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ABSTRACT The mane rning program GOLEM from
the field of inductive logic ng was applied to the
drug design problem of mding v-activity relation-
ships. The training data for the progam were 44 trlmehoprim
analogues and their observed inhibition of Escherichia colU
dihydrofobte reductase. A further 11 compounds were used as
unseen test data. GOLEM obtained rules that were stat y
more accurate on the rinin data and also beiter on the test
data than a schl regression model. Importanty
machinelearningyi understandable rls that character-
ized the chemistry of favored inhibitors in terms of poluity,
flexibili, and hydrogen-bonding character. These rules agree
with the stereochemistry of the interaction observed crystallo-
graphically.

The design of a potent pharmaceutical agent from a lead
compound is often based on an understanding of the quan-
titative structure-activity relationship (QSAR) in a related
series of ligands (e.g., refs. 1-3).
A standard method for modeling a QSAR was proposed by

Hansch and coworkers (4-6), in which the physicochemical
properties of a series of similar compounds are linked by an
empirical equation to their biological activity. However the
equation gives little insight into the structure of the binding
site. Recently, neural network models have been applied to
QSAR with some success (7), but the design of the network
is highly subjective and the numerical results are difficult to
interpret.

Pattern recognition methods, such as principal component
analysis (8), are widely used to identify the chemical prop-
erties that contribute most to the activity of a compound. An
alternative pattern recognition method with potential advan-
tages for QSAR is machine learning. Machine learning meth-
ods are nonparametric and nonlinear and work best when
using human understandable symbols to represent a problem.
Thus in drug design the concepts used, such as size, polarity,
and flexibility, relate naturally to stereochemistry. The use of
such symbols has two potential advantages over the numer-
ical representation. First, the problem can be set up and
changed more easily because the designer can work in
comprehensible terms. Background knowledge, in particular
the stereochemistry ofthe compounds, can be directly added,
whereas in a statistical method it would typically be repre-
sented by some form of prior probabilities or in a neural net
by connection weights and topology. Second and more
importantly, the production of humanly comprehensible
rules from a machine learning system allows the rules to be

checked for consistency with existing knowledge and opens
the possibility that the rules may provide fresh insight.

In this paper we apply the machine learning program
GOLEM (9) from the newly developed field of inductive logic
programming (ILP) (10) to QSAR. In the development of
methodologies, it is advantageous to consider systems for
which atomic structural information of the drug-receptor
complex is available. An ideal system is the complex formed
between analogues of the drug trimethoprim and the enzyme
dihydrofolate reductase (DHFR) from Escherichia coli,
which has been studied crystallographically (11, 12). Thus
one can compare the predicted QSAR models with the x-ray
stereochemistry of interaction. These compounds have been
studied by Hansch et aL (6) and so provide an ideal system
to compare the performance of machine learning with the
Hansch method.

METHODS

Data. The study was performed with a training set of 44
trimethoprim analogues (Table 1 and Fig. 1A) from Hansch
et al. (6) and a testing set of 11 further cogeners (Table 1) from
Roth and coworkers (14, 15) (Table 1). Biological activities
were measured as log(1/Ki), where Ki is the equilibrium
constant for the association of the drug to DHFR.
GOLEM. GOLEM (9) is a program for machine learning by

ILP. The ILP methodology (10) was chosen because it is
designed specifically to learn relationships between objects
(e.g., molecular structures). In ILP, each language is a subset
of first-order predicate calculus, which is expressive enough
to describe most mathematical concepts and, having a strong
link with natural language, leads to ease of comprehension.
GOLEM is written in the programming language C but imple-
ments predicate logic in the language Prolog.
GOLEM takes as input positive examples, negative exam-

ples, and background knowledge described as Prolog facts. It
produces as output Prolog rules that are generalizations ofthe
examples. Observations are collected from the outside world
(the activities of trimethoprim analogues). These are then
combined by an ILP program with background knowledge
(the stereochemistry of the compounds) to form inductive
hypotheses (rules relating the structure of an analogue with
its activity). These rules are then experimentally tested on
additional data. If experimentation leads to high confidence
in the validity of the hypotheses, the rules are added to the
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Table 1. Predicted and observed activity of trimethoprim analogues
log Observed Rank by Rank by

