
Chess Revision: Acquiring the Rules of Chess

Variants through FOL Theory Revision from
Examples

Stephen Muggleton1, Aline Paes1,2,
Vı́tor Santos Costa3, and Gerson Zaverucha2

1 Department of Computing, Imperial College London, UK
shm@doc.ic.ac.uk

2 Department of Systems Eng. and Computer Science, UFRJ, Brazil
{ampaes,gerson}@cos.ufrj.br

3 CRACS and DCC/FCUP, Universidade do Porto, Portugal
vsc@dcc.fc.up.pt

Abstract. The game of chess has been a major testbed for research
in artificial intelligence, since it requires focus on intelligent reasoning.
Particularly, several challenges arise to machine learning systems when
inducing a model describing legal moves of the chess, including the col-
lection of the examples, the learning of a model correctly representing
the official rules of the game, covering all the branches and restrictions of
the correct moves, and the comprehensibility of such a model. Besides,
the game of chess has inspired the creation of numerous variants, ranging
from faster to more challenging or to regional versions of the game. The
question arises if it is possible to take advantage of an initial classifier
of chess as a starting point to obtain classifiers for the different variants.
We approach this problem as an instance of theory revision from exam-
ples. The initial classifier of chess is inspired by a FOL theory approved
by a chess expert and the examples are defined as sequences of moves
within a game. Starting from a standard revision system, we argue that
abduction and negation are also required to best address this problem.
Experimental results show the effectiveness of our approach.

1 Introduction

Game playing is a fundamental human activity, and has been a major topic of
interest in AI communities since the very beginning of the area. Games quite
often follow well defined rituals or rules on well defined domains, hence simpli-
fying the task of representing the game as a computer program. On the other
hand, good performance in games often requires a significant amount of reason-
ing, making this area one of the best ways of testing human-like intelligence.
Namely, datasets based on games are common testbeds for machine learning
systems [7]. Usually, machine learning systems may be required to perform two
different kinds of tasks. A first task is to learn a model that can be used to decide
whether a move in a game is legal, or not. Having such a model is fundamental

L. De Raedt (Ed.): ILP 2009, LNCS 5989, pp. 123–130, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

124 S. Muggleton et al.

for the second task, where one wants to learn a winning strategy. We focus on
the the first task in this work.

In order to acquire a meaningful representation of the classifier of the game,
one could take advantage of the expressiveness of first-order logic and use Induc-
tive Logic Programming (ILP) [11] methods to induce the game’s rules written
as a logic program, from a set of positive and negative examples and background
knowledge (BK). Previous work has demonstrated the feasibility of using ILP
to acquire a rule-based description of the rules of chess [8] using structured
induction.

Game playing is a dynamic environment where games are always being up-
dated, say, to be more challenging to the player, or to produce an easier and
faster variant of the original game. In fact, popular games often have different
regional versions. Consider, for example, the game of Chess, arguably, the most
widely played board game in the world. It also has been a major game testbed
for research on artificial intelligence and it has offered several challenges to the
area, since any application involving chess must focus on intelligent reasoning.
There are numerous chess variants, where we define chess variant as any game
that is derived from, related to or inspired by chess, such that the capture of
the enemy king is the primary objective [13]. For instance, the Shogi game, is
the most popular Japanese version of Chess. Although both games have similar
rules and goal, they also have essential differences. For example, in Shogi a cap-
tured piece may change sides and return to the board 1, which is not allowed in
Western Chess.

Knowledge acquisition is a time consuming and error prone task. Ideally, if the
rules of a variant of a game have been obtained, we would like to take advantage
of them as a starting point to obtain the rules of a variant. However, such rules
may need to be modified in order to represent the particular aspects of the vari-
ant. In a game such as chess this is a complex task that may require addressing
different board sizes, introducing or deleting new promotion and capture rules,
and may require redefining the role of specific pieces in the game. Modifying a
set of rules so that they could explain a new set of examples is the task of The-
ory Revision from Examples [16]. Besides, transfering a set of rules learnt from
a domain to another possibly related domain is studied in the area of transfer
learning [15,2]. In this work we handle the problem of transfering the rules of
chess to some variants of this game as an instance of Theory Revision from Ex-
amples. This task is particularly challenging due to the necessity of representing
all the official rules of the game, which makes the theory be very large, with
several branches and sub-concepts being used to classify a correct move.

