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Abstract

It is important for a learning program to have a reliable method of
deciding whether to treat errors as noise or to include them as exceptions
within a growing first-order theory. We explore the use of an information-
theoretic measure to decide this problem within the non-monotonic learn-
ing framework defined by Closed-World-Specialisation. The approach adopted
uses a model that consists of a reference Turing machine which accepts an
encoding of a theory and proofs on its input tape and generates the ob-
served data on the output tape. Within this model, the theory is said to
“compress” data if the length of the input tape is shorter than that of the
output tape. Data found to be incompressible are deemed to be “noise”.
We use this feature to implement a compression-guided specialisation pro-
cedure that searches for the best-fitting theory for the data (that is, the
one with the shortest input tape length). The approach is empirically eval-
uated on the standard Inductive Logic Programming problem of learning
classification rules for the KRK chess end-game.

1 Introduction

Induction is an uncertain process. Scientific theories are ascribed various degrees
of belief depending on how well they agree with known facts. As new information
becomes available certain hypotheses may seem more likely and others less so.
For instance consider the Julian calendar in which leap years were held to be
necessary once every 4 years. This can be represented in Prolog with negation
by failure as



normal(Year) :- year(Year), not leap4(Year).
leapj(Year) :- modulo(Year,4,0).

This rule is correct up to around one part in a hundred and so up until 1582
errors could simply be treated as noise. However after 1500 years the mismatch
with astronomical measurements forced a revision of the calendar under Pope
Gregory XIII. In the Gregorian calendar the rules can be written as follows.

leapj(Year) :- modulo(Year,4,0), not leap100(Year).
leap100(Year) :- modulo(Year,100,0), not leap400(Year).
leap400(Year) :- modulo(Year,400,0).

The aim of Inductive Logic Programming (ILP) is to automate the construc-
tion and revision of logical theories by using example facts and background
knowledge [17]. In the case above, examples are of the form normal(1581) or
not(normal(1582)) and background knowledge would contain a definition of mod-
ulo. ILP methods based on closed-world specialisation [3] would progressively
specialise the overgeneral clause normal(Year) by inventing (and generalising)
new abnormality predicates (corresponding to leap, leap100 and leap400). This
process is capable of generating the Gregorian calendar theory and has recently
been used to construct a complete and correct solution for the standard KRK
illegality problem from the machine learning literature [2]. However, a key is-
sue remains to be addressed: there is no mechanism by which a non-monotonic
learning strategy can reliably distinguish true exceptions from noise. For exam-
ple, a strategy based on closed-world-specialisation would continue specialising
until a correct theory is obtained. In noisy domains, this will necessarily result
in fitting the noise. In this paper we explore the possibility of using a general
information-theoretic model developed in [18, 21] to help distinguish noise from
true exceptions. An important consequence of adopting this model is that theo-
ries found to be “compressive” (described below) are, with very high probability,
significant. A simple search procedure is developed to find as compressive an
explanation as possible for the data. Its results are evaluated empirically for the
standard ILP problem of learning classification rules in the KRK chess end-game.

2 Information-Theoretic Evaluation of Hypothe-
ses

In the 1950’s Carnap [7] and others suggested “confirmation theories” aimed at
providing a statistical underpinning to the problem of the plausibility of induc-
tive inferences. Various difficulties and paradoxes were encountered with these
approaches which meant that they were never applied within machine learning
programs [16]. Instead, confidence in alternative hypotheses has for the most
part relied on either ad hoc notions of simplicity (the Occam’s razor principle)
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or on statistical tests of significance based on the coverage of a rule and prior
probability estimates of the classes present in the data ([9, 10]).

The choice of the most compact hypothesis is the basis of Rissanen’s “Minimal
Description Length” (MDL) principle[25]. This states that the best theory for
explaining a set of data is one which minimises the sum of:

1. the description length of the theory in bits and
2. the description length of the data when encoded using the theory.

