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Abstract. Inductive Logic Programming (ILP) systems have been suc-
cessfully applied to solve binary classification problems. It remains an
open question how an accurate solution to a multi-class problem can be
obtained by using a logic based learning method. In this paper we present
a novel logic based approach to solve challenging multi-class classification
problems. Our technique is based on the use of large margin methods in
conjunction with the kernels constructed from first order rules induced
by an ILP system. The proposed approach learns a multi-class classi-
fier by using a divide and conquer reduction strategy that splits multi-
classes into binary groups and solves each individual problem recursively
hence generating an underlying decision list structure. We also study
the well known one-vs-all scheme in conjunction with logic-based kernel
learning. In order to construct a highly informative logical and relational
space we introduce a low dimensional embedding method. The technique
is amenable to skewed/non-skewed class distribution where multi-class
problems such as protein fold recognition are generally characterized by
highly uneven class distribution. We performed a series of experiments
to evaluate the proposed rule selection and multi-class schemes. The
methods were applied to solve challenging problems in computation biol-
ogy and bioinformatics, namely multi-class protein fold recognition and
mutagenicity detection. Experimental comparisons of the performance
of large margin first order decision list based multi-class scheme with
the standard multi-class ILP algorithm and multi-class Support Vector
Machine yielded statistically significant results. The results also demon-
strated a favorable comparison between the performances of decision list
based scheme and one-vs-all strategy.

1 Introduction

The underlying aim of a multi-class approach is to learn a highly accurate func-
tion that categorizes examples into predefined classes. Effective multi-class tech-
niques are crucial to solving the problems ranging from multiple object recogni-
tion to multi-class protein fold recognition.

The two areas of machine learning, namely Inductive Logic Programming
(ILP) and Kernel based methods (KMs) are well known for their distinguishing



features: ILP techniques are characterized by their use of background knowledge
and expressive language formalism whereas strong mathematical foundations
and high generalization ability are remarkable characteristics of KMs. Recently
some logic based techniques (such as Support Vector Inductive Logic Program-
ming (SVILP) [1], kFOIL [2] and RUMBLE [3]) have been designed which use
kernels to solving binary classification problems and performing real-valued pre-
dictions. In this paper we study multi-class classification in the combined ILP
and kernel learning scenario by extending SVILP. We also propose an effective
method to constructing highly informative relational and logical low dimensional
feature space. The method is designed in a way so as a classifier trained in the
feature space is amenable to highly imbalance category distribution. A skewed
class distribution is a common phenomenon in multi-class classification tasks.

SVILP solves binary classification problems in a multi-stage learning process.
In the first stage, a set of all the first order horn clauses (rules), constructed
during the search of the hypothesis space, is obtained from an ILP system. In
the next stages similarity between the examples is computed by the use of novel
kernel function that captures semantic and structural commonalities between
examples. The computed relational and logic based kernel is used in conjunction
with a large margin learning algorithm to induce a binary classifier. In this
way, SVILP performs classification task by training a large margin first order
classifier.

SVILP [1] uses all the clauses with positive compression: an information the-
oretic measure. The number of positively compressed rules can vary from zero to
thousands for the particular task. Furthermore rules with negative compression
can contain crucial information to solving the problem at hand. This scenario
can cause a decrease in generalization performance of the learning machine. In
order to handle such issues we extend SVILP by introducing a novel rule selec-
tion method where the selected rules can have very high information content,
generalization ability and can handle class imbalance problem.

In order to solve multi-class problems we propose a simple but accurate
approach. The method is designed by reducing the multi-class classification task
to binary problems. However our approach is distinguished from the existing
reduction techniques as it learns the hidden structure and characteristics of the
data and hence improves the performance of the classifier. The proposed method
is based on divide-and-conquer strategy and it discriminates different classes by
using an underlying structure based on decision lists. The multi-class problem is
reduced by recursively breaking it down into binary problems where each binary
task is solved by invoking an SVILP machine. At each node of the decision list
the algorithm induces a classifier and updates the training set by removing the
examples of the class chosen at the previous node. A label is assigned to a new
example by traversing the list. We also study the well known one-vs-all scheme
in conjunction with SVILP.

