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ABSTRACT We present a general approach to forming
structure-activity relationships (SARs). This approach is
based on representing chemical structure by atoms and their
bond connectivities in combination with the inductive logic
programming (ILP) algorithm PROGOL. Existing SAR meth-
ods describe chemical structure by using attributes which are
general properties of an object. It is not possible to map
chemical structure directly to attribute-based descriptions, as
such descriptions have no internal organization. A more
natural and general way to describe chemical structure is to
use a relational description, where the internal construction of
the description maps that of the object described. Our atom
and bond connectivities representation is a relational descrip-
tion. ILP algorithms can form SARs with relational descrip-
tions. We have tested the relational approach by investigating
the SARs of 230 aromatic and heteroaromatic nitro com-
pounds. These compounds had been split previously into two
subsets, 188 compounds that were amenable to regression and
42 that were not. For the 188 compounds, a SAR was found
that was as accurate as the best statistical or neural network-
generated SARs. The PROGOL SAR has the advantages that it
did not need the use of any indicator variables handcrafted by
an expert, and the generated rules were easily comprehensible.
For the 42 compounds, PROGOL formed a SAR that was
significantly (P < 0.025) more accurate than linear regres-
sion, quadratic regression, and back-propagation. This SAR is
based on an automatically generated structural alert for
mutagenicity.

A structure-activity relationship (SAR) models the relation-
ship between activities and physicochemical properties of a set
of compounds and is fundamental to many aspects of chem-
istry. SAR modeling has been applied to a multitude of
biological systems and has aided the development of many new
drugs (see refs. 1 and 2). To guide rational drug design a SAR
should be both reliable and comprehensible. This paper pre-
sents an approach to forming SARs based on the machine
learning program PROGOL (3). This approach allows the use of
a rich representation of chemical structure and leads to SARs
that are both accurate and simple to understand.
There are two components to deriving a SAR: the choice of

representation to describe the chemical structure of the com-
pounds and the learning algorithm employed. The form of
learning algorithm restricts the representation that can be
employed. Widely used learning algorithms include linear
regression (4), partial least-squares regression (PLS) (5), neu-
ral networks (6, 7), and decision trees (8). These algorithms
have been applied to a variety of descriptions of chemical
structure-e.g., Hansch-type parameters (4, 9), topological
descriptors (2, 10), quantum mechanical descriptors (9), sub-
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structural units (11, 12), molecular shape (MS) (13), and
molecular fields (CoMFA) (14).
A key feature of all the above representations is that they are

based on attributes-i.e., general properties of objects. For
example, in the traditional Hansch approach to SARs the
attributes are properties such as LogP and Tr, which are global
properties of the molecule or substituted group, whereas in the
CoMFA approach to SARs, the attributes are points in space
which are global properties of the coordinate system used.
Each compound is described as a list (technically a tuple) of
attributes. However, this form of data representation is not
well suited to describing the steric structure of chemicals, as it
is difficult to map efficiently atoms and their connectivities
onto a list.
A more general way to describe objects is to use relations. In

a relational description the basic elements are substructures
and their associations. This increased generality allows a more
direct mapping from chemical steric structure to its represen-
tation. Fully relational descriptions of chemical structure have
not previously been used in SARs because existing learning
algorithms cannot use them. Inductive logic programming
(ILP) algorithms (15) are designed to learn (i.e., induce) from
examples encoded as logical relations. For many learning
problems, relational descriptions have been shown to produce
more concise and accurate rules than those based on attributes
(16). Formally, the difference in descriptive language between
attributes and relations corresponds to the difference between
propositional and first-order predicate logic (17). To illustrate
this difference between attributes and relations consider the
following hypothesis: An active compound requires a double
bond conjugated with an aromatic ring. Such a hypothesis could
be directly discovered and expressed by a relational SAR
system using only simple atom and bond types (e.g., atom A in
an aromatic ring is connected by a single bond to atom B, which
is connected by a double bond to atom C). It could not be
found or expressed in an attribute-based language without
specifically precoding the attribute "double bond conjugated
with an aromatic ring."