Within machine learning the MDL principle has been applied by [11] to determine
the the best sampling rate for character recognition and by [24] to the problem
of learning decision trees. However, its application to first-order learning remains
largely unexplored. It forms the motivation for the encoding measure used in
[23]. However, the simplifications result in a number of problems (identified in
[10]). Muggleton [18] addresses this issue using a model related to algorithmic
information theory ([26, 13, 8]). In his approach, the significance of a hypothesis
is evaluated by comparing the length of the input and output tapes of a reference
Turing machine. The components to be minimised in the MDIL approach are
represented on the input tape as a Horn clause theory and a proof specification.
The latter specifies how the examples on the output tape are to be derived using
the theory and background knowledge. (Figure 1: from [21]). A theory is deemed

Input tape Output tape
1101, 1011000 T 001110110011101
Logic  Proofs Positive and Negative examples
program

Figure 1: A Turing machine model for learning logic programs

significant if the length of the input tape (in bits) is shorter than that of the output
tape (the theory and proofs are said to compress the data). This model has been
empirically evaluated in [21] and shown to be better suited to learning first-order
theories than the statistical measure used in [9, 10]. In the following section
we describe a method of using the compression obtained from this approach to
guide the progressive correction of first-order theories within a non-monotonic
framework.

3 Compression-Based Non-Monotonic Induc-
tion

We incorporate the Turing machine compression model in Figure 1 within the
non-monotonic learning framework developed by Muggleton and Bain ([3, 2]).



Their technique commences with an over-general logic program. This is then
progressively corrected by a hierarchical decomposition strategy. At each level
negated exception predicates are introduced (and generalised) to account for ex-
ceptions. Figure 2 shows an algorithm that performs the alternate operations of
specialisation and generalisation characteristic of closed-world-specialisation.

It is worth noting here that:

1. As in [15], there is an assumption that the exceptions to a rule are fewer
than the examples that satisfy it.

2. The call to generalise results in an attempt to induce a (possibly over-
general) rule by a learning algorithm.

3. All rules are added to the theory. Further, all negative examples covered
by an over-general clause are taken to be exceptions and the clause is spe-
cialised with a (new) abnormality predicate.

Each correction performed by the CWS algorithm is an attempt to improve the
accuracy of the theory, at the expense of increasing its size. Clearly, if the correc-
tion was worthwhile, the gain in accuracy should outweigh the penalty incurred
in increasing the theory size. In encoding terms, each correction increases the
theory encoding on the input tape and decreases the proof encoding. In the model
in Figure 1, a net decrease in the length of the input tape occurs when the correc-
tion succeeds in identifying some pattern in the errors (that is, the errors are not
noise). The new theory consequently compresses the data further by exploiting
this pattern. Using this feature, we evaluate the utility of updating a theory by
checking for an increase in compression. We note the following consequences of
using the compression model within the non-monotonic framework adopted:

1. Only compressive theories are deemed to be reliable in the model. Thus,
while we can adopt the MDL principle of selecting the theory with the
shortest input tape, we can be confident of not having fitted the noise only
if the theory itself is compressive. Stated differently, we can be confident
that highly compressive theories have avoided fitting the noise as much as
possible.

2. With the closed-world assumption, all examples are covered. Consequently,
the output tape has to be encoded only once. Input tapes for alternate
theories are compared against this encoding.

3. Consider an over-general clause in the current theory. The proof encoding
described in [21] ensures all variables of the clause are bound to ground
terms. Specialising this clause involves adding a negated literal to its body.
By appending this literal to the body, we are guaranteed that it will be
ground. This ensures safety of the standard Prolog computation rule used
by the Turing machine.



start:
PosE = positive examples of target concept
NegE = negative examples of target concept
return learn(PosE,NegE)

learn(Pos,Neg):
ClauseList = ]
repeat
C = generalise(Pos,Neg)
if C £ [
PosC = positive examples covered by C
NegC = negative examples covered by C
Pos = Pos - PosC
Neg = Neg - NegC
ClauseList = ClauseList 4+ (C,PosC,NegC)
until C = []