During recent years, a number of multi-class classification method have been
proposed [4–8]. The focus of the methods has been on the construction of differ-
ent effective multi-class schemes whereas less attention has been paid to manip-



ulating the hidden structures and characteristics of the data by using expressive
representations. In ILP, which is well known for its use of expressive language
formalism, the standard method to solve multi-class problems is based upon in-
ducing a set of disjunctive rules for each class and a new example is predicted
if it satisfies the conditions of the rules. In the case that multiple classes are
assigned to an example, that is common in ILP, the method is biased towards
majority class. Within ILP algorithms, the use of decision lists [9] was explored
by Mooney and Califf [10] for binary concept learning. The method extended
FOIL [11] by incorporating intensional background knowledge and it is charac-
terized by it’s ability to induce logic programs without explicitly taking negative
examples as input. The logic program generated by the technique comprised or-
dered list of clauses (rules). The method was successfully applied to the complex
problem of learning past tense of English verbs.

In order to evaluate the performance of proposed methods, we conducted a
series of experiments. We applied the techniques to solving multi-class protein
fold recognition problem and binary class mutagenicity detection and identifica-
tion task. The results show that the techniques yield substantial and significant
improvements in performance.

2 Multi-class Inductive Logic Programming (MC ILP)

ILP systems have been successfully applied to binary classification tasks in com-
putational biology, bioinformatics, and chemoinformatics. There are few ILP sys-
tems that can perform multi-class classification tasks [12]. The standard multi-
class logic based method, described below, is biased towards the majority class.
The method is based on learning theories Hj(first order horn clauses) for each
class j. The obtained theories for r classes are merged into a multi-theory H. For
each class the number of correctly classified training examples are recorded. A
class is assigned to a new example if the example satisfies the conditions of the
rules. In the case that an example is predicted to have multiple classes, then the
class with the maximum number of predicted training examples is assigned to
the example. If an example fails to satisfy the conditions of all rules in H, a de-
fault class (majority class) is assigned to it. The method is termed as multi-class
ILP (MC ILP).

3 Support Vector Inductive Logic Programming

Support Vector Inductive Logic Programming [1] is a new machine learning tech-
nique that is at the intersection of Inductive Logic Programming and Support
Vector Machines [13]. SVILP extends ILP with SVMs where the similarity be-
tween the examples is measured by computing an inner product on the subset
of rules induced by an ILP system. It can be viewed as a multi-stage learn-
ing algorithm. The four stages that comprise SVILP learning are described as
follows.



In the first stage a set of rules H is obtained from an ILP system that takes
relationally encoded examples (positive, negative) and background knowledge
as input. The set, H, comprises all the rules constructed during the search of
the hypothesis space. This stage maps the examples into a logic based relational
space. A first order rule, h ∈ H, can be viewed as a boolean function of the form,
h : D → {0, 1}.

In the next stage a subset H ∈ H is selected by using an information theoretic
measure, namely compression, described below. The stage maps the examples
into another lower dimensional space containing the information relevant to the
task at hand. The compression value of a rule is computed by the expression,
C = PT∗(ps−(ng+cl))

ps , where ps is the number of positive examples correctly
deducible from the rule, ng is the number of negative examples that satisfy the
conditions of the rules, cl is the length of the rule and PT is the total number
of positive examples.

In the third stage a kernel function is defined on the selected set of rules
where rules can be weighted/unweighted. The kernel is based on the idea of
comparing two examples by means of structural and relational features they
contain; the more features in common the more similar they are. The function
is given by the inner product between the mapped examples where the mapping
φ is implied by the set of rules H. The mapping φ for an example d is given by,
3 φ : d →

(√
π(h1(d)),

√
π(h2(d)), . . . ,

√
π(ht(d))

)′
, where h1, . . . , ht are rules

and π is the weight assigned to each rule hi. The kernel for examples di and dj

is given by, k(di, dj) = 〈φ(di), φ(dj)〉 =
∑t

l=1

√
π(hl(di))

√
π(hl(dj)). The kernel

specified by an inner product between two mapped examples is a sum over all
the common hypothesized rules. Given that φ maps the data into feature space
spanned by ILP rules, we can construct Gaussian RBF kernels, kRBF (di, dj) =

exp
(
−‖(φ(di)−φ(dj)‖2

2σ 2

)
, where ‖(φ(di)− φ(dj)‖ =

√
k(di, di)− 2k(di, dj) + k(dj , dj).

In the final stage learning is performed by using an SVM in conjunction with
the kernel. SVILP is flexible to construct any kernel in the space spanned by
the rules. However, in the present work we used RBF kernels, kRBF , and linear
kernels, k, in conjunction with an SVILP machine.

