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Abstract

Industry is increasingly overwhelmed by large-volume-data. For
example, the pharmaceutical industry generates vast quantities of
data both internally as a side-effect of screening tests and combinato-
rial chemistry, as well as externally from sources such as the human
genome project. Industry is also becoming predominantly knowledge-
driven. Increased understanding not only improves products, but
is also central in market assessment and strategic decision making.
From a computer science point of view, the knowledge requirements
within industry often give higher emphasis to “knowing that” (declar-
ative or descriptive knowledge) rather than “knowing how” (procedu-
ral or prescriptive knowledge). Mathematical logic has always been
the preferred representation for declarative knowledge and thus knowl-
edge discovery techniques are required which generate logical formulae
from data. Inductive Logic Programming (ILP) is such a technique.
Logic programs provide a powerful and flexible representation for con-
straints, grammars, plans, equations and temporal relationships. New
techniques developed within the 1990s allow general-purpose ILP sys-
tems to construct logic programs from a mixture of raw data and
encoded domain knowledge. This paper will review the results of
the last few years’ academic pilot studies involving the application
of ILP to problems in the pharmaceutical, telecommunications and
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automobile industries. While predictive accuracy is the central per-
formance measure of data analytical techniques which generate pro-
cedural knowledge (neural nets, decision trees, etc.), the performance
of an ILP system is determined both by accuracy and degree of in-
sight provided. ILP hypotheses can be easily stated in English and
often automatically exemplified pictorially. This allows cross-checking
with other relevant domain knowledge. In several of the comparative
trials presented ILP systems provided significant insights where other
data analysis techniques do not. The scene appears now to be set for
commercially-oriented application of ILP in industry.

1 Introduction

At the moment the average size of a datawarehouse for a large company is
about 400 Gb. For example, the pharmaceutical industry generates immense
quantities of data both internally as a side-effect of screening tests and com-
binatorial chemistry, as well as externally from sources such as the human
genome project. Similarly the car industry is accumulating vast amounts of
data ranging from errors in the manufacturing process to data related to se-
rious injuries involved in crashes. The tendency for increased data collection
is being compounded by the exponential growth in data available over the
World-Wide-Web.

At the same time industry is also increasingly knowledge-driven. Com-
mercial advantage, whether in the stock exchange or the telecommunications
industry, is based on strategic and tactical knowledge related to core business.
As an example, each new drug brought to the market by a pharmaceutical
company costs over £100M. The costs divide between assessment of medic-
inal activity and safety testing to avoid toxic side-effects. Much of this cost
could be reduced with the availability of improved biological and chemical
knowledge. Similarly, knowledge leading to detection of fraud in the banking,
credit and telecommunications industries could save billions of pounds every
year. The requirement is for technologies which efficiently extract insightful
knowledge from databases. One might ask what form such knowledge should
take.

Within the AT literature, the distinction between procedural and declar-
ative knowledge was first introduced by McCarthy [14], though it is strongly
related to the distinction made by the English philosopher Ryle between



“knowing how” and “knowing that” [24]. While procedural knowledge can
often be conveniently described in algorithmic form, logical sentences are usu-
ally used to capture declarative knowledge. Logic Programming languages,
such as Prolog, use a subset of mathematical logic to provide a rich declar-
ative representation language which is also executable. As a knowledge rep-
resentation language Prolog can be translated automatically into readable
English text using simple substitution templates (see examples of this in
Section 2). This property makes Prolog ideally suited as a language for
informing the user of automatic discoveries derived from a database.

However, most of Machine Learning (ML) has been concerned with the
acquisition of procedural knowledge. For instance, the nested if-then-else
rules used in decision tree technology largely describe the flow of procedural
control. Similarly, neural net techniques provide black-box decision proce-
dures without any declarative insight. Procedurally-oriented ML, has marked
up many successful applications [12]. However, client requirements in many
domains, such as rational drug design [1], have dictated the need for induc-
tive discovery of declarative knowledge. The key new ML technology which
provides support for learning of declarative knowledge is Inductive Logic Pro-
gramming (ILP) [15, 21]. ILP provides “white box” descriptions by its use of
the declarative representation language of Prolog for examples, background
knowledge and hypotheses (see Section 3 for definitions of these technical
terms).