Substituent (l/Ki,app) rank Golem Hansch
Training set

3,5-(OH)2
4-O(CH2)6CH3
4-0(CH2)sCH3
H
4-NO2
3-F
3-O(CH2)7CH3
3-CH20H
4-NH2
3,5-(CH20H)2
4-F
3-O(CH2)6CH3
4-HCH2CH20CH3
4-Cl
3,4-(OH)2
3-OH
4-CH3
3-OCH2CH20CH3
3-CH20(CH2)3CH3
3-OCH2CONH2
4-OCF3
3-CH20CH3
3-Cl
3-CH3
4-N(CH3)2
4-Br
4-OCH3
3-O(CH2)3CH3
3-O(CH2)5CH3
4-O(CH2)3CH3

3.04
5.60
6.07
6.18
6.20
6.23
6.25
6.28
6.30
6.31
6.35
6.39
6.40
6.45
6.46
6.47
6.48
6.53
6.55
6.57
6.57
6.59
6.65
6.70
6.78
6.82
6.82
6.82
6.86
6.89

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20.5
20.5
22
23
24
25
27
27
27
29
30.5

17
4.5
4.5
1
7.5
6

15
2
7.5
3
9.5
16
20
12
18
13
9.5

21
24
14
19
28
30.5
30.5
22.5
11
22.5
29
26
27

2
4
10
6.5

20.5
6.5
6.5
16
3

23
6.5

11
20.5
17.5
1
9

17.5
34
35.5
13
22
29.5
29.5
27.5
27.5
24
26
32
14
15

log Observed Rank by Rank by
Substituent (1/Ki,am) rank Golem Hansch

4-NHCOCH3
3-OSO2CH3
3-OCH3
3-Br
3-NO2, 4-NHCOCH3
3-OCH2C6Hs
3-CF3
3,4-(OCH2CH20CH3)2
3-I
3-CF3, 4-OCH3
3,4-(OCH3)2
3,5-(OCH3)2,
4-O(CH2)20CH3

3,5-(OCH3)2
3,4,540CH3)3

3,5-(CH3)2, 4-OCH3
3-Cl, 4-NH2, 5-CH3
3,5-(CH3)2, 4-OH
3,5-Cl2, 4-NH2
3,5-Br2, 4-NH2
3,5-(OCH3)2,
4-OCH2C6H5

3,5-(OCH3)2, 4-CH3
3,5-(OCH3)2,
4-O(CH2CH3

3,5-(OCH3)2,
4-O(CH2)sCH3

3,5-12, 4-OCH3
3,5-12,4-OH

6.89
6.92
6.93
6.96
6.97
6.99
7.02
7.22
7.23
7.69
7.72

30.5
32
33
34
35
36
37
38
39
40
41

25
33
36
37
34
35
32
39
38
41.5
41.5

12
25
38
35.5
37
31
19
40
33
39
41

8.35 42 43 43
8.38 43 40 42
8.87 44 44 44

7.56
7.74
7.87
7.87
8.42

8.57
8.82

Testirig set
40 (1) 52.5 (9)
43 (2) 40 (2)
44.5 (3.5) 40 (2)
44.5 (3.5) 40 (2)
48 (5) 44 (4)

49 (6) 52.5 (9)
50.5 (7.5) 47.5 (5.5)

45.5 (4.5)
44 (3)
41 (1)
45.5 (4.5)
53 (10)

52 (9)
54.5 (11)

8.82 50.5 (7.5) 52.5 (9) 43 (2)

8.85 52 (9)
8.87 54.5 (10.5)
8.87 54.5 (10.5)

52.5 (9)
52.5 (9)
47.5 (5.5)

49 (7)
50 (8)
47 (6)

The observed value of the affinity is expressed as log(1/Kj,,.w). The first 44 drugs were used in the training set, and the observed rank ranged
from 1 to 44. The final 11 drugs were the testing set; the observed rank is the rank in the 55 drugs, and the number in parentheses is the rank
for the 11. The rank corresponding rank values obtained by machine learning (GOLEM) and by the application of the Hansch equation are in the
subsequent columns. GOLEM uses paired comparisons, which are then converted to rankings by the algorithm of David (13).

