A Comparing the use of background knowledge by
- two Inductive Logic Programming systems

Ashwin Srinivasan and S.H. Muggleton

Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford.

R.D. King

Biomolecular Modelling Laboratory,
Imperial Cancer Research Fund,
Lincoln’s Inn Fields, London.

Abstract

In this paper we examine the effect of providing progressively more gen-
eral background information to two Inductive Logic Programming (ILP)
systems. The performance of ILP systems may degrade if the background
knowledge provided contains large amounts of irrelevant information. How-
ever, in many realistic problems of scientific interest, ILP systems can only
be given background knowledge that experts in the field believe to be useful.
Here we undertake an empirical study of what scientists can expect from ILP
systems when they are applied in such a setting. As a test-bed, the problem
considered is that of constructing theories for the mutagenic activity of small
molecules. In turn, we provide the ILP algorithms FOIL and Progol with
more chemical knowledge and examine the effect, in-terms of the predictive
accuracy of the theories constructed, a measure of their simplicity, and the
time taken fo construct them. Interesting results from these experiments
axe as follows: (a) FOIL shows a strong preference for inequality tests on
numeric values, often causing it to ignore simpler logical relationships that
hold for the data; (b) some concepts involving constant symbols that are
not completely determined by a single example can be difficult to learn with
Progol; (c) for Pregol, each addition to the background knowledge results
in theories that have higher predictive accuracy, are more compact and are
constructed faster; (@) for FOIL, significant improvements are only apparent
along the scale of theory construction time; and {e) in general, as background
knowledge increases, the predictive accuracies of Progol théories are higher
than those of FOIL.

200 — ILP-95, Leuven

1 Introduction

The use of background knowledge to construct explanations for data is a hallmark
of Inductive Logic Programming (ILP) [5]. However, the results from experiments
concerned with learning simple logic-programs for list processing suggest that the
performance of an ILP system is sensitive to the type and amount of background
knowledge provided. Background knowledge that contains large amounts of infor-
mation that is irrelevant to the problem being considered can, and typically does,
hinder an ILP system in its search for an adequate explanation of the data [10].
However, without any notion of prior beliefs on the form of such explanations, it
seems that such systems would have to rely on being given only information that
was ezpected to be relevant. For at least one potential role for ILP systems, this
situation would not be unusual. This concerns the use of such systems to help
provide some insight into difficult unsolved scientific problems. Restricted ILP
successes have already been reported for problems in chemistry and molecular bi-
ology [4, 8], using background knowledge identified by experts as being relevant
to the problems considered.

How is a restriction to only potentially relevant background knowledge reflected
in the performance of an ILP system? Usually, we are only in a position to deliver
an @ posteriori judgement. Within the logical framework of ILP [5], consider
starting with some {possibly empty) set of clauses as background knowledge, and
a set of clauses comprising an explanation for the data. Additional background
information is now provided, and a revised theory is constructed. It is then not
unreasonable to consider the performance of the system as having improved if all
of the following were observed:

Accuracy. The predictive accuracy of the new theory is higher;
Simplicity. The new theory is ‘simpler’ on some complexity scale; and
Time. The new theory took less processor time to construct.

In this paper, we undertake a comparativestudy of two prominent ILP systems:
FOIL [11] and Progol [7]. We investigate if either system shows the trends above,
by progressively providing each with more background information concerning a
chemistry problem. In doing so we hope to identify empirically any potential
problems peculiar to either system. '

The problem we consider in this paper comes from the field of organic chem-
istry, namely discovering rules for mutagenicity in nitroaromatic compounds [2].
Such compounds occur in automobile exhaust fumes, and in the development of
industrial compounds. As mutagenic activity has often been found to be linked
to carcinogenesis and damage to DNA, it is of immediate interest to determine
methods of developing chemicals with low mutagenicity. In normal discourse,
chemists typically use graph-based constructs such as atom/bond connectivities

D" G S U

g g it e e e

ILP-85, Leuven 201

or Cartesian co-ordinates of atoms to describe properties of molecules. This nat-
ural%y structural setting serves as a test-bed for our empirical study of FOIL and
Progol. We conduct this study in four stages. At each stage the amount of back-
ground knowledge is generalised by adding clausal definitions of potentially useful
predicates, ' ' 4

The paper is organised as follows. Section 2 clarifies the precise scope of this
study. Materials available are described in Section 3, the design of experiments in
Section 4, and results in Sections 5. Section 6 concludes this study.

-2 Experimental Aim

Our intention here is a comparative study of the performance of the ILP sys-
tems FOIL and Progol when used to construct theories for mutagenesis. By pro-
gressively increasing the background knowledge the theories constructed will be
assessed along scales of predictive power, simplicity, and time for construction.

3 Materials

3.1 Data

The mutagenic activity of 230 compounds is listed in [2]. In that study, the au-
thors identify these compounds as belonging to two disparate groups of 188 and
42 compounds respectively. Each compound has an associated mutagenicity value
obtained from a procedure known as the Ames test. We confine this study to
the task of discriminating compounds with positive log mutagenicity from those
which have zero or negative log mutagenicity. Further, we concentrate only on the
subgroup of 188 compounds, as these are sufficient for the purposes of the compar-
ative study reported here. This subset has also been analysed by neural network
methods that employ the back-propagation of errors [13]. The main interest in
the group of 42 compounds stemns from the fact that they are poorly modelled by
statistical methods of regression. Elsewhere, we have looked at constructing ILP
theories for this subgroup {12].1

Of the 188 compounds, 125 have positive levels of log mutagenicity. These are
labelled “active” and constitute the source of positive examples.. The remaining
63 are labelled “inactive” and constitute the source of negative examples.

1 ANl data described in this paper, along with the Prolog definitions comprising the back-
ground knowledge are available by ftp access to fip. comlab.oz.ac.uk. The relevant directory is
pub/Packages/ILP /Datasets /mutagenesis. : ‘

ILP-95, Leuven . 201

or Cartesian co-ordinates of atoms to describe properties of molecules. This nat-
urally structural setting serves as a test-bed for our empirical study of FOIL and
Progol. We conduct this study in four stages. At each stage the amount of back-
ground knowledge is generalised by adding clausal definitions of potentially useful
predicates.

The paper is organised as follows. Section 2 clarifies the precise scope of this
study. Materials available are described in Section 3, the design of experiments in
Section 4, and results in Sections 5. Section 6 concludes this study.

2 Experimental Aim

Our intention here is a comparative study of the performance of the ILP sys-
tems FOIL and Progol when used to construct theories for mutagenesis. By pro-
gressively increasing the background knowledge the theories constructed will be
assessed along scales of predictive power, simplicity, and time for construction.

3 Materials

3.1 Data

The mutagenic activity of 230 compounds is listed in [2]. In that study, the au-
thors identify these compounds as belonging to two disparate groups of 188 and
42 compounds respectively. Each compound has an associated mutagenicity value
obtained from a procedure known as the Ames test. We confine this study to
the task of discriminating compounds with positive log mutagenicity from those
which have zero or negative log mutagenicity. Further, we concentrate only on the
subgroup of 188 compounds, as these are sufficient for the purposes of the compar-
ative study reported here. This subset has also been analysed by neural network
methods that employ the back-propagation of errors [13]. The main interest in
the group of 42 compounds stems from the fact that they are poorly modelled by
statistical methods of regression. Elsewhere, we have looked at constructing ILP
theories for this subgroup [12].

Of the 188 compounds, 125 have positive levels of log mutagenicity. These are
labelled “active” and constitute the source of positive examples. The remaining
63 are labelled “inactive” and constitute the source of negative examples.