We now consider an example that shows how SVILP kernel measures simi-
larity between two protein domains, ’d2hbg ’ and ’d1alla ’ which belong to α
structural class and ’Globin-like’ fold (SCOP classification scheme). Figures 1,
3, 2 and 4 show the two domains and their relationally encoded features. Here
predicates ’len’, ’nb alpha’, and ’nb beta’ denote the length of the polypep-
tide chain, number of α-helices and β strands respectively. The other predi-
cates represent the relationship between the secondary structure elements and
their properties (hydrophobicity, the hydrophobic moment, the length of proline
and etc.). Figure 5 shows a set of induced rules together with their English
conversion. A rule classifies an example positive (1) if it fulfils the conditions
of the rule while an example that fails to satisfy the conditions is classified
negative (0). The set of equally weighted rules maps the two examples as fol-

3 ′ specifies column vector



Fig. 1. Protein domain ’d1all ’ Fig. 2. Protein domain ’d2hbg’

dom t(d1alla ).
len(d1alla , 161). nb alpha(d1alla ,7).
nb beta(d1alla ,0). has pro(d1alla h1).
sec struc(d1alla , d1alla h3).
unit t(d1alla h3).
sst(d1alla h3,4,4,a,104,9,h,0.443,3.003,
116.199, [v,t,p,i,e,e,i,g,v]).
unit hmom(d1alla h2, hi).· · ·

Fig. 3. Relationally encoded features of
protein domain. ’d1alla ’.

dom t(d2hbg ).
len(d2hbg , 147). nb alpha(d2hbg ,6).
nb beta(d2hbg ,0).
has pro(d2hbg h5).
sec struc(d2hbg , d2hbg h2).
unit t(d2hbg h2).
sst(d2hbg h2,3,3,blank,40,7,h,0.540,
1.812, 213.564, [q,m,a,a,v,f,g]). · · ·

Fig. 4. Relational encoded features of pro-
tein domain ’d2hbg ’.

lows: φ(d1alla ) = φ(d1) =
(
1 × 1 1 × 1 1 × 1

)′
and φ(d2hbg ) = φ(d2) =

(
1 × 1 0 × 1 1 × 1

)′
. Given that the rules are equally weighted, each entry

of the vector is multiplied by 1. The kernel values between the examples are as
follows: k(d1, d2) = k(d2, d1) = 2, k(d1, d1) = 3 and k(d2, d2) = 2. In the pro-
ceeding sections we present rule selection and multi-class classification schemes
for SVILP.

4 Extending Support Vector Inductive Logic
Programming

4.1 Low Dimensional Embedding

As described earlier, an SVILP machine obtains a set H of all the rules, con-
structed during the search of the hypothesis space, from an ILP algorithm. The
number of rules can be very large and the compression value of a rule can be pos-
itive or negative. The wide ranging set H includes rules that are highly relevant
to build a classifier with high generalization ability and rules that are highly ir-
relevant (noise) and can decrease the generalization performance of the classifier.
The irrelevant rules establishe a need to present an effective method to selecting
relevant rules and hence embedding the data into an informative lower dimen-
sional logical space. In [1] data was embedded into a lower dimensional space H,
where H ¿ H, by selecting all the rules with positive compression values. How-
ever negatively compressed rules can contain highly relevant information such



fold(Globinlike,A) ←
adjacent(A,B,C,1,h,h), adjacent(A,C,D,2,h,h), coil(B,C,4).
/*A domain is classified 1 (belongs to Fold ’Globinlike’) if heli-
ces B(at position 1) and C are adjacent, C (at position 2) and
D are adjacent and length of loop connecting B and C is 4.*/

fold(Globinlike,A) ←
adjacent(A,B,C,1,h,h), has pro(C).
/*A domain is classified 1 if helices B(at position 1) and C are
adjacent and C has proline.*/

fold(’Globinlike’,A) ←
adjacent(A,B,C,1,h,h), coil(B,C,4), nb α interval(4=<(A=<8)).
/*A domain is classified 1 if helices B (at position 1) and C are
adjacent, number of α helices are in range [4,8] and length of
loop connecting B and C is 4*/.

Fig. 5. Rules followed by English conversion for Protein domains in Globin-like fold.

as structural and relational features that can be crucial to solving the complex
problem at hand. In this section we present a novel method to embed data into
a lower dimensional space with extra information.

The proposed method is based on the construction of feature space by ex-
ploiting the information content and discriminatory power of the rules. The
constructed space is characterized by its amenability to multi-class (/ binary)
classification. We now derive an expression to measure the influence of the rules.
We use P to denote the number of positive example, and N represent number
of negative examples. Similarly, the number of positive examples that fail to
satisfy the conditions of a rule are represented by P−, where N+ shows the
number of negative examples that incorrectly fulfils the conditions of the rule.
The expression is given by

HD = WP ∗ P− + WN ∗N+ (1)

where WP and WN are the weights assigned to P−, and N+ respectively.
The smaller value of HD illustrates the goodness of fit for a rule. The expres-

sion can be viewed as weighted sum of hamming distances between two boolean
vectors. Let ĉP and ĉN denote vectors of positive (1) and negative (0) exam-
ples respectively. We use f̂P to represent vector of the predictions on positive
examples by a rule. Similarly, ˆfN denotes vector of the predictions on nega-
tive examples by the rule. The distance between ĉP and f̂P can be computed
by counting the number of entries which differ in both the vectors. Formally,
HDP (ĉP, f̂P) =

∑P
i=1 |cPi − fPi |.