Recently we have developed the ILP algorithm PROGOL (3),
whose features (see below) enable us to implement a general
relational method for describing chemical structure in SARs.
This method is based on using atoms and their bond connec-
tivities and is simple, powerful, and generally applicable to any
SAR. It is particularly well suited to forming SARs that are
dependant on molecular shape (shape is the relationship
between objects in space), and SARs that are easily under-
stood, as chemists are used to relating chemical properties and
functions for groups of atoms. The method also appears robust
and suited to SAR problems that are difficult to model
conventionally. We present a benchmark of this ILP approach
on a system that has been studied by several existing algo-
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rithms, the mutagenicity of aromatic and heteroaromatic nitro
compounds.

METHODS

Data. Debnath et al. (9) studied the SAR of a set of 230
aromatic and heteroaromatic nitro compounds tested for
mutagenesis by the Ames test using Salmonella typhimurium
TA98. The compounds are heterogeneous and cannot be
superimposed onto a common template and thus present a
challenge to existing SAR methods. Debnath et al. identified
two subsets of the data, 188 compounds considered to be
amenable to regression, and 42 compounds that could not
easily be fitted by regression. We have used this split of the data
in the present study. This split of the data was also used by
Villemin et al. (18), who examined only the 188 dataset using
neural networks. These previous studies used an attribute-
based representation which consisted of two real-valued at-
tributes and two binary-valued indicator variables. The real-
valued attributes were the energy of the lowest unoccupied
molecular orbital (LUMO) and the molecular hydrophobicity
(octanol/water partition coefficient, LogP. [LUMO energies
are used in preference to the physically more meaningful
highest occupied molecular orbital (HOMO) energies to allow
direct comparison with previous work.] Explicit information
about the molecular shape of the compounds is not captured
by LUMO or LogP. Therefore Debnath et al. (9) augmented
the description of the compounds by creation of two binary-
valued indicator variables: II, set to 1 for all compounds
containing three or more fused rings, and Ia, set to 1 for the five
examples of acenthrylenes (as they had lower than expected
activity). Note that this representation was not formed auto-
matically but was selected by experienced chemists after
detailed inspection to fit this particular dataset.
We split the dataset of 188 compounds into 10 cross-

validation sets for testing. The dataset of 42 compounds was
tested by leave-one-out cross-validation. Cross-validation was
used as an empirical check of the significance tests used by the
different learning methods. The compounds were split into
two classes, high mutagenic [log (no. of revertants/nmol) >
0.0] and low mutagenic. There were 138 compounds consid-
ered in class high mutagenic and 92 compounds in class low
mutagenic.
PROGOL. In ILP, logical relationships expressed as a subset

of predicate calculus (17) are used to represent rules. Predicate
calculus is expressive enough to describe most mathematical
concepts and has a strong link with natural language. PROGOL
implements predicate logic in the computer language PROLOG.

In any application, the input to PROGOL is a set of positive
examples (i.e., for SAR, the active compounds), negative
examples (i.e., inactive compounds), and background knowl-
edge about the problem (e.g., the atom/bond structure of the
compounds). PROGOL outputs a hypothesis, expressed as a set
of rules which explain the positive and negative examples in
terms of the background knowledge. The rule found for each
example is optimal in terms of simplicity (information com-
pression, see below) and the language used to describe the
examples. However, the final output hypothesis is not neces-
sarily optimal, because a simpler hypothesis may exist that is
suboptimal for each individual example. Information compres-
sion is defined as the difference in the amount of information
needed to explain the examples with and without using the
rule. It is statistically highly improbable that a rule with high
compression does not represent a real pattern in the data (19).
The use of compression balances accuracy (no. of correct
predictions/no. of total predictions) and coverage (no. of
examples predicted by the rule/no. of examples). Full details
of PROGOL are available in ref. 3.
Compound Representation for PROGOL. In our PROGOL

study we used a generic relational representation based on

atoms and their bond connectivities. The atomic structure of
each compound was input into the molecular modeling pro-
gram QUANTA (Molecular Simulations, Burlington, MA) by
using its chemical editing facility. QUANTA was then used to
automatically transform the representation by typing the
atoms and by adding partial charges. This representation is
richer than the original atomic structure because it takes
advantage of the chemical knowledge in QUANTA. The choice
of QUANTA was arbitrary and any similar molecular modeling
package would have been suitable.
Two basic relations were used to represent structure: atom