Theory = ]
foreach (Clause,PosC,NegC) in ClauseList
if [NegC| # 0
Theory = Theory + specialise(Clause,PosC,NegC)
else
Theory = Theory + Clause
return Theory

specialise(HornClause,Pos,Neg):
hd(V4, ..., V,,) = head of HornClause
Body = body of HornClause
ab = a new predicate symbol
SpecialisedClause = hd(V4, ..., V,,) + Body, not(ab(Vy,...,V,))
PosE = positive examples of ab formed from Neg
NegE = negative examples of ab formed from Pos
return SpecialisedClause + learn(PosE,NegE)

Figure 2: Non-monotonic inductive inference using closed-world-specialisation

(CWS)



4. The proof encoding for each example has two parts: a choice-point spec-
ification and a proof tag. Since the negative literal appended to a clause
can never create bindings, the choice-point specification remains unaltered.
The size-accuracy trade-off referred to earlier therefore reduces to a trade-
off between increasing theory size and decreasing tag size. Not having to
recalculate the choice-point encoding for each specialisation is a major ben-
efit as this is an extremely costly exercise.

While the aim is to obtain the most compressive subset of the clauses produced
by the CWS algorithm, it is unnecessary to examine all subsets since clauses
constructed as generalisations of an abnormality predicate cannot be considered
independent of the parent over-general clause. For example, it makes no sense to
consider the following set of clauses for explaining leap years:

normal(Year) :- year(Year), not leap4(Year).
leap400(Year) :- modulo(Year,400,0).

Despite this, there may still be an intractably large number of clause-sets to
consider. Consequently, we adopt a greedy strategy of selecting clauses in order
of those that give the most gain (in compression). This strategy has to confront
two important issues: devising a reliable method of deciding on the “best” clause
to add to the theory and the fact that adding this clause may not produce an
immediate increase in compression.

A simple way to address the first problem is to select the clause that corrects
the most errors. Since decreasing errors is the only way to shorten the input
tape, the gains are larger for theories that make fewer errors. This works well
if all clauses are of approximately the same descriptional complexity. A better
estimate would account for the complexity of individual clauses as well. This can
be done using average estimates of the cost of encoding predicates, functions and
variables. In the experiments in the next section, this more sophisticated estimate
has proved unnecessary. This is because the clauses fitting noisy data tend to
correct fewer errors and therefore, considered later using the simpler estimate.
For the other clauses, the gain from correcting errors dominates the loss from
increased theory size.

To address the problem of local minima, it is clearly desirable to have a
method of looking ahead to see if a (currently non-compressive) clause will be
part of the final theory. To decide this, we calculate an estimate of the compres-
sion produced by the most accurate theory containing the clause. The clause is
retained if this expected compression is better than the maximum achieved so
far. Each time an actual increase in compression is produced, the theory is up-
dated with all clauses that have been retained. Figure 3 shows how the estimate
is calculated. The estimated compression will usually be optimistic because
it it assumes that all errors can be compressed. However within the compres-
sion model adopted, it is extremely unlikely to get any more compression from a



estimate(Theory):
Ncorrect = number of examples correctly classified by Theory
Nmaximum = number of examples that the learner can hope to classify correctly
Outbits = length of output tape (in bits)
OldTheory = length of Theory (in bits)
OldTags = current length of correction tags (in bits)
Choices = length of choice-point encoding (in bits)

NewTheory = OldTheory x Nmaximum / Ncorrect

NewTags = length of correction tags to correctly classify Nmaximum examples
EstInbits = NewTheory 4+ Choices + NewTags

return (Outbits - EstInbits)

Figure 3: Estimating the compression from a theory

theory that is completely correct on noisy data than from an incorrect one that
leaves the noise uncompressed. Of course, one way to guarantee an optimistic
estimate is to assume that there will be no increase in theory size (as opposed to
the current scaled estimate). However, this gives no heuristic power and usually
only prolongs a futile search for a correct theory. Figure 4 summarises the main
steps in the compression-based selection of clauses as described here. The
following points deserve attention:

1. At any given stage, only some clauses produced by CWS are candidates
to be added to the theory (recall the earlier statement that over-general
clauses have to be considered before their specialisations).