We show that we can learn rules between different variants of the game of chess.
Starting from the state-of-the-art FORTE revision system [14,5], we contribute
with (i) a new strategy designed to simplify the initial theory by removing rules
that will not be transferred between variants; (ii) support for abduction; and (iii)
support for negation as failure. Experimental evaluation on real variants of chess

1 It is suggested that this innovative drop rule was inspired by the practice of 16th
century mercenaries who switched loyalties when captured [13].

Chess Revision: Acquiring the Rules of Chess Variants 125

shows that our technique can transfer between variants with smaller and larger
boards, acquire unusual rules, and acquire different pieces.

The paper is organized as follows. We start by discussing the revision system,
emphasizing the modifications performed on it in section 2. Next, we briefly
describe the examples and the initial knowledge in section 3. We present exper-
imental results in section 4 and finally we conclude the paper and discuss future
work in section 5.

2 Chess Revision

Inductive Logic Programming (ILP) systems learn using a set of examples and
background knowledge (BK), both described as logic programs and assumed
as correct. On the other hand, theory revision from examples consider that
the BK could also contain incorrect rules, which, after being modified, would
better reflect the dataset. Thus, in theory revision the BK is divided into two
sets: one containing the rules subject to modification, named here as initial
theory and the other composed of rules known to be correct and therefore not
modifiable, containing intensional definitions of the fundamental relations used
to define a domain, named as fundamental domain theory (FDT) [14]. The goal
of theory revision is to identify points in the initial theory preventing it from
correctly classifying some example, and propose modifications to such points,
so that the revised theory together with the FDT is correct. Theory Revision is
particularly powerful and challenging because it must deal with the issues arising
from revising multiple clauses (theory) and even multiple predicates (target).

Usually, the first step in a revision process is to find the clauses and/or
antecedents responsible for the misclassification of some example, the revision
points. Then, modifications are suggested to these revision points, through re-
vision operators, such as rule deletion and antecedent addition, if one wants to
specialize, or antecedent deletion or rule addition, if one wants to generalize [16].

In this work we follow the new version of FORTE revision system [14] as
modified in [5] to allow the use of bottom clause and modes declarations [9]
when searching for literals to be added to the body of clauses. In order to best
address the revision of the rules of Chess, we performed three main modifications
on the current version of the system, described as follows.

Starting the revision process by deletion of rules. In an attempt to decrease
the complexity of the theory and consequently of the whole revision process,
we introduced a first step of deletion of rules. This process is performed as a
hill-climbing iterative procedure, where at each iteration the facts used in proofs
of negative examples are selected, the deletion of each one is scored and the
one able of improving the score at most is chosen. This step restarts from the
modified theory and finishes when no deletion is able to improve the score. We
found this procedure both reduces theory size and noise, namely when the target
theory is a specialized version of the initial theory.

126 S. Muggleton et al.

Using abduction during the revision process. Abduction is concerned about find-
ing explanations for observed facts, viewed as missing premises in an argument,
from available knowledge deriving those facts [6]. Usually, theory revision sys-
tems, including FORTE, use abduction when searching for generalization revi-
sion points, to locate faults in a theory and suggest repairs to it, determining
a set of assumptions that would allow the positive example be proved [14]. We
further benefit from abduction in two distinguished moments of the revision
process. First, when searching for generalization revision points (points failing
on proving positive examples), we assume that faulting abducible predicates are
true and continue to search for further revision points possibly depending on
them. Note that in this moment the literal is ground. Then, such abducible
predicates are included in the theory under revision, up to a maximum number
of included abducible predicates. The abducible predicates might be eventually
generalized/specialized in the next iterations, in case they become a faulting
point in the theory.