background knowledge. The method of generalization is
based on the logical idea of "relative least general generali-
zation."
The basic algorithm used in GOLEM is as follows. First, it

takes a random sample of pairs of positive examples. In this
application, this will be a set of pairs of compared drugs
chosen randomly from the set of all examples represented
(see below). For each ofthese pairs, GOLEM computes the set
of all properties that are common to both examples. These
properties are then made into a rule that is true of both the
examples in the pair under consideration. Having built such
a rule for all chosen pairs ofexamples, GOLEM takes each rule
and computes the number ofexamples that rule could be used
to predict. GOLEM chooses the rule that predicts the most true
examples while predicting less than a predefined threshold of
false examples. Having found the rule for the best pair,
GOLEM then takes a further sample of as yet unpredicted
examples and forms rules that express the common proper-
ties of this pair together with each of the individual residues
in the sample. Again the rule that gives best predictions on the
training set is chosen. The process of sampling and rule
building is continued until no improvement in prediction is
produced.
GOLEM avoids over-fitting the data by using the "minimal

description length" as implemented in the compression
model of Muggleton et al. (16).

Application of GOLEM to the QSAR of the Trimethoprim
Series. To apply GOLEM to the QSAR of the trimethoprim
series, the data has to be converted into a form suitable for
GOLEM. QSAR is generally a regression problem, in which a

real number is predicted from the description ofa compound.
However, GOLEM is designed to carry out classification
(discrimination) tasks in which a small number of discrete
classes are predicted. This difficulty is bypassed by consid-
ering pairs of drugs and comparing their activities (pairs
where the activities are equal or within the margin of exper-
imental error are discarded). The output is a set of rules that
decides which of a pair of drugs has higher activity. Paired
comparisons are then converted to a ranking by the method
of David (13).
The input to GOLEM is three types of facts: positive,

negative, and background. The positive examples are the
paired examples of greater activity-e.g.,

great(d20, di5).

which states that drug no. 20 has higher activity than drug no.
15. The negative examples are the paired examples of lower
activity.
The background facts are the chemical structures of the

drugs and the properties of the substituents. Chemical struc-
ture is represented in the form:

struc(d35, NO2, NHCOCH3, H).

which states that drug no. 35 has NO2 substituted at position
3, NHCOCH3 substituted at position 4, and no substitution at
position 5. In addition, if either position 3 or 5 has no
substitution, as in drug no. 35, the position with no substi-
tution is assumed to be position 5 (this is used in ref. 6).

Biophysics: King et al.
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FIG. 1. (A) Structure of trimethoprim analogues. (B) Cartoon of
the interaction oftrimethoprim with DHFR from x-ray structures (11,
12). Faint stippling indicates that the residue lies below the plane of
the phenyl ring; darker stippling indicates that the atoms are above.

Chemical properties were then assigned heuristically to
substituents (Table 2). The properties, chosen to make the
approach generally applicable to drug-design problems, are
polarity, size, flexibility, hydrogen-bond donor, hydrogen-
bond acceptor, Vr donor, ir acceptor, polarizability, and a

effect. Each ofthe 24 nonhydrogen substituents was given an
integer value for each of these properties. This was repre-
sented by using different predicates for each property and
value; for example,

polar(Br, polar3).

states that Br has polarity of value 3.
Information was also given about the relative values of

these properties for the substituent groups; for example,

polar(OCF3, polar4).

Finally information was given about the relative values of
the properties compared to fixed values; for example,

greatOpolar(polarl).

states that a polarity of 1 is greater than a polarity of 0.
The input to GOLEM was 871 positive facts, 871 negative

facts, and 2976 facts inthe background information. The run
time was about 30 central processing unit minutes on a SUN
SparcStation 1 per rule.