2. The “best” clause refers to the clause selected using the simple error-count
measure, or the more sophisticated one that accounts for the estimated
theory increase. To obtain the latter requires a knowledge of the number
of predicate, function and variable symbols in the clause.

3. Consider the situation when the estimated compression from adding the
“best” clause is no better than the compression already obtained. Figure 4
does not acknowledge the possibility that some of the other clauses can do
better. It is possible to rectify this by progressively trying the “next best”
clause until all clauses have been tried.

4. The procedure in Figure 4 is reminiscent of post-pruning in zero-order al-
gorithms (the clauses are constructed first and then possibly discarded).
A natural question that arises is whether it is possible to incorporate the



start:
ClauseList = clauses produced by CWS
return select_clauses(ClauseList)

select_clauses(ClauseList):
Theory = Partial Theory = []
Compression = 0

repeat
PotentialClauses = clauses in ClauseList that can be added to theory
C = “best” clause in PotentialClauses

if C £ [
PartialTheory = PartialTheory 4+ C
NewCompression = compression of PartialTheory
if NewCompression > Compression
Theory = PartialTheory
Compression = NewCompression
else
EstCompression = estimate(PartialTheory)
if EstCompression < Compression return Theory
until C = []

return Theory

Figure 4: Compression-based selection of clauses produced by CWS



% legal(WK_file, WK _rank, WR_file, WR_rank, BK_file, BK _rank)
legal(A,B,C,D,E,F) :- not ab00(A,B,C,D,E,F).
ab00(A,B,C,D,C\E) :- not abl1(A,B,C,D,C\E).
ab00(A,B,C,D,E,D) :- not ab12(A,B,C,D,E,D).
ab00(A,B,C,D,E,F) :- adj(A,E), adj(B,F).
ab00(A,B,A,B,C,D).

ab12(A,B,C,B,D,B) :- lt(A,D), lt(C,A).

ab12(A,B,C,B,D,B) :- lt(A,C), It(D,A).

abl1(A,B,A,C,A,D) :- It(B,D), t(C,B).

abl1(A,B,A,C,A,D) :- It(B,C), lt(D,B).

Figure 5: A complete and correct theory for KRK-legality

legal(A,B,C,D,E,F) :- not ab00(A,B,C,D,E,F).
ab00(A,B,C,D,C\E).

ab00(A,B,C,D,E,D).

ab00(A,B,C,D,E,F) :- adj(A,E), adj(B,F).

Figure 6: An “approximately correct” theory for KRK-legality

compression measure within the specialisation process The analogy to zero-
order learning algorithms is whether tree pre-pruning is feasible. The an-
swer is yes, and in practice may be preferred as it avoids inducing all clauses.
The price to pay is that it may not be possible to estimate reliably the utility
of a clause.

4 Empirical Evaluation

We evaluate the utility of using compression as a reliable noise detector on the
standard ILP problem of learning classification rules for the KRK chess endgame
[19]. However, contrary to normal practice, we chose to learn rules for KRK-
legality (as opposed to KRK-illegality). This provides an extra level of exceptions
for the specialisation method. Given background knowledge of the predicates {t/2
and adj/2, Figure 5 shows the target theory. It is possible to achieve an accuracy
of about 99.6% without accounting for the second level of exceptions. In fact,
the theory shown in Figure 6 is about 98% correct.