(
For labels {+1,−1} the distance can be

computed by
∑P

i=1
|cPi

−fPi
|

2

)
. Similarly, HDN (ĉN, ˆfN) =

∑N
i=1 |cNi − fNi |. The

weighted sum of the distances is given by HD = WP ∗ HDP (ĉP, f̂P) + WN ∗
HDN (ĉN, ˆfN). That is like computing the expression HD given in 1.

We now describe how we utilize the expression 1 to obtain a lower dimensional
logical and relational feature space with extra information. A set of rules, H, is
obtained by an ILP system. In order to measure the score (influence) of rules a



validation set is used. For each rule the values of P− and N+ are counted and
the goodness of fit is measured by expression, HD = WP ∗ P− + WN ∗ N+.
The calculated scores are recorded in a list. Once a list is created, the next step
involves sorting it in ascending order. The first t rules with lowest HD values
are selected.

The idea behind the use of weights in the expression 1 is to give equal im-
portance to all the classes in a dataset that is characterized by uneven class
distribution. We now describe a heuristic method to assign weights. We assume
a scenario where a set of examples belong to two classes (positive, negative) and
the examples belonging to the negative class make the majority class. In this
scenario WP is set to N

P and WN is set to 1. We used this approach to compute
WP and WN for the experiments reported in section 5

4.2 Multi-class Classification

DNA 3 −helical(+), EF 
hand−like(−), Globin−

{

}like(−), Interleukin 8(−)

{ hand−like(−), 
Globin−like(−), 
Interleukin 8(−) }

Interleukin 8(−)
Globin−{ like(−), 

}

DNA 3

Globin−

Interleukin 8(−)

hand−like 

−helical 

 EF  EF 

like
Fig. 6. A decision list, learned
by the large margin first or-
der rule learner, for multi-class
classification.

We now propose a novel logic based method to solving multi-class classifica-
tion problems. We apply inductive learning in which an algorithm is provided
with a set of examples, D, of the form D = {(d1, c1), (d2, c2), . . . , (dn, cn)} where
di are training examples and ci ∈ {1, 2, . . . , r} are classes (labels). The goal of
the classification algorithm is to generate a function f : d → {1, 2, . . . , r} that
assigns a new example d to the class with low error probability.

In order to solve multi-class problems we apply powerful but simple divide
and conquer strategy. The complex multi-class classification task is divided into
binary problems and each problem is solved recursively. The method constructs
a decision list as shown in figure 6. Here each non-leaf node has two children.
Classes are represented by non leaf nodes where edges are labeled by the bi-
nary classifier’s output. We term the technique as decision list based SVILP
(DL SVILP). The method is shown as Algorithm 1. The technique reduces multi-
class classification problem to r−1 binary problems, where r is the total number
of classes. The algorithm can be viewed as comprising r − 1 iterations. In each



Algorithm 1 Support Vector Inductive Logic Programming (DL SVILP) for
multi-class classification
Input: A set of training examples {(d1, c1), (d2, c2), . . . , (dn, cn)}, where di ∈ D and

ci ∈ {1, 2, . . . , r} and a vector index that represents learned structure of the list.
for j = 1 to r − 1 do

/* Select a class p from r classes */
p = index[j]
/* Formulate the binary class problem by assigning label ’1’ to examples of class
p and ’-1’ to examples of remaining classes */
Di = {(d1, c1), (d2, c2), . . . , (dn, cn)}, where di ∈ D and ci ∈ {1,−1}
/* Induce a binary classification function fi by applying SVILP to set Di */
fi : Di → {1,−1}
/* Reduce the size of set Di by removing the examples belonging to class p */
Di+1 = Di \Dp

end for
return fi for i = 1, . . . , r − 1

iteration a class is selected as the positive class and the remaining classes are
reduced to the negative class. The binary problem is solved by using a large
margin first order rule learner. The training set is updated by removing the ex-
amples of the chosen class. In this way the root node contains all the classes
whereas the node at depth r − 1 contains two classes. The size of the training
set used at depth r− 1 is (much) smaller than the size of the training set for the
root node. DL SVILP assigns a class j to a new example d as follows:
1. Begin at the root node
2. Apply the classifier associated with the node to example d
3. Travel down the edge labeled by the classifier’s output
4. If the edge is labeled positive output the class associated with the leaf. If

the edge is labeled negative repeat steps 2 and 3 until the last positive edge
is reached. Output the label given by the node.