The second further moment we use abdcution is when constructing a bottom
clause for intermediate predicates. Those are predicates in the head of clauses
but the dataset does not contain examples for them, since the examples are of
the top-level predicate(s) only. However, to construct the bottom clause it is
necessary to start from a positive example with the same predicate as the head
of the clause being specialized. Thus, from a positive example proved by the
current clause we obtain the required literal using the initial theory and FDT.
The procedure takes a top-level goal (an example) and the intermediate predicate
and instantiates such a predicate to the first call to that predicate encountered
when attempting to prove the goal. The proof starts from the example and return
the instantiation of the specified intermediate predicate. Next, we construct the
bottom clause from such a literal and use it as search space for adding literals
to the clause. In [10] a similar procedure is used to obtain “contra-positive
examples“ to the intermediate predicates and then construct a bottom clause
for them.

Using negated literals in the theory. FORTE was neither able to introduce
negated literals in the body of the clause nor revise negated antecedents. Nega-
tion is essential to elegantly model the chess problem, since we need to represent
concepts such as the king is not in check, among others. In order to add negated
literals in the body of the clause, we allow the bottom clause procedure con-
struction to generate negated literals. To do so, one could take advantage of
constructive negation techniques [3,4], ensuring that there are no free variables
in any not(Goal) that might be called. We also introduced a procedure for han-
dling a faulty negated literal during the revision process. Roughly speaking, if the
negated literal is responsible for a failed proof of positive examples, it is treated
as a specialization revision point. On the other hand, if the negated literal takes
part in a proof of a negative example, it is treated as a generalization revision
point. This is a preliminary attempt at introducing non-monotonic reasoning in
FORTE.

Chess Revision: Acquiring the Rules of Chess Variants 127

3 The Examples and the Background Knowledge

Examples. In our framework, the legal moves in the chess variant are the pos-
itive examples and the illegal moves are the negative examples. The dataset is
composed of a set of simulated games, where each game is limited to a speci-
fied maximum number of legal moves, considering both players. The moves are
within a game, aiming to represent castling and en-passant, which require the
history of the game (p.ex., the rook and the king involved in a castling must have
not moved yet in the whole game), and promotion, which requires updating the
board to represent the promoted piece. We take advantage of FORTE examples
representation where the examples are in the format

Ground instances of target predicate ← Conjunction of facts from the context

and we represent each game as a set of legal and illegal moves within the game
(they are the ground instances of the target predicate) and the positions of the
pieces related to each round (the board of the game) are the facts from the con-
text. Thus, each game has its separate set of legal and illegal moves and set of
positions of the pieces during the game, in the format

Target Predicate :

Positives :

move(Round,P iece1, Colour1, F ile1, Rank1, P iece2, Colour2, F ile2, Rank2), ...

Negatives :

move(Round,P iece1, Colour1, F ile1, Rank1, P iece2, Colour2, F ile2, Rank2), ...

Context :

board(Round, P iece, Colour, F ile, Rank), ...

out board(Round, P iece,Colour,−1,−1), ..., out board(Round,P iece, Colour, 0, 0), ...

The terms of the ground instances of the target predicate are the number of
the move, the current and next status of the piece. For example, move(9, pawn,
white, c, 7, rook, white, c, 8) states that in the 9th move executed in the game a
white pawn moves from c, 7 to c, 8 and is promoted to a rook. The facts from the
context represent the position of the pieces on the board and the pieces removed
from the games. Considering the example above, the set of facts would contain
board(10, rook, white, c, 8), stating that after the 9th move, there is a white rook
in the position c, 8 on the board and out board(10, pawn, white, 0, 0), giving the
information that a white pawn was removed from the board. The board setting is
updated according to the legal move(s) performed on the previous round. A move
generator procedure is responsible for creating the dataset of simulated games.