LAl data described in this paper, along with the Prolog definitions comprising the back-
ground knowledge arc available by ftp access to fip.comlab.oz.ac.uk. The relevant directory is
pub/Packages/ILP /Datasets/mutagenesis.

ILP-95, Leuven

3.2 Background knowledge

Potentially useful background information concerning the molecules is available
in the form of (a) primitive structural descriptions of the molecules; (b} specific
chemical properties thought to be relevant; and (c) generic chemical knowledge of
structural templates. We describe each of these below.

3.9.1 Primitive structural representation of molecules

The atom and bond structures of the 230 compounds were obtained from the
standard molecular modelling package QUANTA. For each compound QUANTA
automatically obtains the atoms, bonds, bond types (for example, aromatic, single,
double etc.), atom types (for example, aromatic carbon, aryl carbon etc.), and the ‘
partial charges on atoms. QUANTA automatically classifies bonds into one of 8

types, and atoms into one of 233 types (most of which relate to different types of

carbon atoms). The result is a set of Prolog facts of the form:

bond{ compound,atom,atom?, bonditype), stating that compound has a bond of dond-
type between the atoms atom! and atom2. For example, an aromatic bond
between atoms d2_1 and d42_2 in drug 42 is represented by QUANTA as
bond(d2,d2.1,d2.2,7).

atm(compound, atom,element, atomiype, charge), stating that in compound atom has
element element of atomiype and partial charge charge. For example, QUANTA
encodes the fact that atom d2.1 in drug d2 is an aromatic carbon atom with
partial charge 0.067 by the fact atm(d2,d2_1,c,22,0.067).

QUANTA generates 10136 ground unit clauses on atomic structure and bond-
ing for the 188 molecules.
3.2.2 Hydrophobicity and Lower Uneccupied Molecular Orbital

. The authors of [2] describe a number of chemical properties thought to be of
potential interest to the mutagenesis problem. Of these two were thought to be
highly relevant:

logP: log of the compound’s octanol/water partition coefficient (a measure of
hydrophobicity); and

eLumot energy of the compounds lowest unoccupied molecular orbital. This is
obtained from a quantum mechanical molecular model.

3.2.3 Generic structural knowledge

Using the atom and bond description, it is possible to define libraries of elementary
chemical concepts. Appendix A does this, providing definitions of methy] groups,

ILP-95, Leuven 203

nitro groups, aromatic rings, hetero-aromatic rings, connected rings, ring length,
and the three distinct topological ways to connect three benzene rings. These
definitions are generic to the field of organic chemistry and can be used by ILP
systems as ‘building-blocks’ for more complex theories.

3.2.4 Subsets of background knowledge

The experiments described here are conducted in four stages. Each stage is marked
by a generalisation of background knowledge, thus increasing the potential hy-
pothesis space to be explored by an ILP system. Figure 1 tabulates the predicate
definitions constituting the background knowledge at each stage. Also included
is the number of clauses in each definition. At each stage, definitions of predi-
cates added are those that are expected to be most useful, given the background
knowledge already present.

Background Content Number of clauses

B1 atoms, bonds, 10137
numeric values of partial charges

B2 definitions in Bi, and 10139
numeric inequalities

Bs definitions in B2, and 10515
logP, exvramo

B4 definitions in B, and 11948

structural definitions in Appendix A

Figure 1: Background knowledge provided in the experiments. The calculation
of the number of clauses assumes 1 clause each for =, < and >. For the data
used here the generic definitions in Appendix A are represented by 1433 ground
facts. This transformation is required as FOIL is unable to use the non-ground
definitions directly.

3.3 Algorithms

In [6], the shortcomings of various ILP algorithms are discussed. We have selected
the algorithms FOIL and Progol as they appear to be the best suited to handle
efficiently the non-determinate nature of the data used here.

The FOIL version used is 6.2, and is written in the C language. FOIL6.2
is written by J.R. Quinlan and incorporates features developed by M. Cameron-
Jones. Further details are available from J.R. Quinlan (electronic mail: quin-

204) ILP-95, Leuven

lan@cs.su.0z.au). For convenience, in the rest of this paper, we shall refer to
FOIL6.2 as FOIL.

We use an early Prolog implementation of Progol, called P-Progol. At the
time of writing this paper S.H. Muggleton has implemented a version called CPro-
gol in the C language. Details of obtaining this version can be found in [7].
P-Progol is available on request from Ashwin Srinivasan (electronic mail: ash-
win@comlab.ox.ac.uk). The implementation includes on-line documentation that
clarifies the points of difference with the C version. The theory underlying both
versions is the same and is described fully in [7]. However, differences in search
strategies and pruning facilities imply that given the same language and resource
restrictions, the two versions can compute different answers. For convenience, in
the rest of this paper, we shall refer to P-Progol as Progol.

Both FOIL and Progol construct inductive explanations for data by performing
a top-down search of the subsumption lattice of clauses. Since clauses higher in
this lattice usually (although not always) have fewer literals than those that are
lower, the algorithms typically examine “shorter” clauses first. There are however
three main differences between the algorithms:

1. Unbound versus Bound search space. For both algorithms, the search
space is constrained by the top of the subsumption lattice. However, Pro-
gol only searches those portions of the lattice that are guaranteed to cover
at least one positive example. This confines the search to sub-lattices that
are bound both at the top and bottom. FOIL on the other hand can search
through spaces that eventually prove futile in that none of the positive exam-
ples may be covered. Both algorithms employ constructs to limit the number
of literals in a clause. In FOIL this takes the form of an encoding length
restriction. Progol requires the maximum number of literals in a clause to
be predefined.

2. Greedy versus Exhaustive search. FOIL employs an incomplete heuris-
tic search guided by information gain. Progol performs complete search
within restricted sub-lattices, using data compression as a heuristic.

3. Ground versus Non-ground background knowledge. All background
knowledge provided to FOIL has to be encoded as ground atoms. Back-
ground knowledge for Progol can be arbitrary Prolog programs.

The disparate language of implementation of the two programs is only of con-
cern here in comparison of theory construction times. A direct comparison of these
times is avoided here by normalising all times to the time taken to construct a
theory with background knowledge BI. Implementation issues aside, we expect
theory construction to be slower with Progol, given the nature of its search and
use of intensional background krowledge.

ILP-95, Leuven

4 Method

For the 188 compounds under study, we adopt the following k-fold cross-validation
design: kN

1. Randomly assign the compounds in the set to & (approximately) equal par-
. titions. Each partition will, in turn, be withheld to form a “test” set. The
‘ compounds in the other partitions will provide the “training” data for con-

structing theories for predicting members in the “active” class (see Section
3.1).

2. With background knowledge BI, ..., B4

(a) With each of the k training data sets:

i. Construct theories using FOIL and Progol.

ii. Record the predictions of each theory so constructed on the data
set withheld from the algorithm.

(b) With all compounds, construct a final theory using FOIL and Progol.

(c) For each algorithm, the predictive power of its final theory is estimated
from the errors in prediction made by its theories in the k trials previ-
ously.

(d) Analyse to find any significant difference in predictive accuracy of the-
ories constructed by the ILP algorithms.

(e} For each algorithm, theory size is represented by the number of clauses
and average number of literals per clause in the final theory.

(f} For each algorithm, the time taken to construct the final theory is
recorded.

For the purposes of this study, % is 10. Empirical studies suggest this value
to be sufficient to obtain nearly unbiased estimates of error rates on data sets of
the size used here [14]. Both algorithms require specifications of various language
constraints before they can construct theories. For reference, the restrictions used
in this study and other details required for repeating the experiments are in Ap-
pendix B.