For our experiments, we adopt a simple noise model termed the Classification



Noise Process (CNP) [1]. In this, a noise of n implies that (independently) for
each example, the sign of the example is reversed with probability n. This is
not the only random noise process possible. For example, a noise of 5 in our
model corresponds to a class-value noise of 25 in that adopted by [22] and Donald
Michie (private communication) advocates a process that preserves the underlying
distribution of positive and negative examples. Finally, although the procedure
described in Figure 4 is not dependent on any particular induction algorithm, the
results quoted here use Golem ([20]).

Figure 7 tabulates the percentage accuracy of the most compressive theory
for different noise levels. Here “accuracy” refers to accuracy on an independent
(noise-free) test set of 10000 examples. Since the compression model only guar-
antees reliability for compressive theories, nothing can be said about those for
which compression is less than 0 (irrespective of their accuracy on the test set).
In Figure 7, an entry of “_” denotes that the theory obtained is non-compressive
on the training data and consequently, no claim is made regarding its accuracy on
the test set. The results highlight some important points. Compressive theories
do appear to avoid fitting the noise to a large extent. The price for this relia-
bility is reflected in the amount of data required. In comparison, it is possible
that other techniques may require fewer examples. However, they either require
various parameters to be set ([10]), use ad hoc constraints ([23]) or need an ad-
ditional data set for pruning ([6]). Further, most of them are unable to offer any
guarantee of reliability (the approach followed in [10] can select clauses above a
user-set significance threshold). In this respect, our empirical results mirror PAC
([27]) results for learning with noisy data in propositional domains ([1]): with
increasing noise, more examples are needed to obtain a good theory. It is also
worth noting that the conditions covered by the second level of exceptions (the
cases in which the White King is in between the White Rook and Black King)
occur less than 4 times in every 1000 examples. This is only picked up in the
noise-free data set of 10000 examples (in which there were 38 examples where the
rules applied).

Extending the PAC analogy further, Figure 8 shows the results from a dif-
ferent perspective. For different levels of noise, this figure shows the number of
training examples required for the “approximately correct” theory of Figure 6
to be compressive. For example, at least 170 examples are required to obtain a
compressive theory that is 98% accurate on noise-free data. While these numbers
are approximate (they are obtained by extrapolating the compression produced
by the theory for the different training sets in Figure 7) they do indicate the
general trend of requiring larger example sets for increasing noise levels.
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Training Set Size
Noise (%) | 100 | 250 | 500 | 1000 | 5000 | 10000
0 - 99.7 1 99.7 | 99.7 | 99.7 | 100
5 - 98.1 | 98.1 1 99.7 | 99.7 | 99.7
10 - - 98.1 | 98.1 | 99.7 | 99.7
15 - - 98.1 | 98.1 | 99.7 | 99.7
20 - - - 98.1 |99.7 |99.7
30 - - - - 98.1 | 98.1
40 - - - - - 98.1

Figure 7: Test-set accuracy for the most compressive theory

Examples required

0 5 10 15 25 30 35 40

20
Noise (%)

Figure 8: Examples required for a 98% correct and compressive theory
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5 Conclusion

The task of distinguishing between exceptions and noise is an issue that is typ-
ically ignored in the literature on non-monotonic reasoning. It is, however, of
fundamental importance for a learning program that has to construct theories
using real-world data. One way to approach the problem is to see if the excep-
tions to the current theory exhibit a pattern. The compression model we have
used in this paper uses an information-based approach to check whether the pat-
tern detected warrants specialising the theory. While it can be formulated as an
implementation of the Minimal Description Length principle, more significant is
the fact that theories found to be compressive in the model are unlikely to have
detected chance patterns. Our empirical results suggest that by selecting the
most compressive theory, it is possible (given enough data) to reliably avoid fit-
ting most of the noise. Clearly, it would be desirable to confirm these results with
controlled experiments in other domains. In practice, the method has found in-
teresting rules on an independent problem of pharmaceutical drug design ([12]).
Finally, the results also lend support to the link between compressive theories
for first-order concepts and their PAC-learnability. While various authors have
shown such a connection exists ([4, 5, 14]), it would be nice to show that their
concept of compression fits that used here.
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