
Customisable Multi-Processor Acceleration of
Inductive Logic Programming

Andreas K. Fidjeland, Wayne Luk, and Stephen H. Muggleton

Imperial College London,
180 Queen’s Gate,

London SW7 2AZ, UK
{andreas.fidjeland,w.luk,s.muggleton}@imperial.ac.uk

Abstract. Parallel approaches to Inductive Logic Programming (ILP)
are adopted to address the computational complexity in the learning
process. Existing parallel ILP implementations build on conventional
general-purpose processors. This paper describes a different approach,
by exploiting user-customisable parallelism available in advanced recon-
figurable devices such as Field-Programmable Gate Arrays (FPGAs).
Our customisable parallel architecture for ILP has three elements: a cus-
tomisable logic programming processor, a multi-processor for parallel hy-
pothesis evaluation, and an architecture generation framework for cre-
ating such multi-processors. Our approach offers a means of achieving
high performance by producing parallel architectures adapted both to
the problem domain and to specific problem instances.

Keywords: ILP, FPGA, multi-processor

1 Introduction

Inductive Logic Programming (ILP) is a powerful paradigm for symbolic ma-
chine learning, since it can incorporate existing theories and produce human-
readable output. However, ILP systems are computationally demanding. Several
approaches to speeding up ILP have been developed with parallelisation taking
place at different levels [1, 3, 7, 9]. Common to these approaches is the reliance
on conventional general-purpose processors, with the parallel processing units
either being nodes in a distributed computer or cores in a multi-core processor.

This paper describes a different approach, based on advanced reconfigurable
hardware such as Field-Programmable Gate Arrays (FPGAs), to provide multi-
processors with a customisable architecture. Similar approaches have been used
in speeding up various demanding applications, such as those in financial mod-
elling [4] and in medical imaging [11]. Our approach is developed for speeding up
the ILP system Progol [6], using customised instruction processors and multi-
processors. Its unique features include:

1. Arvand, an instruction processor for logic programming, which can be cus-
tomised to particular classes of data sets for learning (Section 2);



2 Customisable Multi-Processor Acceleration of Inductive Logic Programming

2. a Progol multi-processor, which exploits data parallelism in hypothesis eval-
uation (Section 3); and

3. a multi-processor architecture generation framework for logic programming,
which is used to create customised multi-processors (Section 4).

Reconfigurable hardware has been used in emulating Intel architectures [8]. Such
emulation, however, does not exploit the reconfigurability of FPGAs to provide a
customisable architecture. Moreover, our research demonstrates how fine-grained
parallelism on an FPGA can significantly enhance ILP performance.

2 Parallel ILP and the Arvand Processor

Inductive Logic Programming systems come in several variations, but in general
they take as input a set of positive and negative examples, some background
knowledge, and a language bias defining the hypothesis space. An ILP system
produces a theory explaining the examples. ILP algorithms employ different
strategies for constructing and searching through the hypothesis space, and for
assessing the quality of each hypothesis.

Parallel approaches to ILP exploit parallelism at different levels. Fonseca et
al. [3] identify three main levels. First, search parallelism performs search through
the hypothesis space in parallel [1, 7]. Second, data parallelism splits the example
set and performs learning based on the subsets [9]. Third, evaluation parallelism
splits the coverage test, and evaluates the candidate with respect to the example
set in parallel. These approaches are not necessarily mutually exclusive. The
work described below exploits mainly evaluation parallelism.

Our approach to accelerating ILP is built around a customisable proces-
sor, Arvand. The Arvand processor is based on the Vienna Abstract Machine
(VAM), a two-pointer abstract machine for Prolog [5]. The abstract machine
is realised in hardware as a two-issue four-stage pipelined processor (Figure 1a)
which directly executes VAM instructions. The processor performs unification on
the two instruction streams, which correspond to the goal and head of the cur-
rent predicate. A general-purpose register set supports both this unification and
arithmetic. The stack contains both determinate and non-determinate activation
records, supporting backtracking. The complex control instructions handle op-
erations on this mixed stack, with the support of a special-purpose register set.
The processor contains logic for handling indexing, which is a common Prolog
implementation technique to avoid redundant computation.