4.1 Comparison of performance

Of the three performance attributes considered (accuracy, simplicity and processor
time) only the predictive accuracy of theories is really open for further quantitative
analysis. Any comparison for significant differences in predictive accuracy should
account for the fact that both algorithms are tested on the same sample. A statis-
tical test that does this is the McNemar’s test for changes [3]. The null hypothesis

2086 ILP-95, Leuven

is that the proportion of examples correctly classified by FOIL and Progol is the
same.? Differences will be deemed significant only if on completing the calculations
for McNemar’s test, the resulting probability of differences occurring by chance is
< 0.05.

Comparisons between the algorithms on scales of theory complexity and pro-
cessor time for theory construction are non-parametric. The measure we have
adopted for theory complexity is Number of clauses x Average number of literals
per clause. For both algerithms equality literals in a clause are not counted. As
mentioned earlier, a direct comparison of processor times for the two algorithms
is inappropriate given that their implementations are in different programming
languages. With some degree of experimentation on benchmark problems, it is
possible to obtain an empirical correction factor to account for this difference.
However, for each algorithm, we have preferred to rescale times in proportion to
the time taken by the algorithm to consiruct a theory with background knowl-
edge Bi. The algorithms are comparable on this renormalised scale which avoids
problems of poor correction factor estimates. The theories themselves, along with
actual times taken by each algorithm, can be found in Appendix B. Differences
in the normalising constants for FOIL and Progol provide some indication of the
differences in the speed of execution of either algorithm. A discussion of this is in
the next section.

5 Experimental results and discussion

The results obtained from the experimental design adopted in Section 4 are shown
graphically in Figure 2. Complete tabulations are in Figure 3, and the results of
analysing for significant differences in predictive accuracy are in Figure 4. Methods
of statistical analysis leading to these results are in Appendix C.

We first highlight the following empirical findings. Pregol is able to achieve
significantly higher predictive performance than FOIL with all of the background
knowledge in place (that is, B{). For FOIL the only prominent effect of progressing
from B1 to B{ is a fall in processor time. In contrast Progol theories progressively
have higher predictive accuracy, get simpler, and take less time to construct. While
the gain in processor time for Progol is not nearly as dramatic as those achieved by
FOIL, the trend is nevertheless clear. The actual times taken by FOIL and Progol
to construct theories with background knowledge BI are approximately 5,000
seconds and 117, 000 seconds respectively (see Appendix B). A note of caution
concerning the measure of theory size is in order. Although Progol’s theory sizes
are almost always smaller than those of FOIL, the predictive accuracy of the
former’s theory is not always higher than that of the latter. This appears to be
at odds with the time-honoured Occam principle. Since the measure of predictive

2By “correctly classified” we mean that compounds with pesitive log mutagenicity in the test
set are classified as active, and those with zero or negative values are classified as inactive.

ILP-95, Leuven N

Foil =—
Progol -+
3 | ' Default ~a-- 1
= o Defalt -e
£ | D
3 JUURERURESS s
g 08| _
g
3 07 b |
=
]
&
06 F -
0.5 \)
Bl B2 - ”
Background knowledge
60
o
N
3
o
g
==
=
0 . .
B o B3 B4
Background knowledge
2 T
]
E
=

B1 B2 3 -
Background knowledge

Figure 2: Comparative statistics of FOIL and Progol theories shown graphically.
Accuracy estimates are from a 10-fold cross-validation. Theory Size is (Number
of clauses) x (Average number of literals per clause). Time for each theory is
normalised against time taken to construct theory with background knowledge
B1,

208 - ILP-95, Leuven

Background Theory Description
Knowledge Accuracy Size Time
FOIL Progol FOIL | Progol FOIL Progol
Bi 0.61 (0.06) | 0.76 (0.03) | 24 243 | 1LOx10° | 1.0x 100
Bz 0.61 (0.06) | 0.81 (0.03) | 49 11.2 1.8x10° | 55x 10~
B3 0.83 (0.03) | 0.83 (0.03) { 5¢ 111 | 1.0x10™* | 3.6 x 10~
B4 0.82 (0.03) | 0.88 {0.02) | 46 9.9 1.0x 10™* | 3.5 x 10~

Figure 3: Comparative statistics of FOIL and Progol theories for 188 mutagenic
compounds. Estimated standard error is shown in parentheses after accuracy
value. Size of final theory shown is (Number of clauses) x (Average number of
literals per clause). Time for each theory is normalised against time taken to
construct theory with background knowledge Bi.

Background Krowledge Accuracyrorn — Accuracyprogst Difference Significant?

B1 —0.15 v
B2 —0.20 v
Bs 0.00 x
B4 ~0.06 v

Figure 4: Results of analysing for significant differences in predictive accuracy of
FOIL and Progol theories. The analysis is done using McNemar'’s test for changes.

+/ indicates difference is significant, and x that difference is not significant at
P =0.05. :

accuracy is statistically sound, we suspect that the measure for theory size is far
from optimal.

5.1 A discussion of FOIL

Overall, the performance of FOIL on this problem is indifferent, with theories ob-
tained with B and B2 predicting worse than a default guesser. An evaluation
of the chemical principles® underlying the clauses has proved difficult given their
overly complex nature. The lack of any clear gain in predictive accuracy or sim-
plicity largely detracts from the time improvement. We have noticed two factors
that could contribute to this behaviour. First, FOIL appears to have a tendency to

3By R. D. King in consultation with colleagues at Imperial Cancer Research Fund.

B bl 4 ol it sl

ILP-95, Leuven - 209

over-specialise. This is apparent in the coverage of positive and negative examples
of FOIL clauses listed in Appendix B. Second, the algorithm’s heuristics appear to
bias it strongly in favour of including literals that perform numerical comparisons.
‘We illustrate this with a simple example. Consider learning the target clause:

p(X) :- sine(X,Y), Y < 0.

Positive examples of this concept are angles whose sine values lie on or below
the X axis. Negative examples are all those angles whose sine values are above
this axis.

Given 33 examples from the range [—-27°, 27°], {one example every %, where
the notation 1° represents 1 radian) and tabulations of sire values as background

]

knowledge (again, once every Z-) FOIL constructs the theory shown below:

p{A) - A>2.749.
p(A) - A<0, A>-3.534,
p(A) - A<-6.283.

Experimenting with examples over longer periods of the sine function appears
to do little to change this bias. With 1601 examples from the range [—1007¢, 1007°]
(and correspondingly increasing the size of the sine table in background knowl-
edge), 2 101 clause definition is found in less than 3 seconds. A fraction of this is
shown below:

p(A) - A>310.621.

p(A) - A<307.875, A>304.34.
p(A) - A<301.59, A>298.059.
p(A) - A<295.309, A>291.773.
p(A) - A<289.023, A>285.492.
p(A) - A<282.742, A>279.207.
p(A) :- A<276.457, A>272.926.

The clauses obtained on the mutagenicity data are not unlike the ones above,
as they consist largely of interval-tests on the numeric quantities logP and ey aro.
In contrast, Progol satisfactorily finds the target concept.

5.2 A discussion of Progol

Progol demonstrates a clear tendency towards an improved performance on the
scales of predictive accuracy, complexity and time. Recall that any clause found
by Progol is the result of an admissible search through a restricted portion of the
subsumption lattice. For single-clanse theories, this search technique guarantees
that there is no shorter clause (measured by the number of literals) explaining the

210) ILP-95, Leuven

set of examples. For such theories at least, new predicate definitions added to the
background knowledge can at best allow for a consistent clause with fewer literals
than one obtained without these definitions. Since Progol is guaranteed to find
such a clause, the complexity of the result can only decrease. Unfortunately, this
reasoning does not extend to theories that consist of more than one clause (as is
the case with the mutagenicity data). For these, all we can say is that it is not
unreasonable to expect that augmenting the background knowledge with highly
relevant predicates would lead to fewer clauses, each explaining more posifive
examples. This trend is observed more clearly in the Progol theories than the
FOIL ones. The high coverage, along with the high training accuracy required
by the constraints given to Progol (see Appendix B) provide sufficient statistical
reason to expect a correspondingly high predictive accuracy for each clause in the
theory [1].