and bond. For example, for compound 127 (3,4,3'-trinitrobi-
phenyl), atom(127, 127J1, C, 22, 0.191). states that in com-
pound 127, atom no. 1 is a carbon atom of QUANTA type 22 with
a partial charge of 0.191. Equivalently, bond(l27, 127]1, 127_6, 7).
states that in compound 127, atom no. 1 and atom no. 6 are
connected by a bond of type 7 (aromatic). The relation repre-
sentation is completely general for chemical compounds and no
special attributes need to be invented. The structural information
of these compounds was represented by 18,300 facts of back-
ground knowledge.
The PROGOL algorithm allows for the inclusion of complex

background knowledge that can be either explicit as facts or in
the form of computer programs. This allows the addition in a
unified way of any information that is considered relevant to
learning the SAR. Generally the input programs are in the
language PROLOG, but they could be in any language that can
be linked to PROLOG-e.g., a FORTRAN program to assign
partial charges. We have investigated the importance of back-
ground knowledge in the learning process by adding a set of
PROLOG programs to the background knowledge that define
some higher level chemical structures formed from atoms and
bonds. Definitions/programs for the following high-level
chemical concepts were formed in PROLOG: methyl group,
nitro group, ring length (five- or six-membered), aromatic ring,
heteroaromatic ring, connected rings, and the three distinct
topological ways to connect three benzenes. It is important to
appreciate that encoding PROLOG programs to define these
concepts is not the same as including them as attributes. This
is because PROGOL can learn SARs that use structural com-
binations of these groups; e.g., PROGOL could in theory learn
that a structural indicator of activity is diphenylmethane (as a
benzene single-bonded to a carbon atom single-bonded to
another benzene). In contrast, an attribute-based representa-
tion would be able to use only the absence or presence of the
different groups, not a bonded combination of them. To
represent compounds to the equivalent level of detail using
attributes would require several orders of magnitude more
attributes than needed for only the simple atom/bond repre-
sentation (see Discussion).
Two versions of the atom/bond representation were tested:

representation I (atoms, bonds) and representation II (atoms,
bonds, LogP, LUMO, and the above PROLOG programs).

Other SAR Algorithms Used for Comparison with PROGOL.
The dataset of aromatic nitro compounds has previously been
studied by linear regression (9) and the neural network
algorithm back-propagation (18). We have repeated these
studies to allow cross-validated comparison with our work. We
applied regression methods by using the Minitab package
(Minitab, Pennsylvania State University). Two variations of
regression were used: basic linear regression, and regression
using the dependant variables plus their squares (this allows
simple nonlinear behavior and was found in initial trials to be
as effective as quadratic regression). We applied the neural
network algorithm back-propagation using the NN program
(written by J. D. Hirst of the Imperial Cancer Research Fund
and incorporating the GEAR algorithm to solve sets of stiff
differential equations). We used the same network topology as
previously used by Villemin et al. (18) (three hidden units). We
also applied to the data the nonparametric decision tree
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algorithm CART (20). In CART each node corresponds to a split
of the data based on an attribute; the leafs correspond to
classes. The CART algorithm was taken from the Ind package
(National Aeronautics and Space Administration Ames Re-
search Center, MS 269-2, Moffat Field, CA 94035-1000).
Taken together, linear regression, back-propagation, and CART
pose a formidable challenge to PROGOL, as they have all been
shown to be accurate and robust general classification algo-
rithms (21, 22) and they have also been shown to be successful
on SAR problems (6-8).

Statistical Evaluation of Methods. To compare two predic-
tion methods the McNemar test for changes was used (23).
This is a binomial test based on the discrepant predictions of
the methods. The null hypothesis is that the number of cases
where method 1 predicts class high mutagenic and method 2
predicts low mutagenic is the same as the number of cases
where method 1 predicts class low mutagenic and method 2
predicts high mutagenic. To show that a prediction method was
better than random we used the McNemar test to compare the
method with default accuracy (predicting all examples to be in
the largest class). Note that this test is stronger than a simple
X2 test, as that would test the weaker default hypothesis of
random proportional guessing.