We now describe how the underlying structure of the list is constructed. The
method is dynamic and adaptive to the learning process. At each node the
selection of the positive class is made in way so as the classifier can have high
generalization ability. The method is presented as Algorithm 2. For each class j
a binary class problem is formulated by assigning label ’1’ to examples of chosen
class and ’-1’ to examples of remaining classes. The classifier, induced from
the dataset, is evaluated on a validation set. The performance of the classifier is
measured by the expression 1 and the values are recorded in a list. In short, r one-
vs-all classifiers are trained and a list of scores that represent the performance of
the classifiers, is obtained. Finally the list is sorted and this ranked list defines
the underlying structure.

4.3 One-vs-all

One-vs-all is a well known multi-class classification strategy. The recent research
[7] showed that the solution obtained by the scheme is accurate. We now describe



Algorithm 2 Learning underlying structure for DL SVILP
Input: Training set, d1, d2, . . . , dn, validation set, d′1, d

′
2, . . . , d

′
s, r classes and a large

margin first order rule learner (such as SVILP)
for j = 1 to r do

/* Formulate the binary class problem by assigning label ’1’ to examples of class
j and ’-1’ to examples of remaining classes */
/* Induce a binary classification function by applying SVILP to training data,
d1, d2, . . . , dn */
/* Apply the learned function to validation set, d′1, d

′
2, . . . , d

′
s */

/* Measure performance of classifier by using expression 1 */
S[j]′ = WP ∗ P− + WN ∗N+

where P = total number of positive example, N = total number of negative
examples, P− = number of misclassified positive examples, N− = number of
misclassified negative examples, WP = N

P
and WN = 1

index[j]′ = j
end for
/* Sort list S′ in ascending order and reorder list index′ accordingly */
S = sort(S′)
index = reorder(index′)
return index and S

how we design one-vs-all based SVILP multi-class classifier that we term one-vs-
all Support Vector Inductive Logic Programming (OVA SVILP). We construct
OVA SVILP by learning r binary classifiers by using SVILP. A new example is
classified by applying all the classifiers to it. The example is assigned a label by
the classifier that outputs the largest value(margin).

5 Experiments and Results

We conducted a series of experiments to evaluate the performance of the pro-
posed methods for selecting informative rules and solving multi-class classifica-
tion problems. We applied the methods to complex tasks, such as mutagenicity
detection and protein fold recognition.

For multi-class classification problems we used accuracy and positive predic-
tive value (precision rate) as evaluation measures. Let Pj denote the number of
examples belonging to class j, P =

∑j=k
j=1 Pj represent total number of examples

belonging to k classes, and TPj denote the number of correctly classified exam-
ples belonging to class j. The accuracy for each class j is given by TPj

Pj
whereas

the overall accuracy is defined by the expression
∑j=k

j=1 TPj

P . We used two-sample
t-test to assess the significance of our results. The performance of the methods
was also analyzed in relation to their average positive predictive values (PPVs)
that is given by TPj

TPj+FPj
for each class j. In the expression FPj denotes the

numbers of examples that are incorrectly classified in class j.
In order to construct underlying binary SVILP classifiers we used CProgol5

(PROGOL) [14] and SVMlight [15]. We refer SVILP to SVILPC for compression



based rule selection whereas SVILP is termed as SVILPHD for the proposed
rule selection method. For multi-class classification OVA SVILPC , DL SVILPC ,
OVA SVILPHD, DL SVILPHD represent compression based and HD (hamming
distance) based schemes respectively.
Mutagen Classification: In drug design and development, toxicity classifi-

Table 1. Cross-validated accuracy for mutagenesis.