Background Knowledge. In the chess revision problem, the initial theory describes
the rules of the standard game of chess, which will be revised using the set of ex-
amples for its variant. The theory encompass all the possible branches of a move,
considering the official rules of chess [1]. For example, in case the king is under
attack, a piece must only move to stop the attack, by either capturing the attack-
ing piece or moving to the way between the king and the attacking piece. This
theory is inspired on the one learned in [8] using hierarchical structured induction

128 S. Muggleton et al.

ILP and Progol [9]. There, the BK was composed of 61 clauses and 61 clauses were
learned.2 The major differences between the theory used in the present work and
the previous one are (1) the clauses we include to describe castling, en-passant and
promotion, since the authors of that work opted to not represent any such special
move and (2) the clauses we modified to use constructive negation, to avoid free
variables in negated literals.

The FDT contains fundamental rules to the problem of chess in general, such
as to calculate the difference between two positions (files or ranks) of pieces on
the board, definitions of equality, among others. This knowledge is valid to the
standard chess and also to the chess variants. During the revision process, the
clauses in FDT are not modified. It is composed of 40 clauses, approximately.

The initial theory describes the rules for achieving a legal move following
the rules of chess. The top-level predicate is the same as the target predicate,
related to the move of the piece. The sub-concepts such as simple and double
check, pin, attack, promotion and basic moves of each piece are described through
intermediate predicates. The pieces, files, ranks and colours used in the game are
enumerated by facts. All in all, the initial theory has approximately 100 clauses.

4 Experimental Results

Experimental methodology. To experiment the proposal of the paper, we gener-
ated datasets with 5 simulated games where each stage of the game has 1 positive
and 5 negative examples and the maximum number of legal moves is 20, for 3
different chess variants. We performed 5-fold cross validation and scored the re-
visions using f-measure. We proceed with this section by describing the chess
variant followed by the automatic revisions performed by the system to obtain
its theory. The variants include a smaller version of chess, a version with an
unusual rule and a variant with larger board and unusual pieces.

– Using smaller boards: Gardner’s Minichess: This is the smallest chess game
(5X5) in which all original chess pieces and legal moves are still used, in-
cluding pawn double move, castling and en-passant [13]. The revisions are
as follows.

1. The delete rule step was able to remove the following clauses from the
theory: file(f). file(g). file(h). rank(6). rank(7). rank(8). promotion zone
(pawn,white,7,8).

2. The add rule generalization operator created the following clause: pro-
motion zone(pawn,white,4,5) (white pawn promoting in rank 5).

The final accuracy was 100% and the returned theory matches the rules of
Gardner Minichess.

– Unusual rule: Free-capture chess: This variant of chess allows a piece to
capture friendly pieces, except for the friendly king, besides the opponent
pieces [13].

2 The resulting theory was approved by Professor Donald Michie, who could be con-
sidered a chess expert.

Chess Revision: Acquiring the Rules of Chess Variants 129

1. The chess theory makes sure that a piece when attacking does not land
on a friendly piece, requiring that the colours of them both are different.
The revision created a new clause by first deleting the predicate requiring
the colours are different and then adding a literal restricting the attacked
pieces to be different from the king. Note that the original rule is kept
on the theory.

2. There is a specific rule in the case of a king attacking, since the restric-
tions on the king’s move must be observed. The revision system deleted
the literal requiring the colour of a piece attacked by the king be different
from the colour of the king.

The final accuracy was 100% and we can say that the returned theory per-
fectly corresponds to the target theory.

– Unusual pieces and larger board: Neunerschach: This is a chess variant played
on a 9x9 board. There is a piece called as marschall replacing the queen and
moving like it. The extra piece is the hausfrau, which moves as a queen but
only two squares [13]. The theory was revised as follows.

1. The delete rule step removed the clause defining the queen as a piece;
2. The abduction procedure included facts defining the marschall and

hausfrau as pieces on the theory;
3. From the rule defining the basic move of the queen, the add rule operator

created a rule for the marschall.
4. New rules were added to the theory, defining the basic move of hausfrau

and introducing the facts file(i) and rank(9).

Since in this dataset no promotion moves were generated, due to the size
of the board, the revision process failed on correcting the promotion on the
last rank. We expect that using games with a larger number of total moves
will allow us to represent such a promotion. Nevertheless, the final accuracy
was 100%.