Many of the techniques in Machine Learning are now in standard use for
the purpose of what one might call “one-way learning”, i.e. the machine
learns, but its human user does not. The emphasis in ILP is on what one
might call “two-way discovery”, in which not only the machine, but also its
human user learn from the analysis of a database. Allowing experts to encode
and debug their own knowledge of a domain in a readable way has proved
to be of primary importance in this process. Standard, robust ILP systems
are now widely available (see Section 4), and two-way discovery has been
demonstrated using ILP in a wide range of applications [2] (see Sections 5
and 6).

This paper is arranged as follows. Section 2 introduces the representation
of logic programming via various real-world examples. In Section 3 the tech-
nical framework of ILP is introduced and some of the ongoing theoretical
issues being explored are referenced. The reader is directed towards vari-
ous state-of-the-art ILP systems in Section 4. Published results of discovery



in databases relevant to the pharmaceutical industry are given in Section 5.
Ongoing industrially-oriented ILP discovery projects being carried out at the
Oxford ML group are discussed in Section 6. Section 7 concludes the paper
and gives an indication of future directions for research.

2 Examples of inductive logic programming

This section uses examples from real-world knowledge discovery problems to
introduce the use of logic programs as a knowledge representation language.
Each example shows the strength of logic programs as a representation for
complex constraints given a sufficient set of terms encoded in the background
knowledge. The background knowledge is encoded with the help of a domain
expert in the relevant field. Below each example is associated with the partner
involved in the corresponding knowledge discovery project.

2.1 Imperial Cancer Research Fund example

Since the late 1980s the author’s Machine Learning group has carried out
collaborative research [19, 7, 26, 8, 25] with Mike Sternberg’s Molecular Mod-
elling group at the Imperial Cancer Research Fund (ICRF). The following is
a typical logic program clause (usually called a definite clause) expressing a
constraint relating the three-dimensional structure of a protein to its amino
acid sequence.

beta(Prot,Pos) :-
pref(Prot,Pos,Pref), Pref>0.8,
coil(Prot,Pos+4), setof(X,betad0(Prot,Pos,X),S),
length(S,Sz), Sz>=4.

Such clauses can be learned using ILP systems such as Progol (see Section
4). Logic program clauses, such as the one above, have the following general
form.

H —Bl, BQ, cey Bn

The meaning of the clause is that the head of the clause H is true if each
one of the constraints B; in the body of the clause is true. Thus the ICRF
example clause above can be read to say the following.



There is a beta-strand at position Pos in protein Prot if there is
a preference for betas at Pos of at least 0.8 and there is a coil
at Pos+4 and there are at least 4 pieces of beta-strand within 40
positions of Pos.

Predicates such as “pref” are defined by the expert using logic program
clauses in the background knowledge. Since a logic program is simply a
set of logic program clauses, the syntax and semantics of logic programs
is very simple, clean and well-defined [13, 6]. Despite the simplicity, logic
programs are powerful enough for a general-purpose programming language.
All these properties, together with their ease of comprehension make them
ideally suited as a general representation for machine learning within ILP.

2.2 Daimler-Benz example

Reza Nakhaeizadeh’s data mining group at Daimler Benz have been investi-
gating the application of ILP to the problem of discovering causes for faults
in the process of painting cars. The following is an example of the kind of
rule produced by the ILP system Progol (see Section 4).

fault(Car,top,dirt) :-
stop(StationX, TimeX),
cleaned(StationY,TimeY),
loc_before(StationX,StationY),
diff_1t(TimeX,TimeY,30),
car_entered_station(Car,StationX, TimeX1),
diff_1t(TimeX,TimeX1,6),
car_left_station(Car,StationY,TimeY1),
diff_1t(TimeY1,TimeY,5).

This rule can be read as follows.

There is a paint fault caused by dirt on the top of a car body if
there is a station X which is located before a station Y. Station X
was stopped less than 30 minutes before station Y was cleaned.
The car body entered station X less than 6 minutes after it was
stopped. Station Y was cleaned less than 5 minutes after the car
body left it.



2.3 British Telecom example

Ken Totton’s data mining group at British Telecom are interested in be-
ing able to extract user interests from documents accessed from a library
database. The work has its academic counterpart in an Oxford MSc thesis in
which Rupert Parson used Progol to learn user interests from their accesses
of World-Wide-Web pages [23]. The following is an example of the kind of

logic program clause which Totton’s group are interested in discovering.

interested(harry,Doc) :-
topic(Doc,T'), novel(T),
it('T), size(Doc,S), S<10.