kFOIL nFOIL c-ARMR+SVM RUMBLE PROGOL SVILPC SVILPHD

81.3 75.4 73.9 84.0 78.7 85.6 87.2

cation including mutagen detection and identification is a key task. Mutagenic
compounds produce mutations in DNA. In order to validate the use of SVILP
as a binary classifier, we applied the algorithm to the mutagen classification
problem. For comparison with related techniques, we conducted experiments on
a benchmark machine learning dataset, namely mutagenesis [16] that has been
widely used for the evaluation of new techniques [17]. We used regression friendly
subset comprising 188 molecules and atom and bond background information so
that we could compare the performance of SVILP with closely related methods
kFOIL and RUMBLE. 10-fold cross validation was used as experimental method-
ology. At each cross-validation iteration, a classifier was trained on 8 folds, 1 fold
was used as the validation set while the remaining 1 fold comprised the test set.
We tuned the free parameters clause length and noise of PROGOL, the regular-
ization parameter C of SVMs and width parameter γ of RBF kernels by using
the validation set. The set of values for clause length is {2,4}, noise is {5,10,20},
C is {1, 10, 100} and γ is {0.001, 0.01,0.1, 1}. Optimal number of rules were
selected from the set {25, 100, 200, 400}. Table 1 shows the results of kFOIL,
nFOIL, c-ARMR+SVM, PROGOL, SVILPC and SVILPHD. The reported re-
sults of kFOIL, nFOIL, c-ARMR+SVM and RUMBLE appeared in [2] and [3].
The results show that SVILP compares favorably with related approaches. The
results also validate the efficacy of the proposed rule selection methodology.
Protein Fold Classification: The recognition of proteins having similar struc-
ture is a challenging and complex task in computational biology and bioinfor-
matics. It has key importance in studying protein structure and function and can
provide answers to biological problems. In fold recognition, labels are assigned
to proteins from a set of predefined annotations (labels, folds). In this way pro-
tein fold recognition can be viewed as the multi-class classification task where
the problem is characterized by highly skewed class distribution. The aim of a
protein fold classification system is to assign proteins to one of many folds with
high accuracy. Machine learning methods have been applied to investigate the
problem. The studies reported in [18, 4] applied SVMs [13] to solving multi-class
protein fold classification problem. Chen and Kurgan [19] and Shen and Chou
[20] studied ensemble methods to assign 27 folds, from SCOP, to proteins. [21].
Dataset1: We solved protein fold classification problem by applying the pro-
posed multi-class methods to the dataset presented in [22]. In order to com-



Table 2. 5-fold cross-validated over all accuracy (OA) ± standard deviation for protein
fold dataset for MC ILP, OVA SVILPC , OVA SVILPHD, DL SVILPC , DL SVILPHD

and MC SVM. We also report cross-validated accuracy ± standard deviation for 20
folds. The higher values (shown in bold) demonstrate the advantage of the methods.

Fold MC ILP OVA SVILPC OVA SVILPHD DL SVILPC DL SVILPHD MC SVM

α
1 43.3 ± 9.0 76.7 ± 7.7 76.7 ± 7.7 73.3 ± 8.1 66.7 ± 8.6 43.3 ± 9.0

2 28.6 ± 12.1 28.6 ± 12.1 64.3 ± 12.8 21.4 ± 11.0 57.1 ± 13.2 14.3 ± 9.4

3 46.2 ± 13.8 92.3 ± 7.4 69.2 ± 12.8 61.5 ± 13.5 53.9 ± 13.8 53.8 ± 13.8

4 10.0 ± 9.5 10.0 ± 9.5 30.0 ± 14.5 40.0 ± 15.5 30.0 ± 14.5 0.0 ± 0.0

5 40.0 ± 15.5 30.0 ± 14.5 50.0 ± 15.8 40.0 ± 15.5 40.0 ± 15.5 20.0 ± 12.6

OA 36.4 ± 5.5 55.8 ± 5.7 63.6 ± 5.5 53.3 ± 5.7 54.6 ± 5.7 31.2 ± 5.3

β
6 73.3 ± 6.6 88.9 ± 4.7 75.6 ± 6.4 91.1 ± 4.2 88.9 ± 4.7 71.1 ± 6.8

7 57.1 ± 10.8 90.5 ± 6.4 95.2 ± 4.7 95.2 ± 4.7 90.5 ± 6.4 66.7 ± 10.3

8 0.0 ± 0.0 10.0 ± 6.7 15.0 ± 8.0 15.0 ± 8.0 35.0 ± 10.7 15.0 ± 8.0

9 43.8 ± 12.4 68.8 ± 11.6 75.0 ± 10.8 75.0 ± 10.8 75.0 ± 10.8 68.8 ± 11.6

10 64.3 ± 12.8 85.7 ± 9.4 92.9 ± 6.9 71.4 ± 12.1 71.4 ± 12.1 64.3 ± 12.8

OA 52.6 ± 4.6 72.4 ± 4.2 70.7 ± 4.2 74.1 ± 4.1 75.9 ± 4.0 59.5 ± 4.6

α/β
11 85.5 ± 4.8 85.5 ± 4.8 87.3 ± 4.5 67.3 ± 6.3 76.4 ± 5.7 58.2 ± 6.7

12 52.4 ± 10.9 81.0 ± 8.6 61.9 ± 10.6 76.2 ± 9.3 90.5 ± 6.4 28.6 ± 9.9

13 28.6 ± 12.1 35.7 ± 12.8 50.0 ± 13.4 50.0 ± 13.4 50.0 ± 13.4 7.1 ± 6.9

14 7.7 ± 7.4 7.7 ± 7.4 15.4 ± 10.0 30.8 ± 12.8 38.5 ± 13.5 0.0 ± 0.0

15 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 8.3 ± 8.0 8.3 ± 8.0 16.7 ± 10.8