5 Conclusions

We presented a framework for applying the knowledge learned to the rules of
chess to learn variants of chess through theory revision and a set of generated
examples. We described the modifications implemented in the revision system,
including the introduction of an initial step for deleting rules, the use of abduc-
tion and negation. Three variants of chess were experimented and the system
was able to return final theories correctly describing the rules of the variants,
except for one case, the promotion in the last rank of a 9X9 board.

In order to decrease the runtime of the revision process we intend to use
the stochastic local search algorithms developed in [12]. We would like to try
induce the variants of Chess using standard ILP system, such as Progol [9], with
the chess theory as BK. Beforehand, it is expected that these systems are not
successful in the cases requiring specialization, since they do not perform such
operation. If the chess theory is not used as BK, we would not take advantage

130 S. Muggleton et al.

of the initial knowledge about the domain. Additionally, we want to take a
further step towards the acquirement of more complex chess variants, such as
the regional chess games Shogi and Xiangqi.

Acknowledgements

Stephen Muggleton would like to thank the Royal Academy of Engineering and
Microsoft Research for funding his Research Chair in Machine Learning. Aline
Paes and Gerson Zaveruchaare financially supported by Brazilian Research Coun-
cil (CNPq) and Vı́tor Santos Costa by Fundação para a Ciência e Tecnologia.

References

1. Burg, D.B., Just, T.: IUS Chess Federation Official Rules of Chess. McKay, New
York (1987)

2. Caruana, R.: Multitask Learning. Machine Learning 28(1), 41–75 (1997)
3. Chan, D.: Constructive Negation Based on the Completed Database. In: Proc. of

the 5th Int. Conf. and Symp. on Logic Programming, pp. 111–125. The MIT Press,
Cambridge (1988)

4. Drabent, W.: What is Failure? An Approach to Constructive Negation. Acta
Inf. 32(1), 27–29 (1995)

5. Duboc, A.L., Paes, A., Zaverucha, G.: Using the Bottom Clause and Mode Dec-
larations in FOL Theory Revision from Examples. Machine Learning 76, 73–107
(2009)

6. Flach, P., Kakas, A.: Abduction and Induction: Essays on their Relation and Inte-
gration. Kluwer Academic Publishers, Dordrecht (2000)

7. Fürnkranz, J.: Recent Advances in Machine Learning and Game Playing. OGAI-
Journal 26(2), 147–161 (2007)

8. Goodacre, J.: Master thesis, Inductive Learning of Chess Rules Using Progol. Pro-
gramming Research Group, Oxford University (1996)

9. Muggleton, S.: Inverse Entailment and Progol. New Generation Comput-
ing 13(3&4), 245–286 (1995)

10. Muggleton, S., Bryant, C.H.: Theory completion using inverse entailment. In:
Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 130–146.
Springer, Heidelberg (2000)

11. Muggleton, S., De Raedt, L.: Inductive Logic Programming: Theory and Methods.
J. Log. Program. 19/20, 629–679 (1994)

12. Paes, A., Zaverucha, G., Costa, V.S.: Revising FOL Theories from Examples
through Stochastic Local Search. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli,
P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 200–210. Springer, Heidelberg
(2007)

13. Pritchard, D.B.: The Classified Encyclopedia of Chess Variants. John Beasley
(2007)

14. Richards, B.L., Mooney, R.J.: Automated Refinement of First-order Horn-Clause
Domain Theories. Machine Learning 19(2), 95–131 (1995)

15. Thrun, S.: Is Learning the nth Thing any Easier than Learning the First? In: Adv.
in Neural Inf. Proc. Systems. NIPS, vol. 8, pp. 640–646. MIT Press, Cambridge
(1995)

16. Wrobel, S.: First-order theory refinement. In: De Raedt, L. (ed.) Advances in In-
ductive Logic Programming, pp. 14–33. IOS Press, Amsterdam (1996)

	Chess Revision: Acquiring the Rules of Chess Variants through FOL Theory Revision from Examples
	Introduction
	Chess Revision
	The Examples and the Background Knowledge
	Experimental Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