RESULTS

GOLEM derived nine rules that predict the relative activities
oftwo drugs. Table 3 lists the machine-learned rules in Prolog
syntax together with an English interpretation. The coverage
indicates the number ofpairs ofrelationship that are correctly
and incorrectly represented. Each rule relates the relative
activities of two drugs (A and B) and identifies the chemical
properties of substituents that yield a drug of higher activity.

Table 2. Chemical properties of substituents
Group PL SZ FLX H-D H-A P-D P-A POL SIG

H
OH 3 1 0 2 2 2 0 1 2
O(CH2)6CH3 2 5 7 0 1 1 0 1 1
O(CH2)sCH3 2 5 6 0 1 1 0 1 1
NO2 5 2 0 0 0 0 2 0 3
F 5 1 0 0 1 0 0 0 5
O(CH2CH3 2 5 8 0 1 1 0 1 1
CH20H 2 2 2 2 2 0 0 1 0
NH2 3 1 0 2 0 2 0 0 1
OCH2CH2OCH3 2 3 4 0 1 1 0 1 1
Cl 3 1 0 0 0 0 0 1 3
CH3 0 1 0 0 0 0 0 1 0
CH2O(CH2)3CH3 0 4 6 0 0 0 0 1 0
OCH2CONH2 3 3 2 1 1 1 0 0 1
OCF3 4 3 1 0 0 0 2 0 3
CH20CH3 0 2 3 0 1 0 0 1 0
N(CH3) 1 2 0 0 1 2 0 1 1
Br 3 1 0 0 0 1 0 2 3
O(CH2)3CH3 2 3 4 0 1 1 0 1 1
NHCOCH3 3 2 0 1 1 1 0 1 1
OSO2CH3 4 2 1 0 0 0 1 2 3
OCH2C6H5 2 4 2 0 1 1 0 1 1
CF3 3 1 0 0 0 0 0 0 3
I 3 1 0 0 0 1 0 3 3
OCH3 2 2 1 0 1 1 0 1 1
PL, polarity indicates the amount of residual charge on the a and

, atoms of the substituent; SZ, size is a measure of the extended
volume ofthe group; FLX, flexibility is assigned firom the number of
rotatable bonds; H-D and H-A indicate the presence and strenth of
hydrogen-bonding acceptors and donors; P-D and P-A in t the
presence and strength of i-acceptors and w-onors. POL indicates
polarizability of the molecular orbitals, and SIG is its ar-property.

Table 1 gives the performance on trining data of 44
compounds. The prediction from learning gave a
rank correlation with the observed order of 0.916 [using the
Spearman method (17)] (Fig. 2A). As a benchmark, the
Hansch equation had a rank correlation of 0.794 (Fig. 2B).
The signicanc of the difference in these rankings was
evaluated by Fisher's z transformation (17). The value z =
2.18 is significant at the 5% level and almost sificant at the
1% level (P = 0.985).
A better test of a prediction method is its performance on

data not used in developing the alg m. The structure and
activity of 11 trimethopim analue not used in the oriinal
paper (6) on which the Hansch equation was derived was
used as atest set for the two approaches. A ankingofthe 11
additioal drugs reative to all 55 drugs was obtained by (i)
forming all paired comparisons involvin the 11 addional
drugs, (u) adding these to the predicted resu of the paired
comparisons of the oridnal 44 drugs, and (0i) producing a
rankingfrom all the paie comparisn. From this ranking of
55 drugs, a rank order for the 11 drugs was
extracted (Table 1), and this was c by a rank
correlto coefficient to the observed ordr. The rank cor-
relation for the 11 dalrW by I learning was
0.457 compared toO.15 for th HaaMch (i2). The
Fisherzvalue is0.10, whch is not (P = 0.540)-and
reflects the similar rank correlations ona mall tt
set. Thus on the test set, the machine learning is as accurate
as the regression ap OachofHanh. Bo*meods predict
well that the tests drus have high activiy (Fig. 2).
A further test of the OLEm approach was a cross-

vaidation study in which 44 of the 55 drugs wer chene at
random as a training set with theremann 11 as the test data.
The resultant Spearman rank corration coefficients for the
training sets are similar to those for the main trial.