This rule can be read as follows.

Harry is interested in a document Doc if it is new, its subject is
IT and it has less than ten pages.

3 Framework and technical results

There are three primary logical constituents of an ILP discovery problem,
each of which are logic programs. The constituents are as follows.

Background knowledge. The background knowledge defines domain spe-
cific relations such as the amino acid sequence of the given proteins
(ICRF example, Section 2.1) or car assembly dependencies (Daimler-
Benz example, 2.2). Background knowledge is also used to define prob-
lem specific constraints such as “each amino acid in a protein is part
of either an alpha helix, a beta-sheet or a coil”, as well as to define
problem-independent knowledge such as the notion of a temporal in-
terval.

Examples. Examples can be either positive, such as “Harry is interested in
documentl” (BT example, Section 2.3) or negative such as “Harry is
not interested in document 5”.

Hypothesis. This is a set of clauses which explain the examples in terms of
the background knowledge, such as any one of the clauses in Sections
2.1, 2.2 and 2.3. It is the automatic construction and acceptance of



the hypothesis which is the process usually referred to as “machine
learning” or in the case of insightful and novel hypotheses “machine
discovery”.

The aim in ILP is to find an hypothesis H which when added to the back-
ground knowledge B allows logical derivation of the examples E. It is essen-
tial also that H should be logically consistent with the constraints in both
B and FE.

Topics of interest within the theory of ILP include the completeness of
inductive inference mechanisms [10, 11], the rate at which correct predic-
tion increases with increasing numbers of examples [22, 4, 3, 20] as well as
statistical criteria for acceptance of hypotheses [16, 18].

4 Implementations

During the 1990s a large number of ILP systems were developed and com-
pared on academic datasets. Most of these implementations and benchtest
datasets have recently been collected together and made publicly available by
the European Community’s network of excellence project ILPnet. The ILP-
net systems and datasets can be accessed at the following World-Wide-Web
address.

http://www-ai.ijs.si/ilpnet.html

The state-of-the-art ILP system which was used throughout the knowl-
edge discovery applications described in Sections 5 and 6 is Progol [17]. Pro-
gol is the ILP system which has been used most widely for applications. It is
written in C and includes a built-in Prolog? interpreter. The current version,
CProgol4.2 has source code, example files and a 40 page manual freely avail-
able (for academic research) by anonymous ftp from ftp.comlab.ox.ac.uk in
directory pub/Packages/ILP /progol4.2. Progol is also available under license
for commercial purposes.

2Progol is simply Prolog reversed in the middle.



Molecule A is an ACE inhibitor if:
molecule A can bind to zinc at a site B, and
molecule A contains a hydrogen acceptor C, and
the distance between B and C is 7.899 +/- 1.000 Angstroms, and
molecule A contains a hydrogen acceptor D, and
the distance between B and D is 8.475 +/- 1.000 Angstroms, and
the distance between C and D is 2.133 +/- 1.000 Angstroms, and
molecule A contains a hydrogen acceptor E, and
the distance between B and E is 4.891 +/- 1.000 Angstroms, and
the distance between C and E is 3.114 +/- 1.000 Angstroms, and
the distance between D and E is 3.753 +/- 1.000 Angstroms.

Figure 1: The geometric constraint discovered by Progol for ACE inhibition

5 Discovery of biological function

The majority of pharmaceutical R&D is based on finding slightly improved
variants of patented active drugs. This involves laboratories of chemists
synthesising and testing hundreds of variants of compounds. The average
cost of developing a single new drug is more than £100M.

5.1 Drug activity

Drugs are typically small molecules which interact with metabolic proteins,
which are large molecules. The shape and charge distribution of drugs must
be complementary to that of the “binding site” on the target protein. How-
ever, in over 70% of all drug projects carried out by pharmaceutical compa-
nies the shape of the binding site is unknown, and has to be inferred from
the activities of successful drugs.

A range of specialists are involved within the the pharmaceutical industry.
These include computational chemists, molecular biologists, pharmacologists,
synthetic and analytical chemists. The bottleneck in the process of drug
design is the discovery of appropriate constraints to reduce the large number
of candidate molecules for synthesis and testing. Since such constraints need
to be used by synthetic chemists in the molecular design process, they must
be stated in appropriately structural, and ideally 3-D terms. The constraints



Figure 2: ACE inhibitor number 1 with highlighted 4-point pharmacophore.
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Figure 3: A sample of mutagenic molecules, demonstrating the degree of
heterogenicity
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will describe both structural attributes which enhance medicinal activity as
well as those which should be absent, owing to toxic side-effects. Such design-
oriented constraints are declarative in nature.