Given the nature of Progol’s complete search, there appears to be no reason to
expect a decrease in processor time. For the data here, Progol benefits from the
fact that the background predicates are sufficiently powerful to allow very short,
large coverage clauses. This allows the algorithm to dismiss (admissably) signifi-
cant porfions of the subsumption lattice that consist of longer clauses with same
or less coverage. Of the two algorithms, FOIL's times for theory construction are
considerably less than Progol’s. Particularly striking are the FOIL times for back-
ground knowledge B3 and B{ (0.5 seconds). We suspect that this is largely due to
the bias for numerical comparisons highlighted earlier. It is difficult to make any
direct comparison of the normalising constants mentioned earlier, given Progol’s
search strategy, its use of intensional background knowledge and implementation
in the Prolog language. Our initial comparisons suggest that on small artificial
datasets, a C version of Progol is about 5 times faster than the Prolog encoding. If
this difference is rigorously shown to hold on large problems such as the one here,
then the results here suggest that where no numerical comparisons are performed
(with background knowledge B1) FOIL would be about 5 times faster than a C
version of Progol.

We conclude this discussion by examining more closely the nature and con-
sequences Progol’s search technique. For simplicity, we consider the construction
of definite clauses with at most 3 negative (body) literals. Further, background
knowledge is restricted to atoms (including their partial charges) and bonds only.
Recall that atom and bond definitions are encoded as ground unit clauses of the
form:

atm(compound,atom,element,atomtype,charge), and
bond(compound,atom1,atom2,bondtype)

The language restrictions considered here force compound, atom, efoml and
atom2 to be variables, and the rest to be constants. These restrictions are slightly
more stringent than those used by Progel with background knowledge BI, which

ILP-95, Leuven 211

allows for clauses that leave partial charges unspecified. Hypothesised clauses with
the restrictions here look like:

active(A) :- atm{A,B,c,22,-0.142).
active(A) :- atm(A,B,c,22,-0.142), atm(A,B,h,3,0.144).
active(A) :- atm(4A,B,c,22,-0.118), bond(A,D,E,1), bond(4,E,B,7).

For the purposes of analysis, it is convenient to think of each atm/5 definition
as being equivalent to one that has the form:

atm(compound,atom,atype)

where each tuple of element, atomiype, charge maps to a unique constant. First
consider the space of all possible definite clauses with at most 3 negative literals.
The tree-diagram in Figure 5 shows the choices available when selecting these
literals.

The 188 compounds considered in this study have 584 unique element, atom-
type, charge tuples and 6 bond types. Denoting the number of ways of selecting n
items from m objects as ™Cy,, inspection of the tree-diagram shows that the num-
ber of clauses with exactly 1 negative literal is 3%4C; +8C, with exactly 2 negative
literals is approximately ®84C; + 584C; -8C; 4 584C, .60, +-2.5C,, and with exactly 3
negative literals is approximately 534C;+-3.584C, .6 +5.584C, .6C, +-4.6C5. The
calculations show that the total number of clauses of at most 3 literals is therefore
& 3.5 x 107. The approximations over-correct for choices that result in equivalent
combinations of literals, and thus result in an under-estimate of the number of
clauses. For example, the calculation only accounts for those combinations of aim
literals where the types are distinct. This need not necessarily be the case. Pro-
gol does not search all of this space. Instead, an example is selected at random
and the most specific clause, denoted 1, that implies this example {within the
language restrictions imposed) is constructed. Only clauses that subsume L are
then examined by selecting literals from L. For the restrictions adopted here this
procedure translates to randomly selecting an “active” compound, constructing a
1 clause with positive literal active(4) and negative aim and bond literals. An
example 1 would thus look like:

active(A) :-
atm(A,B,c,22,-0.142), atm(A,B,c,22,-0.142),
atm(A,B,h,3,0.144), atm(A,B,c,22,-0.118),
bond(A,D,E,1), bond(A,E,B,7),

Clauses constructed by Progol are obtained by selecting literals from such a
clause. On average, a L clause for the 188 compounds considered here has 26 atm

212 ' ILP-95, Leuven

atm{A,Y,T2)
atm(A,X,T1) < bond(A,X,Y,B1)
bond(A,Y,Z,B1)

atm(A,Z,T3)

bond(A,X,Y,B1)

bond(A,X,ZB1)

N

bond(A,U,V,BI)
bond(A,X,Z,B2)
bond(A,Y,Z,B2)
bond(A,U,V,B2)
bond(A,Y,U,B2)
bond(A,U,V.B2)
bond(A,X,U,B3)

bond(A,X,Z,B2) bond(A,Z,U,B3)

AN/ N

bond(A,X,Y,B1) bond(A,U,V,B3)

bond(A,Z,U,B2) bond(A,V,W,B3)}
Figure 5: Tree-diagram of choices for body literals in clauses with at most 3
negative literals. Paths that result in combinations of literals that are equivalent
{up to a renaming of variables) to others in the tree have been removed.

ILP-95, Leuven 213

literals and 27 bond literals. Thus, on average, Progol looks at 25C; +27¢; clauses
with 1 negative literal, 2°C;+26C, -27Cy +27¢, clauses with 2 negative literals, and
603 4-260,.27C, + 26 -27C +27C;5 clauses with 3 negative literals. This gives a
sum total of & 2.5 x 10* clauses of 2t most 3 negative literals. Therefore, the space
of clauses searched by Progol is on average at least 3 orders of magnitude smaller
than the space of all possible clauses that comply with the language restrictions.
Intelligent pruning should result in further savings. For example, on average,
Progol only constructs = 2500 clauses with background knowledge B1.

In performing this type of search Progel relies largely on assumptions that
both the maximum number of negative literals and the size of L clauses are small.
In the problem considered here, the former has been restricted to 3, and the
latter has been at most 150. Besides these restrictions, using a L clause from a
single example to guide the search for clauses can make it difficult to construct
automatically theories for certain types of concepts. Consider, for example the
following target clause:

p(X) - X>0,X <.

Positive examples of this concept are X values in the intervals [0, 7). Assume
the availability of built-in predicates =< and number/1, and the following deter-
minate definitions for < and > as background knowledge:

X <Y :- number(X), number(Y), !, X =< Y.
X < X :- number(X).

X > Y :- number(X}, number(Y), !, Y =< X.
X > X :- number(X).

The L clause from any positive example p(k) where k lies in the interval [0, 7],
would be:

p(X)-X >k X<k

Inequality tests in all clauses that subsume such a L claunse will only involve the
chosen constant k. Since interval expressed in the target clause requires the pres-
ence of 2 constants (0 and «), Progol will be unable to construct any approxima-
tion to the concept. A possible solution to this problem is to use non-determinate
definitions of < and >:

X <Y - float(X), float(Y), X =< Y.
X <Y :- float(X), float(Delta), Y is X + Delta.

X > Y :- float(X), float(Y), !, Y =< X.

214 ILP-95, Leuven

X 2 Y :- float(X), float(Delta), Y is X — Delta.

float(X) :- number(X), !
float(X) :- member(X,[0,0.1,0.2,0.4,0.8,1.6,3.2,6.4]).