The Arvand processor can be customised for a particular program type, or
to exploit different run-time characteristics of a program. The processor cus-
tomisations affect the usage of both programmable fabric (used for processor
logic) and embedded memory (used for caches and buffers), and can addition-
ally affect execution time, and the class of programs supported (Figure 2 left).
Customisations come in four different forms. (a) Microarchitecture customisa-
tions reduce the processor instruction set to the minimal that supports specific
programs. Examples include simplifying the control logic for programs containing
only ground unit clauses, and removing the ALU for purely symbolic programs.



Customisable Multi-Processor Acceleration of Inductive Logic Programming 3

For

P0

RAM0

Fork
Job
gen

Join Sum I/O

Host

P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

RAM1

RAM2

RAM3

combinedinstruction
control signals

SLU

ALU

MEMORY BUS

fail

fail

REGISTER
FILE

HEAD
CACHE

GOAL
CACHE

STACK
BUFFER

DATA
BUFFER

decode

(a) (b)

Fig. 1. Multi-processor architecture for ILP. (a) Arvand processor in a typical config-
uration. (b) Multiple Arvand processors for parallel evaluation of hypotheses.

(b) Memory interface customisations make some memory units (goal program
code, stack, or heap) purely local units rather than being caches/buffers backed
by off-processor data. (c) Memory size customisations vary the capacity of on-
processor memory units; they can have a large effect on memory usage and
on program execution time, due to variations in cache performance. (d) Data
width customisations change the default word width of the processor. Figure 2
(right) shows the usage of both programmable fabric and memory for processors
in various configurations. The programmable fabric usage (measured in device-
independent flip-flops) varies by a factor of around three, whereas the memory
usage varies by a factor of around five. These resource savings translate into
increased parallelism, since more small processors can fit on a particular chip.

3 Multi-Processor Architecture for ILP

The Arvand processor requires only a fraction of the resources found on a modern
reconfigurable device, even when using one of the more demanding processor con-
figurations. It is therefore possible to place a large number of processors on a sin-
gle chip, creating a customised multi-core processor for ILP. Our multi-processor
(Figure 1b) acts as an accelerator for a host system running the learning algo-
rithm, directing the search through the hypothesis space. The multi-processor
receives a stream of candidate hypotheses from which a number of queries for
the example tests are generated. These queries are distributed to the available
processors. The results (successes or failures) from all the queries related to a
hypothesis are aggregated and returned to the host system.



4 Customisable Multi-Processor Acceleration of Inductive Logic Programming

Customisation Sp
ac

e
M

em
or

y
O

th
er

Microarchitecture X programs
Memory interface x X
Memory size x X run time
Data width x x

0 36 72 108 144 180 216 252 288

Memory (kb)

0

500

1000

1500

2000

2500

3000

Sp
ac

e
(F

F
)

Fig. 2. Arvand processor configuration: (left) major (X) and minor (x) effects of dif-
ferent configuration options; (right) resource usage for a number of different processor
configurations.

The single-processor customisations affect the configuration of the multi-
processor. For a given device, there is a fixed amount of resources (both pro-
grammable fabric and memory). There is thus a general trade-off between the
resource usage of a single processor and the number of constituent processors
in a multi-processor. For a given data set, the processor architecture, memory
interface, and data width can be fixed. The amount of local memory dedicated
to caches and buffers can be varied, however. The trade-off is therefore in prac-
tice between the number of processors and the cache sizes of each processor; the
single-processor performance will typically be better if caches are larger.

The effect of this trade-off can be observed in Figure 3, which shows the
speedup with respect to a single processor, for multi-processor configurations
optimised for two ILP data sets: mutagenesis [10] and protein folding [12]. The
mutagenesis dataset has a small working set, so it suffers little adverse effect
from having small caches; the highest-performing configurations, with more than
30 times speedup, are therefore those which maximise parallelism. The protein
folding data set requires a more complex processor, and also has a larger working
set. A large number of small-cache processors is therefore not advantageous. The
highest-performing configurations achieve around 27 times speedup.

4 Multi-Processor Arcitecture Generation

To facilitate generation of multi-processor systems based around Arvand, we
have developed an architecture-description language, Archlog, which ties to-
gether software compilation, processor configuration and instantiation, and multi-
processor configuration and generation [2]. Archlog includes a domain-specific
language in Prolog that covers multi-processor architectures using a number of
primitives (including Arvand) and communication streams between them.