11324 Biophysics: King et A
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Table 3. Rules for QSAR derived by machine learning
Rule 3.1 - (coverage 119/0 train: 105/0 test)

great(A,B) :- struc(A, D, E, F), struc(B, h, C, h), h,_donor(D,
h-donO), pi donor(D, pi-donl), flex(D, G),
less4_flex(G).

Drug A is better than drug B if
drug B has no substitutions at positions 3 and 5 and
drug A at position 3 has hydrogen donor = 0 and
drug A at position 3 has ir-donor = 1 and
drug A at position 3 has flexibility <4.

Rule 3.2 - (coverage 244/71 train: 248/4 test)

great(A, B) :- struc(A, C, D, E), struc(B, F, h, G), not
except3.2(A, B).

except3.2(A, B) :- struc(A, C, D, h), struc(B, E, h, F),
h_donor(E, h...donO).

Drug A is better than drug B if
drug B has no substitution at position 4 unless
drug A has no substitution at position 5 and
drug B at position 3 has hydrogen donor = 0.

Rule 3.3 - (coverage 102/13 train: 33/0 test)

great(A, B) :- struc(A, G, H, I), struc(B, C, h, D), pi.donor(C,
pi.donO), polar(C, E), greatO.polar(E), h-acceptor(C,
F), greatOh.acc(F).

Drug A is better than drug B if
drug B has no substitutions at position 4 and
drug B at position 3 has ir-donor = 0 and
drug B at position 3 has polarity >0 and
drug B at position 3 has hydrogen acceptor >0.

Rule 3.4 - (coverage 129/2 train: 126/0 test)

great(A, B) :- struc(A, C, D, E), struc(B, G, h, h), h._donor(C,
h,..donO), pi-donor(C, pi_donl), flex(C, F),
less4._flex(F), polarisable(G, H), less3_.polari(H).

Drug A is better than drug B if
drug B has no substitutions at positions 4 and 5 and
drug B at position 3 has polarizability <3 and
drug A at position 3 has hydrogen donor = 0 and
drug A at position 3 has nr-donor = 1 and
drug A at position 3 has flexibility <4.

Rule 3.5 - (coverage 84/0 train: 52/0 test)

great(A, B) :- struc(A, C, D, E), struc(B, F, h, h), size(C, size2),
h.donor(C, h-donO), polarisable(F, polaril), polar(C,
G), greatO polar(G).

Drug A is better than drug B if
drug B has no substitutions at positions 4 and 5 and
drug B at position 3 has polarizability = 1 and
drug A at position 3 has size = 2 and
drug A at position 3 has hydrogen donor = 0 and
drug A at position 3 has polarity >0.

Rule 3.6 - (coverage 29/0 train: 16/0 test)

great(A, B) :- struc(A, C, D, E), struc(B, F, h, h),
h_donor(C,hdonO), polarisable(C, polaril), flex(F,
G), flex(C, H), great.flex(G, H), great6_flex(G).

Drug A is better than drug B if
drug B has no substitutions at positions 4 and 5, and
drug B at position 3 has flexibility >6 and
drug A at position 3 has polarizability = 1 and
drug A at position 3 has hydrogen donor = 0 and
drug A at position 3 is less flexible than drug B at position 3.

Rule 4.1 - (coverage 289/72 train: 99/0 test)

great(A, B) :- struc(A, D, E, F), struc(B, h, C, h), not
except4.1(A,B).

except4.1(A,B) :- struc(B, h, C, h), size(C, size3).
except4.1(A,B) :- struc(B, h, C, h), size(C, size2),

h-acceptor(C,h.accl).
Drug A is better than drug B if
drug B has no substitutions at positions 3 and 5 unless
drug B at position 4 has size = 3 or
drug B at position 4 has size = 2 and hydrogen acceptor = 1.

Rule 4.2 - (coverage 187/2 train: 193/2 test)

great(A, B) :- struc(A, E, F, G), struc(B, C, D, h), noth(E),
polar(F, polar2).

Drug A is better than drug B if
drug B has no substitution at position 5 and
drug A has a substitution at position 3 and
drug A at position 4 has polarity = 2.