~ ~ % I

t J 8 C-_,
*

Rule i

Ih + +
I I

I
I I%~E I~

1% tot #*

8.<0.005

Rule iii

RESULTS
Table 1 gives the results for the different methods on the 188
dataset and the 42 dataset with and without indicator variables.

Representation I on the 188 Dataset. PROGOL applied to the
188 compounds and using atoms, bonds, and numerical ine-
qualities found a theory with an estimated accuracy of 81.4%
that consisted of five rules: A compound is highly mutagenic
if

(i) it has an aliphatic atom carbon attached by a single
bond to a carbon atom which is in a six-membered
aromatic ring, or

(ii) it has a carbon atom in an aryl-aryl bond between
two benzene rings with a partial charge - 0.010, or

(iii) it has an oxygen atom in a nitro (or related) group
with a partial charge c 0.406, or

(iv) it has a hydrogen atom with a partial charge of 0.146,
or

(v) it has a carbon atom that merges six-membered
aromatic rings with a partial charge . 0.005.

Table 1. Cross-validation prediction results

Dataset Theory

188 REG

REG +

NN

CART

PROGOL I

PROGOL 11

42 REG

REG +

NN

CART

PROGOL I

PROGOL II

Accuracy, %

Without With
indicators indicators

85.2
83.0*
86.2
82;5*
81.4t
87.8
66.7t:
71.8tt
64.3tt
83.3
85.7
83.3

89.3
88.8
89.4
88.3

66.7t1
69.Ott
69.Ott
83.3

Accuracy is defined as (no. of correct predictions)/(no. of predic-
tions made) (for all drugs predicted). REG, linear regression; REG+,
linear regression plus squares; NN, back-propagation; PROGOL I, PRO-
GOL with representation I; and PROGOL II, PROGOL with representation
II.
*Accuracy significantly worse (P < 0.1) than PROGOL I.
tAccuracy significantly worse (P < 0.025) than PROGOL I.
tAccuracy significantly worse (P < 0.025) than PROGOLII.

Rule v

8=0.146

FIG. 1. The structural features of the theory learned by PROGOL
using representation I on the 188 dataset. The dashed lines represent
structure implied by the PROLOG rule; lowercase letters represent
atoms that are not necessarily carbon.

A structural interpretation of the theory is given in Fig. 1.
The PROGOL theory has the advantage of providing direct
insight into the mutagenesis process. Rule i is a shape-based
(steric) indicator of mutagenesis; it does not appear to be
explainable by hydrophobic or electronic effects. Rule ii is a

combination of a biphenyl shape-based feature and the elec-
tronic effect of a high partial charge on the aromatic carbon.
This electronic effect supports the idea that electron-
withdrawing rings can promote mutagenesis by promoting the
initial reduction of a nitro group [a possible rate-limiting step
in nitroarene activation (9)]. It has also been argued that
electron-withdrawing rings should boost mutagenicity by in-
creasing the lifetime of hydroxylamine, thereby giving it time
to diffuse to DNA (24). The low partial charge on the oxygen
in rule iii should mediate reduction to the amine. In rule iv the
positive partial charges of the hydrogens may also indicate the
presence of electron-withdrawing groups. Rule v is an indica-
tor of high hydrophobicity; more hydrophobic rings have low
partial charges on the aromatic carbons which overrides the
expected electronic effect.
There is no significant difference (at P < 0.1) between the

accuracy of this theory and the accuracy of the results obtained
with any other method (see below) using only the LUMO and
LogP attributes (i.e., excluding the indicator variables). This
means that it is possible to do as well using PROGOL and a

simple molecular representation, on a dataset especially se-

lected to be suitable for regression, as it is with state-of-the-art
statistical methods. It is possible to do significantly better than
PROGOL only if indicator variables are included. However, this
comparison is statistically biased against PROGOL, as the
indicator variables were devised after visual inspection of the
full dataset, not cross-validated subsections.

Representation II on the 188 Dataset. By using represen-
tation II a theory with an estimated accuracy of 87.8% was

found that consisted of three rules: A compound is highly
mutagenic if

(i) it has LUMO c-1.870, or

Rule iv

8-=06
< -0.406
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(ii) it has LUMO c - 1.145 and a five-membered ring, or
(iii) it has LogP 2 4.180.