Figure 1 shows the English description of such a constraint for Angiotensin-
Converting Enzyme (ACE) inhibition. The constraint was discovered in a
blind trial during a collaboration between Oxford Machine Learning Group
and the Computational Chemistry Group at Pfizer UK, using the ILP system
Progol. The work is described in [5], and is an extension of earlier academic
work described in [7]. The constraint is illustrated visually in Figure 2, in
which one of the example drug molecules is shown with the logical variables
from the rule (A,B,C,D,E) superimposed onto the corresponding atoms.

5.2 Drug toxicity

Marketable drugs must not only have medicinal activity, such as the ACE
inhibitor in the last section, but also have low toxicity. An important and
poorly understood property related to toxicity is mutagenicity. Molecules
are mutagenic if they destroy human DNA. The mutagenicity of molecules
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Figure 4: The structural alert for mutagenicity discovered by Progol

is correlated to their carcinogenicity, or tendency to be cancer-producing.

In a study described in [8] the system Progol was used to discover a
new structural alert for mutagenicity. Figure 3 shows some of the muta-
genic molecules in the examples set. In Figure 4 the substructure which was
discovered by Progol to be responsible for 88% of mutagenic molecules, not
predicted to be so by linear regression.

Recently a set of rules developed by Progol for predicting carcinogenicity
were entered in a global competition run by by the National Toxicology Pro-
gram (NTP) of the National Institute of Environmental Health Studies in the
USA. In the initial results reported in [9] the Progol rule predictions came
top out of all systems which were provided with only public data for train-
ing. Recent experiments have shown that when Progol’s mutagenic rules are
added to its other rules derived from the NTP data, the predictive accuracy
increases from 64% to 72%, making it the top equal predictor out of all those
in the competition.

5.3 Protein shape prediction

Drug design can also be made easier by predicting the shape of the protein
binding site. Large amounts of data relating protein amino acid sequence
to 3-D shape are now available from the human genome project. Studies
reported in [19] and [26] showed that ILP gives accurate predictions of sec-
ondary structure and edge relationships within proteins. Many of the pat-
terns discovered using ILP had not been noticed during several years of visual
inspection of the proteins by molecular biologists.



6 Applications at Oxford University ML Group

The following is a list of ongoing knowledge discovery projects at the Oxford
University Machine Learning group. All of these projects involve applications
of the ILP system Progol.

Pharmacophore discovery. This is joint research with Pfizer UK. Some
initial results are described in Section 5.1.

Protein topology. This is a joint project with Imperial Cancer Research
Fund aimed at discovering the existence of high-level similarities in
the fold arrangements of proteins. The project is support under the

bio-informatics initiative of the BBSRC and EPSRC.

Peptide motif discovery. This is a collaborative project with Smith-Kline-
Beecham.

Tag disambiguation. This is a project aimed at finding rules which help
disambiguating parts-of-speech tags for natural language corpora. The
research is supported by the ESPRIT Long Term Rsearch project ILP2.

M25 traffic flow analysis. This project is aimed at discovering flow-speed
relations in data describing traffic flow on the M25 motorway. The
research is being carried out in collaboration with Smith Engineering
and the Department of Transport.

Learning WWW user interests. This project aims at finding properties
which are related to WWW pages which users find particularly inter-
esting. Such rules can be used easily checked and debugged by users,
and can be used in searches for new WWW pages of interest to the
user. The project is supported under a CASE studentship by British
Telecom.

Fraud detection. This project is aimed at finding unusual patterns of tele-
phone usage, which might indicate fraudulent use of private phones.
The project was supported under a British Telecom fellowship.



7 Conclusion

Data is becoming available throughout industry in increasingly larger quan-
tities. Industry is also becoming increasingly knowledge intensive. The need
is for a technology which can be used to find insightful declarative knowledge
from data. This paper claims that because of its declarative representation
language, ILP is the prime candidate for such a technology. Successes of ILP
are being progressively demonstrated in the pharmaceutical, automotive and
telecommunications industries. The time is ripe for the transfer of ILP from
academic laboratories into wide-scale industrial application.
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