Rule 3 and 4.1 - (coverage 85/0 train: 55/0 test)

great(A,B) :- struc(A,C,D,E), struc(B,H,I,h), h.donor(C,h.donO),
polar(C,F), less5_.polar(IF), size(C,G), less5_size(G),
polarisable(I,J), less2_.polari(J), sigma(I,K),
greatl_sigma(K).

Drug A is better than drug B if
drug B has no substitution at position 5 and
drug B at position 4 has polarizability <2 and
drug B at position 4 has a >1 and
drug A at position 3 has hydrogen donor = 0 and
drug A at position 3 has polarity <5 and
drug A at position 3 has size <5.

The rules are first given as Prolog clauses in which ":-" is a logical implication and a comma is a logical "and". Then an exact interpretation
is given. The rules have been classified into those primarily relating to substituent 3 (rules 3.1-3.6), to substituent 4 (rules 4.1 and 4.2), and to
both positions (rules 3 and 4.1).

DISCUSSION AND CONCLUSIONS

The x-ray crystallographic structures of the trimethoprim-E.
coliDHFR complex (11) and ofthe ternary complex (12) with
NADPH have been solved (see Fig. 1B). In the ternary
complex, the phenyl ring of trimethoprim is sandwiched in a
hydrophobic cleft between Phe-31, Leu-28, and Met-20 on
one side and Leu-54, Ile-54, Ser-49 and with the NADPH
cofactor on the other. The aromatic ring is thus effectively

buried while the environments of the 3, 4, and 5 substituents
vary. The 4 (i.e., para) position is the most exposed to solvent
while the meta positions (i.e., the 3 and 5 substituents) are
restricted in size by the surrounding protein and cofactor
atoms.
A main aim in using machine learning was to obtain rules

that could provide insight into stereochemistry of drug-
DHFR interactions. We examined the features that favor the
better drugs (i.e., the properties of drug A in the rules). For

Biophysics: King et al.
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3 and/or 5 positions a favorable substituent D is defined as

h_donor(D,hdon0),
pidonor(D,pLdonl),
flex(D,G),less4_flex(G),
size(D,size2),

polar(D,V),greatOpolar(V),

polarisable(D,polarl).
The properties are, therefore, not a hydrogen-bond donor, a
r-donor of 1, flexibility <4, a size of2, a polarity greater than
zero, and a polarizability of 1. Only the methoxy (OCH3)
substituent satisfies these conditions. These principles are in
keeping with the location of both meta sites (i.e., both 3 and
5 positions) in the crystal structures. Both meta sites are
partially buried in a hydrophobic environment and hence
have a restriction on size and flexibility. The absence of
solvent at these sites might explain the requirement that the
group should not be a hydrogen-bond donor. Substituents
that are i-donors will force this group to lie in the plane ofthe
aromatic ring, and this has been suggested as a requirement

for a favorable drug (15). Finally, because both meta posi-
tions have similar chemical locations in DHFR, one cannot
decide whether the rules in Table 3 for a 3 position on the
chemical compound (Fig. 1A) relate exclusively to the upper
meta position or exclusively to the lower meta position or to
both locations in the three-dimensional location (Fig. 1B).
The only positive feature for the 4 position is that it should

have a polarity of2. This property is consistent with a site that
is exposed to solvent and should be polar. Matthews et al.
(11) proposed that the oxygen of the methoxy group might
form a hydrogen bond with a neighboring water molecule. In
addition, the rules suggest that each of the 3, 4, and 5
positions should not be hydrogen. This is in keeping with the
suggestion (14) that an important role of the 4 position is to
force the meta substituents away from the 4 position toward
the 2 and 6 positions.
For drug design, we have shown that machine learning can

yield rules that model aQSAR ofa series ofDHFR inhibitors
better than one of the standard methods widely used. In
addition one automatically derives a stereochemical descrip-
tion ofthe drug-receptor interaction. In another recent study,
GOLEM (18) has produced predictions of the secondary struc-
ture of a/a proteins of 80%o accuracy. We consider that this
demonstrates the wide-ranging potential ofILP in the domain
of modeling biological information.

We thank Drs. B. Roth and C. Beddell for helpful comments.
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