The PROGOL theory is simple and easy to understand. Rule
i states that low values of LUMO indicate mutagenicity [as
shown by Debnath et al. (9)]. Rule ii shows that this effect is
modulated by the structural feature of a five-membered ring;
this is very similar to the Ia indicator variable of Debnath et al.
(9), who considered it before choosing the more specific
structural feature. Rule iii states that high values of LogP
indicate mutagenicity [also shown by Debnath et al. (9)].
No algorithm is significantly more accurate (at P < 0.1) with

or without the indicator variables. This accuracy is significantly
higher (at P < 0.1) than the results obtained by regression plus
squares and CART without indicator variable (see below). By
using PROGOL and a generic molecular representation it is
possible to do as well as state-of-the-art statistical methods
using a carefully hand-crafted representation and a dataset
selected to be suitable for regression.

Comparative Results on the 188 Dataset. We summarize the
results with the other methods. Applying linear regression
produced results consistent with those of Debnath et al. (9).
The approach with the highest estimated accuracy (89.3%) was
basic linear regression with two indicator variables that pro-
duced the following model: log TA98 = - (2.94 ± 0.33) + (0.10
+ 0.08)LogP - (1.42 ± 0.16)LUMO - (2.36 + 0.50)Ia + (2.38
+ 0.23)II (n = 188, r = 0.844, s = 1.085, F = 113.42). The high
accuracy of this model indicates that the data is quite linear
using these attributes.
The back-propagation neural network yielded results which

are consistent with the work of Villemin et al. (18). The
accuracies produced by back-propagation are higher than
those produced by basic linear regression, but the differences
are not significant at P < 0.1. It is not possible in a simple way
to form an explicit SAR or to interpret chemically the meaning
of a neural network.
The CART algorithm using the LogP and LUMO attributes

and the indicator variables produced a cross-validated esti-
mated accuracy of 88.3%. There is no significant difference (at
P < 0.1) between the accuracy of CART and the accuracy of
linear regression. CART produced very simple and easy-to-
interpret decision trees.
PROGOL on the 42 Dataset. PROGOL found the same theory

for the 42 compounds using representations I and II. This
theory consists of a single rule and is the optimal theory
possible given the descriptive languages and the compression
measure. The rule states that an indicator for high mutage-
nicity is a double bond conjugated to a five-membered aro-
matic ring via a carbon atom (Fig. 2). This rule is a new
structural indicator for high mutagenicity in chemical com-
pounds. The conjugated double bond should stabilize the
five-membered aromatic ring, and this may allow greater time
for the compound to diffuse to the target site. The accuracy of
this theory, estimated by leave-one-out cross-validation, is
85.7% for representation I and 83.3% for representation II.
These differences are caused by chance effects causing PRO-
GOL, for one of the splits, to find a more compressive theory
on the training data that does not perform as well on the test
data. Such effects are more likely with smaller datasets. The
results for PROGOL are higher than for any other method with
or without indicators. For representations I and II the results
are significantly better (at P < 0.025) than for all other
methods except CART (with or without indicator variables).
This illustrates the robust nature of the basic atom/bond
representation and machine learning.
Comparative Results on the 42 Dataset. It was not found

possible, except with CART, to obtain results significantly better
(at P < 0.1) than the default accuracy (that of the largest class).
The results obtained with regression show that the indicator
variables are not applicable to this dataset; i.e., they are not
generic. The relationship between mutagenicity and LogP is

A 4-nltropenta[cdjpyrene

A_ j 9 CH=N--NH-0-NH2

0
nitrofurazone

I. 1-0~~~~~~~~~
6-nltro-7,8,9,10-
tetrahydrobenzo[alpyrene 4-nitroindole

Low Mutagenicity

B

w-x

Derived Rule

FIG. 2. (A) Example compounds with low mutagenicity explained
by the structural feature. (B) The structural feature found by the three
versions of PROGOL on the 42 dataset; atoms U-Z are not necessarily
carbon.

reversed on the 42 dataset compared with the 188 dataset: high
LogP is associated with low mutagenicity. Improvements in the
results from neural networks may have been possible with a
different training regime and net topology. CART produced a
very simple tree with just one node based on LogP (hydro-
phobicity < 1.195, then active: hydrophobicity - 1.195, then
inactive). However, this tree provides little insight into the
stereochemistry of mutagenesis.

