two modelling approaches.

Many open questions are still to be addressed in this work. In particular, the treat-
ment of time in both the Bayes’ network and ILP models is presently inadequate. The
NMR data are available as a time series measured at intervals of several hours over a
72 hour period. Within the Bayes net setting it may seem attractive to build dynamic
Bayes’ nets to deal with this temporal data. However, such models do not adequately
account for the underlying causality of the domain. Metabolic reactions and fluxes take



Fig. 4. Predicted inhibitions within the network. Modes represent metabolites with up and down
regulation indicated by arrows when observable. Solid arcs represent single reactions, labelled
by the catalysing enzyme’s classification number. Dotted lines indicate a reaction sequence, with
the list of associated enzymes. Red/green arrows indicate an inhibited/uninhibited (respectively)
reaction (or reaction sequence). The arrow head shows the direction of inhibition.
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Fig. 5. Learning curves for abduction on its own versus abduction and subsequent induction. The
X-axis indicates the number of examples in the training test after removal of a randomly chosen
test set of varying sizes. The Y-axis gives predictive accuracy on the test set for results averaged
over multiple trials.

place within a period of under 1 millisecond, while the intervals between readings are
at least 8 hours. Persistence of inhibitory effects are due to the toxin remaining in the
blood stream over an extended period of time. While it is possible to model such per-
sistence axiomatically within a logical model, it is unclear how this could be achieved
in the case of the Bayes’ model.

Work is presently progressing on including aspects of both the Bayes’ and ILP
models within a Probabilistic Logic Programming model. Such integration holds the
promise of allowing uncertainty to be expressed explicitly within ILP-generated mod-
els.

Finally, modelling within Systems Biology is a key application area for Machine
Learning in general. The studies described in this paper indicate that ILP has the po-
tential to be a key technology in an area which is now drawing major scientific interest
internationally.
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