OA 54.8 ± 4.6 60.9 ± 4.6 60.9 ± 4.6 56.5 ± 4.6 64.4 ± 4.5 35.7 ± 4.5

α
+β
16 53.8 ± 9.8 69.2 ± 9.1 73.1 ± 8.7 69.2 ± 9.1 69.2 ± 9.1 23.1 ± 8.3

17 15.4 ± 10.0 30.8 ± 12.8 38.5 ± 13.5 53.9 ± 13.8 53.9 ± 13.8 30.8 ± 12.8

18 7.7 ± 7.4 53.8 ± 13.8 61.5 ± 13.5 46.2 ± 13.8 46.2 ± 13.8 30.8 ± 12.8

19 0.0 ± 0.0 8.3 ± 8.0 8.3 ± 8.0 8.3 ± 8.0 25.0 ± 12.5 25.0 ± 12.5

20 77.8 ± 13.9 77.8 ± 13.9 77.8 ± 13.9 66.7 ± 15.7 66.7 ± 15.7 22.2 ± 13.9

OA 32.9 ± 5.8 50.7 ± 5.7 54.8 ± 5.7 52.1 ± 5.8 54.8 ± 5.6 26.0 ± 5.6

OA 46.2 ± 2.6 61.4 ± 2.5 63.3 ± 2.5 60.4 ± 2.5 64.0 ± 2.5 40.2 ± 2.5

pare the performance of SVILP based multi-class classification schemes with
non-SVILP based methods we used multi-class SVM (MC SVM) and MC ILP.
MC SVM was trained by using SVMlight [15] where the method was presented
in [23]. For MC SVM, we represented protein domains by using non-relational
features namely, total number of residues, α-helices and β-strands. Previous
research demonstrated the effectiveness of these features for protein fold clas-
sification task. For MC ILP and SVILP based techniques we used relational
fold discriminatory features described in [22]. These features are polypeptide



Fold #Exm Fold #Exm

α α/β
1 30 11 55
2 14 12 21
3 13 13 14
4 10 14 13
5 10 15 12

β α + β
6 45 16 26
7 21 17 13
8 20 18 13
9 16 19 12
10 14 20 9

Fig. 7. Class distribution for 20 protein
folds of dataset1
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Fig. 8. Fold-wise positive predictive values
(PPVs) for MC ILP (MC), OVA SVILPC

(OVAC), OVA SVILPHD (OVAHD),
DL SVILPC (DLC), DL SVILPHD (DLHD)
and MC SVM (SVM).

chain length, number of α-helices and β-strands, adjacent secondary structure
elements, properties of the secondary structure such as the hydrophobicity, the
hydrophobic moment, the length of proline (number of proline residues) and the
length of the loop.

The dataset comprises 381 protein domains. They belong to 20 folds of
SCOP that have been categorized into 4 structural classes, namely α, β, α/β
and α + β. The indices 1 to 20 shown in Table 2 represent SCOP folds DNA
3-helical, EF hand-like, Globin-like, 4-Helical cytokines, Lambda repressor, Ig
beta-sandwich, Tryp ser proteases, OB-fold, SH3-like barrel, Lipocalins, α/β
(TIM)-barrel, Rossmann-fold, P-loop, Periplasmic II, α/β-Hydrolases, Ferredoxin-
like, Zincin-like, SH2-like, β-Grasp, and Interleukin respectively. The dataset is
characterized by uneven class distribution as shown in figure 7.