This allows L clauses of the form:

p(X) -

Given an appropriate positive example, Progol can now find subsuming clauses
that approximate the target clause. Clearly, there are limits to which such an
approach can be pursued.

6 Conclusion

The ability to include and use logical specifications of prior knowledge is a charac-
teristic feature of all modern ILP systems. This should allow a form of automated
data analysis that benefits from well-established scientific and engineering knowl-
edge. In this paper a classic chemistry problem forms the basis for examining the
exploitation of such knowledge by two prominent ILP systems: FOIL and Progol.
By incrementally providing both algorithms with more chemical knowledge, we
have sought to examine their performance along yardsticks of predictive accuracy,
theory complexity and theory construction time. Our results suggest that while an
improvement in performance is possible, the FOIL algorithm is unable to achieve
this. This seems in part, at least, due to the heuristics employed in its search for
consistent hypotheses.

A surprising empirical finding for this domain is that good results are obtain-
able by using an admissible search. That such a search is even tractable is not
apparent @ priori from the molecular structure of the compounds considered, as
demonstrated by the simplified analysis at the end of the previous section. For
Progol tractability appears to result from restricting the search space using a
clause that is guaranteed to imply at least one example. Given that the language
constraints employed in constructing this clause (Appendix B) are not unduly re-
strictive, the results suggest that admissible search using a Progol-type approach
may be feasible for other problems.

In the absence of an accepted theoretical model to predict the performance of
ILP systems, empirical evidence of an algorithm’s ability to construct simple and
accurate theories in reasonable time supports its claim for a role in the analysis
of scientific and engineering data. Clearly, the restriction to ground definitions of
background knowledge can severely restrict the use of FOIL. In cases where this
restriction is crippling, a variant of FOIL that permits background knowledge to

ILP-95, Leuven 215

be arbitrary logic programs (for example, FOCL [9]) could prove to be more use-
ful. For the problem considered here, the restriction to ground-level definitions has
not proved to be an impediment. However the results suggest that care should be
exercised when dealing with numerical data, as FOIL has a tendency to construct
theories that exclusively involve the use of numeric inequalities. Equally, should
such be the nature of theories required, then Progel would have considerable dif-
ficulty in constructing them. To this extent, the each algorithm has something to
offer the other.

Acknowledgements

This research was supported partly by the Esprit Basic Research Action ILP
(project 6020}, the SERC project ‘Experimental Application and Development
of ILP’ and an SERC Advanced Research Fellowship held by Stephen Muggleton.
Stephen Muggleton is also supported by a Research Fellowship of Wolfson College
Oxford. Ross King is supported by the Imperial Cancer Research Fund. Thanks
are due to Rui Camacho and David Page for discussions on Pregol. The authors
also acknowledge helpful comments made by the anonymous referees of this paper.

References

[1] J. Cussens. Bayes and Pseudo-Bayes Estimates of Conditional Probabilities
and their Reliability. In European Conference on Machine Learning. Springer-
Verlag, Berlin, 1993.

[2] A.K. Debnath, R.L Lopez de Compadre, G. Debnath, A.J. Schusterman,
and C. Hansch. Structure-Activity Relationship of Mutagenic Aromatic and
Heteroaromatic Nitro compounds. Correlation with molecular orbital energies
and hydrophobicity. Journal of Medicinal Chemisiry, 34(2):786 — 797, 1991.

[3] B.S. Everitt. The analysis of contingency tables. Chapman and Hall, London,
second edition, 1992,

[4] R. King, S. Muggleton, and M.J.E. Sternberg. Drug design by machine learn-
ing: The use of inductive logic programming to model the structure-activity
relationships of trimethoprim analogues binding to dihydrofolate redictase.
Proc. of the National Academy of Sciences, 89(23):11322-11326, 1992.

[5] S. Muggleton. Inductive logic programming. New Generation Compuiing,
8(4):295-318, 1991.

[6] S. Muggleton. Inductive logic programming: derivations, successes and short-
comings. SIGART Bulletin, 5(1):5-11, 1994.

216 ILP-95, Leuven

{7} S. Muggleton. Inverse Entailment and Progol. New Gen. Comput., 13:245~
286, 1995.

(8] S. Muggleton, R. King, and M. Sternberg. Predicting protein secondary
structure using inductive logic programming. Protein Engineering, 5:647—
657, 1992.

[9] M. Pazzani and D. Kibler. The role of prior knowledge in inductive learning.
Machine Learning, 9:54-97, 1992.

[10] J. R. Quinlan. FOIL: a midterm report. In Buropean Conference on Machine
Learning. Springer-Verlag, Berlin, 1993.

(11} J.R. Quinlan. Learning logical definitions from relations. Machine Learning,
5:239-266, 1990.

[12] A. Srinivasan, S.H. Muggleton, R.D. King, and M.J.E. Sternberg. Mutagen-
esis: ILP experiments in a non-determinate biological domain. In S. Wrobel,
editor, Proceedings of the Fourth International Inductive Logic Programming
Workshop. Gesellschaft fur Mathematik und Datenverarbeitung MBH, 1994.
GMD-Studien Nr 237,

(13] D. Villemin, D. Cherqaoui, and J.M. Cense. Neural network studies: quanti-
tative structure-activity relationship of mutagenic aromatic nitro compounds.
J. Chim. Phys, 90:1505-1519, 1993.

[14] S.M. Weiss and C.A. Kulikowski. Computer systems thai learn. Morgan
Kaufmann, San Mateo, CA, 1991.

A Some elementary chemical concepts defined in

terms of the atom and bond structure of molecules

The following are Prolog definitions for some simple chemical concepts that can
be defined directly using the atomic and bond structure of a molecule.

% In the following QUANTA bond type 7 is aromatic.

% Three benzeme rings connected linearly

anthracene(Drug, [Ringl ,Ring2,Ring3]) :-
benzens(Drug,Ring1), benzene(brug,Ring?2),
Ringl ¢> Ring2, interjoin(Ringi,Ring2,Joini),
benzene (Drug,Ring3), Ringl @> Ring3,

Ring2? @> Ring3, interjoin(Ring2,Ring3,Join2),

\+ interjoin(Joini,Join2,_), \+ members_bonded{Drug,Joinl,Join2) .

ILP-95, Leuven) 217

% Three benzene rings comnnected in a curve
phenanthrene(Draug, [(Ringl,Ring?2,Ring3]) :-
benzene (Drug,Ringl), benzene(Prug,Ring2),
Ringi €> Ring2, interjoin(Ringl,Ring2,Joint),
benzene (Drug,Ring3), Ringl ¢> Ring3,
Ring2 @> Ring3, interjoin(Ring2,Ring3,Join2),
\+ interjoin(Joini,Join2,_), members_bonded (Drug,Joint,Join2}.

% Three benzene rings comnected in a ball

ball3(Drug, [Ringi,Ring2,Ring3]) :-

: benzene (Prug,Ringl), benzene(Drug,Ring2),
Ringl @> Ring2, interjoin(Ringl,Ring2,Jeini),
benzene (Drug,Ring3), Ringl €> Ring3,

Ring2 0> Ring3, interjoin(Ring2,Ring3,Jein2),
interjoin{(Joini,Join2,_).

% A pair of commnected rings

members_bonded(Drug,Joinl,Join2) :-
member{(J1,Joinl), member({J2,Join2),
bondd (Drug,J1,J2,7).

% A ring with 6 atoms
ring_size_6(Drug,Ring list) :-
atoms (Drug,6,Atom_list,_), ring6{Drug,Atom list ,Ring_list,_).

% A ring with 5 atoms
ring size_5(Drug,Ring list) :- .
atoms (Drug,5,Atom_list,_), ring§ {Drug,Atom_list,Ring list,).