DISCUSSION
Several workers have investigated SAR representations by
using atoms and bond connectivities [e.g., substructural units
(11)]. These previous representations were attribute-based
and not relational. This meant that before learning proceeded
it was necessary to enumerate (perhaps by use of a computer
program) all potentially interesting combinations of atoms and
bonds (fragments). Each combination of interest then became
an attribute. This procedure potentially produces a prohibitive
number of attributes for compounds with complex structure.
For the data investigated in this paper we calculate that it
would require 1,055,943 attributes per example to represent
the compounds in the same level of detail as our simplest
relational representation. This number of attributes is beyond
the capabilities of any learning algorithm (statistical, neural
network, or symbolic machine learning). In practice, attribute-
based learners have to compromise on the number of sub-
structures they can consider, and attributes that have not been
precoded will not be learned.
The PROGOL algorithm marks an important advance in the

field of ILP. In our previous work applying machine learning
to SARs we used the program GOLEM (25), which had the
ability to use certain types of relational information. However,
this ability was limited by a determinacy constraint (15), which
meant that when chemical compounds were represented each
substructure could be connected only to at most one other
substructure. GOLEM could therefore not use the basic atom/
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bond connectivities representation. In addition, GOLEM could
use only knowledge expressed as facts, whereas PROGOL can
use both facts and rules (arbitrary PROLOG programs). A
further advantage of PROGOL over GOLEM is its ability to do a
complete search of the rules space, thereby finding the optimal
rule explaining an example.
A major limitation of the work is that three-dimensional

structure is not used. The simplest way to include this would
be to extend the atom predicate by including Cartesian coor-
dinates and by including background knowledge about Euclid-
ean space (Pythagoras' theorem and trigonometry). No more
information is necessary for PROGOL to learn rules about
three-dimensional structures. Such a SAR method would have
advantages over existing methods because it would not be
necessary to align the compounds to a coordinate frame.
Alignment is necessary in existing methods because com-
pounds are described by using attributes, and so the only way
that a point on one compound can be related to one on another
is by the aligned grid-a universal property of all the com-
pounds. If the compounds were represented relationally there
would be no need to align the compounds explicitly, as the
logical process of induction aligns the represented structures of
the compounds internally in a computationally efficient way. A
similar relational approach could be applied to CoMFA-type
grid information (14). This might allow a more elegant for-
mulation of the CoMFA idea by removing the need for explicit
alignment of the compounds and the need to represent ex-
plicitly empty space.

Conclusions. This paper presents a generic relational
method for representing compounds in SAR models. This
method is based on an atom/bond representation that is
simple, powerful, and generally applicable to any SAR prob-
lem. All previous atom/bond-based representations have used
attributes. Relational representations are more powerful than
those based on attributes. For atom/bond-based representa-
tions this increased power means that there is no need for
explicit enumeration of all possible structures of interest.

It is clear from the theory and practice of statistics and
machine learning that there is no single best SAR modeling
algorithm (22, 26). The method that is best for a particular
problem depends on the features of the data and the form of
the required answer. This means that the computational
chemist's toolbox should include a variety of methods. Specif-
ically, we consider there is a role for the use of PROGOL and the
relational atom/bond representation for problems where a
small number of unknown shape/structure features are im-
portant, where it is important to obtain chemical insight, and
where it has proven difficult to fit by using other techniques.
If many independent attributes add together to produce ac-
tivity, then the PROGOL approach is unlikely to be successful,
as this would contradict the algorithm's inductive bias.

Finally, the advantages of using relational representations
and automatic inference may not be limited to modeling SARs.
It is possible that other branches of chemistry may benefit. For
example, in synthesis planning it is possible to envisage a
system that combines the deductive power of PROLOG with the
induction of PROGOL.

Program Availability. The ILP program PROGOL (imple-
mented in PROLOG) and the data used in this paper can be
obtained by request from Ashwin Srinivasan, Oxford Labora-
tory, Wolfson Building, Parks Road, Oxford, OXI 3QD,
United Kingdom, Ashwin.Srinivasan@comlab.oxford.ac.uk;
they are freely available to academics. A version of PROGOL iS
also available that is implemented in c language.
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