Customisable Multi-Processor Acceleration of Inductive Logic Programming 5

10 20 30 40 50 60 70 80 90 100

Processors

0

5

10

15

20

25

30

35

Sp
ee

du
p

(a) Mutagenesis

10 20 30 40 50 60 70 80 90

Processors

0

5

10

15

20

25

Sp
ee

du
p

(b) Protein folding

Fig. 3. Speedup of optimal multi-processor configurations for two different datasets.

The Archlog system (Figure 4) takes an architecture description and a Prolog
program, and generates a hardware configuration tailored for this combination of
architecture and software. Analysis of the input Prolog program(s) provides part
of the processor configuration, by specifying the minimal processor configuration
that can support the program. An architecture description may not fully specify
all parameters of the design, for example the level of parallelism in a multi-
processor design. The system explores the space of possible designs, and can
return a number of pareto-optimal designs.

refers to
parameters

parameters

Prolog
code

Prolog
compiler

Machine
code

FPGA

Archlog
code

Intermediate
code
generator

Design
space
generator

Code
generator

HW
des-
cription

pro-
cessor
library

FPGA

Fig. 4. The Archlog system for multi-processor architecture generation.



6 Customisable Multi-Processor Acceleration of Inductive Logic Programming

5 Concluding Remarks

Customisable architectures show good promise in speeding up demanding ILP
applications. Our building blocks and architecture generation framework can be
adapted to enable ILP systems other than Progol to exploit this technology,
without the need for hardware design expertise. Moreover, to realise the full
potential of our approach, we are integrating the multi-processor design tools
seamlessly with Progol, targeting the latest high-performance FPGA systems.

Another theme of ongoing research involves studying how variations in run-
time characteristics of inductive logic programming can be used in optimising
performance and energy consumption. Such variations can be exploited by adapt-
ing the resources in a multi-processor system to match the run-time character-
istics, making use of hardware reconfigurability. A key challenge is to automate
such exploitation for realistic applications while minimising overheads in run-
time reconfiguration, such that efficient designs can be produced cost-effectively.

References

1. Dehaspe, L., Raedt, L.D.: Parallel inductive logic programming. In: Proc. MLnet
Familiarization Workshop on Statistics, Machine Learning and Knowledge Discov-
ery in Databases. pp. 112–117. Heraklion, Crete (January 1995)

2. Fidjeland, A., Luk, W.: Archlog: High-level synthesis of reconfigurable multipro-
cessors for logic programming. In: Proc. Int. Conf. Field-Programmable Logic and
Applications. pp. 335–340. IEEE (August 2006)

3. Fonseca, N.A., Srinivasan, A., Silva, F., Camacho, R.: Parallel ILP for distributed-
memory architectures. Mach. Learn. 74, 257–279 (March 2009)

4. Jin, Q., Thomas, D.B., Luk, W., Cope, B.: Exploring reconfigurable architectures
for tree-based option pricing models, ACM Trans. on Reconfig. Tech. and Sys.,
2(4), Article 21 (2009)

5. Krall, A., Neumerkel, U.: The Vienna Abstract Machine. In: Proc. Int. Workshop
Programming Language Implementation and Logic Programming. pp. 121–135. No.
456 in LNCS, Springer-Verlag (August 1990)

6. Muggleton, S.H.: Inverse entailment and Progol. New Generation Computing 13,
245–286 (1995)

7. Ohwada, H., Nishiyamai, H., Mizoguchi, F.: Concurrent execution of optimal hy-
pothesis search for inverse entailment. In: Proc. Int. Conf. Inductive Logic Pro-
gramming. pp. 165–173 (2000)

8. Schelle, G. et al: Intel Nehalem processor core made FPGA synthesizable. In: Proc.
Int. Symp. on FPGA, 3–12 (2010)

9. Skillicorn, D.B., Wang, Y.: Parallel and sequential algorithms for data mining using
inductive logic. Knowledge and Information Systems 3, 405–421 (2001)

10. Srinivasan, A., Muggleton, S.H., King, R., Sternberg, M.: Mutagenesis: ILP ex-
periments in a non-determinate biological domain. In: Proc. Int. Inductive Logic
Programming Workshop (1994)

11. Tsoi, K.H., Rueckert, D., Ho, C.H., Luk, W.: Reconfigurable acceleration of 3D
image registration. In: Proc. South. Conf. on Prog. Logic, 95–100 (2009)

12. Turcotte, M., Muggleton, S.H., Sternberg, M.J.E.: Automated discovery of struc-
tural signatures of protein fold and function. Journal of Molecular Biology 306,
591–605 (2001)