% benzens - 6 membered carbon aromatic ring
benzene(Drug,Ring_list) :-
atons (Drug,6,Atom_list, [¢,c,¢,¢,¢,c]),
ring6(Drug,Atem_list,Ring list,[7,7,7,7.7,71).

% b membered carbon aromatic ring

carbon_5_aromatic_ring(Brug,Ring list) :-
atoms(Drug,5,Atom_list,lc,c,c,c,c]),
ringb(Drug,Atom_list ,Ring_list,[7,7,7,7,71).

% 6 membered carbon arematic ring
carbon_6_ring(Drug,Ring_list) :-
atoms (Drug,6,Atom_list, [¢,c,c,c,¢c,c]),
ring6(Drug,Atom_list ,Ring_list,Bond_list),
Bond_list \== [7’7 97,7 ,7s7] -

218 ILP-95, Leuven

% 5 membered carbon non-aromatic ring
carbon_5_ring (Drug,Ring list) :-
atoms (Drug,5,Atom_list, [c,c,c,c,c]),
ring5(Drug,Atom_list,Ring list,Bond_list),
Bond_list \== [7,7,7,7,7].

% 6 membered aromatic ring
hetero_aromatic_6_ring(Drug,Ring_list) :-
atoms (Drug,6,Atom_list ,Type_list),
Type_list \== [¢,c,¢ 1C,¢,¢],
ringé(Drug,Atom_list ,Ring_list,[7,7,7,7,7,71).

% 5 membered aromatic ring
hetero_aromatic_5_ring(Drug,Ring list) :-
atoms (Drug,5,Atom_list ,Type_list),
Type_list \== [c,c,¢,c,¢],
ring5(Drug,Atom_list ,Ring_list,[7,7,7,7,71).

% non hydregen atome in a drug and their types

atoms (Drug,1, [Atom],[T]) :-
atm(Drug,Atom,T,_,_),
T \== h.

atoms {Drug,N1,[Atomi| [Atom2|List_all,[T1I[T2IList_t]]) :-
Ni>1, N2 is N1 - 1,
atoms (Drug,N2, [Atom2|List_al,[T2]|List_t]), atm(Drug,Atomt,T1,_,_),
Atoml ¢> Atom2, Ti1 \== h.

% 6 atoms conmected together to form a rimg structure

ringé (Drug, [Atom1|List], [Atoml,Atom2,Atom4, Atom6,Atom5,Atom3],
[Typel,Type2,Type3,Type4,Type5 ,Types]) :- _
bondd (Drug,Atomi,Atom2,Typel) , memberchk(Atom2, [Atom1|List]),
bondd (Drug,Atomi,Atom3,Type2), memberchk(Atom3, [Atom1|List]),
Atom3 €> Atom2, bondd(Drug,Aitom2,Atomé,Type3),
Atomé \== Atoml, memberchk{Atoms, [Atomi|List]),
bondd (Drug ,Atom3,Atomb,Type4), Atom5 \== Atomi,
membexrchk (Atoms, [Atoml [List]), bondd(Drug,Atomé,Atomé,Types),
Atom6 \== Atom2, memberchk(Atom6, [Atoml{List])},
bondd (Drug ,Atom5,Atom6 , Type6), Atom6 \== Atom3.

% 5 atoms connected together to form a ring structure
ring5 (Dxug, [Atom1|List],[Atomi ,Atom2,Atomd,Atom5,Atom3] ,
[Typel,Type2,Type3,Typed,Typesl) :-

bondd (Drug,Atoml,Atom2,Typel) , memberchk(Atom2, [Atoml|List]),
bondd (Drug,Atoml,Atom3 ,Type2), memberchk(Atom3,[Atomi|List]),
Atom3 €> Atom2, bondd(Drug,Atom2,Atomé,Type3),

ILP-95, Leuven 219

Atom4 \== Atomi, membexrchk(Atom4, [Atomi|List]),

bondd (Drug,Atom3,Atom5,Typed), Atomb \== Atomi,
memberchk(Atom5, [Atoml{List]), bordd(Drug,Atoms,Atom5,Typeb),
Atom5 \== Atom2.

% drug has a nitro group

\ nitro(Drug,Atom0,Atomi,Atom2,Atom3]) :-

’ atm(Drug,Atomi,n,38,), bondd(Drug,Atom0,Atoml,1},
bondd (Drug,Atomi,Atom2,2) , atm{Drug,Atom2,0,40,),
bondd (Drug,Atomi,Atom3,2), Atom3 €> Atom2,
atm(Drug,Atom3,0,40,).

% drug has a methyl group

methyl(Drug, [Atom0,Atoml,Atom2,Atom3,Atomi]) :~
atm(Drug,Atomi,c,10,_}, bondd(Drug,Atom0,Atoml,1),

' atm{Drug,Atom0,Type,_,_)}, Type \== h,

bondd (Drug,Atomi,Atom2,1), atm(Drug,Atom2,h,3,),

bordd (Drug,Atoml,Atom3,1), Atom3 ¢> Atom2,

atm(Drug,Atom3,h,3,_), bondd(Drug,Atoml,ftoms,1),

! Atom4 0> Atom3, atm(Drug,Atoms,h,3,_). -

% utility predicate for intersection of two sets of atoms
interjoin(A,B,C) :-
intersection(4,B,C}, C \== [].

. % bonds are commutative
bondd (Dreg,Atoml,Atom2,Type)} :- bond(Drug,Atom2,Atomi,Type}.

member (X,[X]_1).
member(X,[_!T}) :- member(X,T).

% a pair of rings are commected
connected(Ringl ,Ring2) :~
Ringl \= Ring2, member(Atom,Ringl),
member (Atom,Ring2), !.

B Constraints used and theories obtained

B.1 Constraints used by FOIL

Default settings were used for all optional parameters used by FOIL. Type and
functional constraints -on the background predicates are as in Figure 6. Type
definitions are either enumerations of the ground terms in the success set of the

220

ILP-95, Leuven

background knowledge, or are ‘continuous’ types. The type definitions used allow
constants to appear in clauses. This appears to be of importance only to results
with background knowledge BI and B2.

Predicate FOIL constraint

atm/5 atm(drug,atomid,element,atype,charge) # - - - -
bond /4 bond(drug,a.tomid,a.tomid,bt.ype) #H--
lumo/2 lumo{drug,energy) # -

logp/2 logp(drug,hydrophob) # -

anthracene/2 anthracene(drug,ringnum) # -

ball3/2 ball3(drug,ringnum} # -

benzene/2 benzene(drug,ringnum) # -

carbon.5_aromatic_ring/2
carbon.8.ring/2
connected /2
hetero_aromatic_5_ring/2
hetero_aromatic_6.ring/2
member/2

methyl/2

nitro/2

phenanthrene/2
ring.size 5/2

ring-size 6/2

carbon_5_aromatic_ring(drug,ringnum) # -
carbon_6.ring{drug,ringnum) # -
connected(ringnum,ringnum}
hetero_aromatic §_ring(drug,ringnum) # -
hetero_aromatic.6_ring(drug,ringnum) # -
member(ringnum,ringnum) - #
methyl(drug,ringnum) # -
nitro(drug,ringnum) # -
phenanthrene(drug,ringnum) # -
ring_size 5(drug,ringnum) # -
ring_size_6(drug,ringpum) # -

Figure 6: Constraints for FOIL.