We randomly divided the dataset into 5 equal-sized folds and followed the
experimental methodology as follows. At each cross validation round 3-folds were
used for training the classifiers where the remaining two folds were used as vali-
dation set and test set. The free parameter of SVM MC (C, width of the Gaussian
kernel), SVILP OVAC (C, width of the Gaussian kernel), SVILP OVAHD (num-
ber of rules, C, width of the Gaussian kernel), SVILP DLC (C, width of the
Gaussian kernel), and SVILP DLHD (number of rules, C, width of the Gaussian
kernel) were tuned by using the validation set. Table 2 lists the cross-validated
accuracy for each protein fold for the multi-class classification methods. Overall
accuracy over 20 folds is also given. From the results it is clear the DL SVILPHD

outperforms all other methods in the study. We first focus on the performance
of SVILP based methods. In order to assess the effect of low dimensional embed-
ding methods (compression based rule selection, HD based rule selection) on the
quality of the trained multi-class classifiers, the performance of DL SVILPHD

was compared with DL SVILPC . DL SVILPHD improved the performance over
DL SVILPC and two sample t-test verified the significance of the gain in accu-
racy (with p ¿ 0.1). Comparison of the performances of OVA SVILPHD with



Fold MC ILP DL SVILPHD

α 57.78 ± 5.21 62.22 ± 5.11

β 33.64 ± 4.57 45.79 ± 4.82

α/β 56.45 ± 4.45 62.90 ± 4.33

α + β 66.67 ± 5.41 72.62 ± 5.27

All 52.84 ± 2.48 60.25 ± 2.43

Fig. 9. Accuracy ± standard devi-
ation for protein fold dataset for
MC ILP and DL SVILPHD. The re-
sults are averaged over 5 runs of the
techniques.
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Fig. 10. Fold-wise positive predictive values
(PPVs) for MC ILP (ILP), DL SVILPHD

(DLHD).

OVA SVILPC demonstrated that OVA SVILPHD also yielded substantial (but
not statistically significant) gain in accuracy. In summary, the results validate
the efficacy of HD based rule selection method where the gain in performance
is generally substantial and statistically significant.

We now analyze the performance of large margin first order decision list based
learner, DL SVILPHD, for multi-class classification. Table 2 shows that the accu-
racy values of DL SVILPHD are higher than the other methods. It yielded higher
over all accuracy than OVA SVILPC , OVA SVILPHD and DL SVILPC for folds
of β and α/β structural classes. The significance of the results was checked by
two sample t-test. The classifiers trained by DL SVILPHD are statistically sig-
nificantly better than OVA SVILPC (with p ¿ 0.1) and DL SVILPC (with
p=0.11). We also compared the performance of DL SVILPHD with MC ILP
and MC SVMs. Table 2 shows the effectiveness of DL SVILPHD where there is
a substantial gain in accuracy values. Again, we used two sample t-test to con-
firm the statistical significance of the results. The performance of DL SVILPHD

is highly significantly better (with p ¿ 0.001) than the performance of MC ILP
and MC SVM.

The performance of the techniques were also analyzed in terms of average
positive predictive values. The values are depicted in figure 8 for 20 folds. The
figure demonstrates that SVILP based techniques capture structural and rela-
tional similarities between proteins and hence learn accurate classifiers.
Dataset2: We further studied the performance of new logic based multi-class
classification strategy, DL SVILPHD, by conducting experiments on the pro-
tein folds dataset described in [24]. For this set of experiments we only focused
on MC ILP and DL SVILPHD. In the original study protein fold classification
problem was solved by viewing it as a binary problem. The dataset comprises 45
protein folds and 441 protein domains that belong to 4 structural classes. The
background knowledge comprised structural information for each protein do-
main that was derived from known secondary structure and multiple structure
alignment information. We performed experiments by using the train/test split



as described in [24]. As there was no validation set, we, therefore, did not tune
the parameters of DL SVILPHD and MC ILP. Alternatively, we set PROGOL’s
clause length and noise parameters to 10 and 20 respectively. The regularization
parameter C was set to 1. A linear kernel was used and the number of rules for
DL SVILPHD was set to 100. The performance of DL SVILPHD was compared
to MC ILP. Table 9 and figure 10 show the results that confirm the usefulness of
DL SVILPHD to solving multi-class classification problems. For the sake of space
we only report over all accuracy values for α, β, α/β and α+β structural classes.
The results show that DL SVILPHD yielded higher over all accuracy values for
all the structural classes. According to the two sample t-test, the performance
of DL SVILPHD is statistically significantly (with p ¿ .01) better than the per-
formance of MC ILP. Figure 10 depicts average positive predictive values for 45
protein folds that also confirm the efficacy of DL SVILPHD to solving protein
fold recognition problem.

6 Conclusion

In this paper we proposed a novel logic based multi-class classification method.
Furthermore we designed an effective low dimensional embedding technique. The
efficacy of the proposed methods was evaluated by applying the techniques to
mutagen detection and identification and multi-class protein fold recognition
problems. The experimental results demonstrated the efficacy of proposed tech-
niques in selecting highly informative rules and producing accurate solutions
to complex (binary) multi-class problems. The method, DL SVILP, captured
structural and relational similarities between examples. The results show that
the proposed approach can provide an effective alternative to solving multi-class
problems.
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