B.2 Constraints used by Progol

For Progol a hypothesis language £ is defined in terms of

o Mode declarations which state the ‘forms’ that atoms in hypothesis can take

in terms of

— the places where variables are allowed an whether they are inputs or

outputs (indicated by + or —);

the places where constants are allowed (indicated by #);
the types of these variables and constants; and

the degree of indeterminacy when making such a call to the background
knowledge. This is either a number or * meaning finite but unbounded

recall of the goal.

e the maximum number of layers of variables introduced by atoms in the body
of the clause from variables in the head of the clause; '

%
3

ILP-95, Leuven 221

o the acceptable level of consistency in terms of the maximum number of neg-
atives that can be covered by any clause; and

o the maximum cardinality of any clause.

For the mutagenesis problem, £ is defined in Figure 7.

In addition to the structural definitions, Progol was also provided the following
information as background knowledge. These concern type-definitions and defini-
tions for inequalities. - FOIL was provided with type declarations to achieve the
same effect, and inequalities are built-in predicates for that algorithm.

% compounds are named by an alphabet followed by a number
compound(D):~

name{(P, [_|X]), name (Num,X), int (Num),

Num >= 1, Num =< 230, !.

% atoms are identified by the compound name, followed by an "_ ",
% followed by a unique numbex
atomid(a):-
" mname(&,[_|X]), append(Z,[95|Y],X), name(Ni,Y),
name(N2,Z), int (N1}, int(N2), o
N2 >= 1, N2 =< 230, N1 =< 500, !.

append{([1,4,4).
append ([H[T] .4, [RIT1]):-
append(T,4,T1).

% charge, epsilon lumo and log P are all floating point numbers.
charge(X): - '
number (X).
energy(X):-
number (X).
“hydrophob(X) :—
number (X} .

% chemical elements comprising the atoms
element(br). element(c). element(cl). element(f). element(h).
element(i). element(n). element(o). element(s).

% inequality definitions
gtaq(I,Y) =
not (var(X)), not(var(Y)), !,
aunber (X), number (Y},
X > Y.
gteq(X,X):~
not (var(X)),

222 ILP-95, Leuven

Mode declarations mode(*,bond(+compound,—a.tomid,—atom.id,#i.nteger)) 5
mode(*,bond(+compound,-—atomid,+atomid,#integer)) o
mode(*,bond(+compound,+atomid,—-a.tomid,#'mteger)) P
mode(*,bond(-l-—compound,+atomid,+atomid,#integer)) H
mode(#,atm(*,+compound,+a.tom.id,#element,#integer,-charge)) o
mode(*,atm(*,+compound,—atomid,#element,#integer,-charge)) i
mode(1,(+charge)=(#charge}) _ o
mode(1,Jumo(+compound, —energy)
mode(l,logp(+compound,—hydrophob))
mode(1,gteq(+charge, #number))
mode(1,gteq(+energy,ffnumber)) |
mode(1,gteq(+hydrophob,#number)) .
mode(1,lteq(+charge,#number)) :
mode(1,lteq(+energy,#tnumber)) . ;
mode(1,lteq{+hydrophob,ffnumber))
mode(+,benzene(+drug,~ring))
mode(*,carbon_5._aromatic_ring(+drug,—ring)}
mode(*,carbor 6 ring(+drug,~ring))
mode(*,hetero_aromatic_6_ring(+drug,~ring)) |
mode(*, hetero_aromatic_5_ring(-+drug,—ring))
mode(*,ring.size_6(+drug,—ring))
mode(+,ring size_5(+drug,—ring))
mode(*,nitro{+drug,—ring))
mode(*,methyl(-+drug,—ring))
mode(*,anthra.cene(+dmg,—ringlist))
mode(*,phenenthrene(+drug,—ringlist)}
mode(*,ball3(+drug, —ringlist))
mode(1,member(+ring,+ringlist))
mode(l,connected(+ring,+ri.ng))

Depth of variables 2 i .
Meaximum negatives 5
Maximum literals 4

b

Figure 7: Language constraints for Progol.

ILP-95, Leuven) 223

numbex (X) .

1lteq(X,Y):~
not (vax (X))}, not(var(Y)), !,
number (X), number(Y),
X =<1.
1teq(X,X):~
not{var(X)),
number (X).

B.3 Theories obtained from FOIL
Background knowledge B1

Coverage: 41 positive examples, 0 negative examplas
active(4) :-

atm(i,B,C,27,E), atm(A,F,C,27,6G),

B \= F, not(bond(a,B,F,H)),

not(bond(4,F,B,I)).

Coverage: 42 positive examples, 0 negative examples
active(4) :-

atm(A,B,C,D,E), atm(4,F,C,29,H),

D \= 29, E \= 0.006, H \= 0.002,

B \= -0.125, E \= -0.113, E \= -0.116, H \= -0.007.

Coverage: 4 positive examples, 0 negative examples
active(d) :- atm(i,B,C,D,0.118).

Coverage: 6 positive examples, 1 negative example
active(d) :- atm(A,B,C,D,-0.1186).

Coverage: 3 positive examples, 0 negative examples
active(4) :- atm(A,B,C,D,-0.148).

Coverage: 2 positive examples, 0 negative examples
active(A) :- atm(A,B,C,D,-0.117).

Time 4950.3 secs

Background knowledge B2

Coverage: 48 positive examples, 0 negative examples
active(a) :-

224

ILP-95, Leuven

atm(4,B,C,D,E),
atm{(4,F,C,G,H),
E > -0.123,

E =< -0.108,
H>-0.113,

H =< 0.013,
D \= @G,
G \= 27.

Coverage: 39 positive examples, 0 negative examples
active(4) :~

atm{4,B,C,D,E),
atm(A,F,C,G,H),
H>-0.12,

H =< -0.108,
atm(A,I,¢,D,J),
E =< 0.021,

E> -0.111,

J =< -0.085.

Coverage: 16 positive examples, 1 negative example
active(4) :-~

atm(A,B,C,D,E),
E =< 0.025,
E > 0.017.

Coverage: 67 positive examples, 0 nsgative examples
active(d) :-

bond(A,B,C,D),
atm{A,B,E,F,5),
atm(A,C,H,I,J),
atm(A,K,E,L,M),
F\=1,

J=< -0.069,

J > -0.097,

@> -0.012.

Coverage: 12 positive examples, 0 negative examples
active(d) :~

bond(4,B,C,D),
atm(4,B,E,F,G),
atm(4,H,E,1,J),
G =< -0.134,

G > -0.167,

J=< -0.14.

T S T e e

ILP-95, Leuven) 225

Coverage: 7 positive examples, 1 negative example
active(d) :-

atm(4,B,C;D,E),

atin(4,F,G,H,I),

E> -0.115,

E =< -0.114,

I=< 0.145,

I>-0.084.

Coverage: 8 positive examples, 1 negative example
active(d) :-

atm(A,B,C,D,E},

E =< -0.1186,

E > -0.118.

Time 9138.0 secs

Background knowledge B3

Coverage: 66 positive examples, 0 mnegative exa'mples
active(A) :- lumo(A,B), logp{i,C), B<=-1.522, €<=6.79, ¢>3.26.

Coverage: 43 positive examples, 0 negative examples
active(4) :- lumo{4,B), B<=-2.142.

Coverage: 8 positive examples, 0 megative examples
active(A) :- lumo(4,B},: logp(4,C), ¢>3, B>-1.451, B<=-1.329.

Coverage: 8 positive examples, 0 negative examples.
active(A) :- lumo(4,B), logp(4,C), C>3.77, B<=-1.151, B>-1.276.

Coverage: 13 positive examples, 0 negative examples
active(A) :- lumo(A,B), logp(A,C), B<=-1.749, C<=2.58, ¢>1.89.

Coverage: 3 positive examples, 0 negative examples
active(a) :- lumo(A,B), logp(4,C), €<=3.06, C>3, B<=-1.861.

Coverage: 3 positive examples, 0 negative examples
active(d) :- lumo(&,B), B>-1.491, B<=-1.487.

Coverage: 4 positive examples, 1 negative example
active(A) :- lumo(4,B), logp(a,C), B>-1.228, B<=-1.161, C<=3.06.

Coverage: 8 positive examples, 0 negative examples
active(A) :~ lumo(A,B), logp(A,C), B>-1.474, C>4.49.

ILP-95, Leuven

Coverage: 4 positive examples, 0 negative examples
active(d) :- lumo(A,B), logp(4,C), B<=-1.749, C<=1.84, 0>0.47.

Time 0.5 secs

Background knowledge BJ

Coverage: 66 positive examples, 0 negative examples
active(A) :— lumo(4,B), logp(A,C), B<=-1.522, €<=6.79, £>3.26.

Coverage: 43 positive examples, 0 negative examples
active(ld) :- lumo(i,B), B<=-2.142.

Coverage: B positive examples, 0 negative examples
active(A) :- lumo(A,B), logp(4,C), C>3, B>-1.451, B<=-1.329.

Coverage: 19 positive examples, 0 negative examples
active{d) :- carbon_6_ring(a,B}.

Coverage: 14 positive examples, 0 negative examples
active(d) :- lmmo(i,B), logp(4,C), €>2.03, B<=-1.102, €<=2.58.

Coverage: 8 positive examples, 0 negative examples

active(d) :- lumo(A,B), logp{(A,C), not(methyl(4,D)), B>-1.286, C>3.77.

- Coverage: 29 positive examples, 0 negative examples:
active(A) :- ball3(4,B).

Coverage: 8 positive examples, 1 negative example
active(A) :- lumo(A,B), B<=-1.102, B>-1.228, not (methyl(4,6)).

Coverage: 48 positive examples, 0 negative examples
active(d) :- lumo(A,B}, logp{A,C), B<=-1.304, ring_size 5(A,D

Coverage: 1 positive sxample, 0 negative examples

active(A) :- lumo(A,B), B<=-1, 749, hetero_aromatic_6_ring(A,C). ‘

Time 0.5 Becs

ILP-95, Leuven

227

B.4 Theories obtained from Progol
Background knowledge B

Coverage: 34 pésitive examples, 4 negative examples
active(A) :-
atm(4,B,c,27,C), bond(4,D,E,1), bond(4A,E,B,7).

Coverage: 20 positive examples, 3 negative examples
active(d) :-
atm(4,B,c,27,¢), bond(4,D,E,1), bond(A,F,D,1).

Coverage: 12 positive examples, 0 negative examples
active(4) :- ‘
atm{(4,B,c,195,0).

Coverage: § positive examples, 1 negative examples
active(4) :-—
atm(i,B,h,3,0.144).

Coverage: 26 positive examples, 5 negative examples
active(d) :~
atm(4,B,c,29,C¢), atm(4,D,c,22,E), bond(4,F,D,1).

Coverage: 3 positive examples, 0 negative examples
active(d) :-
atm(4,B,c,22,-0.148).

Coverage: 14 positive oxamples, 2 negative examples
active(d) :-
atm(A,B,h,3,0.146).

Coverage: 9 positive examples, 2 negative examples
‘active(d) :-
atm(d,B,0,40,-0.383).

Coverage: 7 positive examples, 1 negative example
active(d) :-

atm(d,B,h,3,0.149) .

Time 117039 secs

Background knowledge B2

Coverage: 44 positive examples, b negative examples
active(d) :-

228

ILP-95, Leuven

atm(4,B,¢,29,C), gteq(C,0.006).

Coverage: 60 positive examples, 2 negative examples

active(d) :-
atm(4,B,c,27,0), lteq(C,-0.0TS) .

Coverage: 14 positive examples, 2 negative examples
active(4) :-
atm(4,B,h,3,0.146).

Coverage: 15 positive examples, 1 negative example

active(d) :-
atm(A,B,0,40,0), 1teq(C,-0.411).

Time 64256.281 secs

Background knowledge B3

Coverage: 66 positive examples, 5 negative examples

active(d) :- :
atm(A,B,c,27,C), logp(4,D), gteq(D,2 .580).

Coverage: 51 positive examples, 4 negative examples

active(d) :-
atm(A,B,c,29,C), lumo{A,D), 1teq(D,-1.178).

Coverage: 56 positive exémples, 4 negative examples
active(h) :-
lumo{A,B), 1lteq(B,-1.937).

Time 41787.922

Background knowledge B4

Coverage: 68 positive examples, 5 negative examples
active(d) :-
logp(4,B), gteq(B,4.180).

Coverage: 56 positive examplez, 4 negative examples
active(A) :-
lumo(A,B), lteq(B,~1.937).

Coverage: 48 positive examples, 1 negative examples
active(4) :-

ILP-95, Leuven 229

logp(4,B), gteq(B,2.740), ring _size_5(A,C).

Time 40569.875
%

C Analysis tools used for Figures 3 and 4

For reference, we provide a brief description of the analysis tools used to compute
entries in these tables. More information can be found in any standard statistical
textbook on analysing contingency tables (for example, [3]).

Accuracy estimates in Figure 3 are obtained as follows. For each algorithm,
a 2 x 2 tabulation of actual values against those predicted by an algorithm is
obtained as in Figure 8.

Actual
Active Inactive
Active ny ny g
Predicted (e1) (e2)
Inactive ng 4 ny
(es) | (s
T M ng N

Figure 8: A contingency table for estimating predictive accuracy of an algorithm.
ny is the number of compounds known to be active, and predicted as active by
the algorithm, Similarly for the entries 12,34 The number e; is the expected
value of for the Active/Active cell, under the hypothesis that the actual class
is independent of the predicted one. It is calculated from the partial totals as
e1 = {ngn.)/N. Similarly for the entries €2,3 4

Before estimating the predictive accuracy, the first question to answer is whether
there is any association between actual and predicted values. This is adequately
catered for by obtaining the x? value for the table. The relevant formula for this
is as follows:

2 — Gy
X = —
i=1 &
A standard correction for non-continuous numbers (referred to as Yates’ cor-
rection) is introduced by replacing the numbers ny,...,4 by numbers which are 0.5
of a unit less when they exceed the expected value, and 0.5 of a unit more when

they lie below the expected value. The x? probability is obtained from standard
tables with » = 1 degrees of freedom.

230 ILP-95, Leuven

Predicted (4:)
Correct Incorrect

Correct 1 T g

Predicted (Az)
Incorrect ng N4 ny
e ng N

Figure 9: Cross-comparison of the predictions of a pair of algorithms Ay n1 is
the number of compounds whose class is correctly predicted by both algorithms.
Similarly for the eniries n2 3 4. .

A high x? value indicates a low probability of a chance association between
predicted and actual values. In this study, we have stipulated that this probability
is no more than 0.05. That is, x? values must be at least 3.84. The predictive
accuracy for theories that satisfy this constraint is then estimated as p = (n1 +
n4)/N. The error in this estimate is ++/pg/N where ¢ =1 - p.

McNemar’s test for changes is used to obtain the significance results in Figure 4.
For a pair of algorithms, this is done by cross-comparison the compounds correctly
and incorrectly classified as shown in Figure 9. The null hypothesis is that the
proportions of examples correctly classified by both algorithms is the same. If
there is no significant difference in the performance of the two algorithms, half
of the iy + ng cases whose classifications disagree should be classified correctly
by A; and A respectively. Because of small numbers, we directly estimate the
probability of a chance classification of n2 and ns, using the binomial distribution.

